Numerical evaluation of multi-scale integrals with SecDec 3

Size: px
Start display at page:

Download "Numerical evaluation of multi-scale integrals with SecDec 3"

Transcription

1 Numerical evaluation of multi-scale integrals with SecDec 3 Sophia Borowka University of Zurich Project in collaboration with G. Heinrich, S. Jones, M. Kerner, J. Schlenk, T. Zirke [hep-ph] (CPC, in press) Amplitudes 215, Zurich, July 6 th, 215 S. Borowka (University of Zurich) SecDec-3. 1

2 Precise theoretical predictions in the LHC era A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO S. Borowka (University of Zurich) SecDec-3. 2

3 Precise theoretical predictions in the LHC era A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO Calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving multiple mass scales still need to be improved S. Borowka (University of Zurich) SecDec-3. 2

4 Precise theoretical predictions in the LHC era A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO Calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving multiple mass scales still need to be improved Numerical methods are in general easier to automate, multiple scales do not pose a problem S. Borowka (University of Zurich) SecDec-3. 2

5 Precise theoretical predictions in the LHC era A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO Calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving multiple mass scales still need to be improved Numerical methods are in general easier to automate, multiple scales do not pose a problem highly interesting in light of the current need for predictions involving massive particles! S. Borowka (University of Zurich) SecDec-3. 2

6 Numerical evaluation of Feynman integrals Many people are/have been working on purely numerical methods, e.g. Anastasiou/Beerli/Kunszt et al., Becker/Reuschle/Weinzierl et al., Binoth/Heinrich et al., Boughezal/Melnikov/Petriello et al., Czakon et al., Freitas et al., Kurihara et al., Nagy/Soper et al., Passarino et al.,... Problems beyond the one-loop level mainly are Extraction of IR and UV singularities Numerical convergence in the presence of integrable singularities (e.g. thresholds) Speed / accuracy S. Borowka (University of Zurich) SecDec-3. 3

7 Numerical evaluation of Feynman integrals Many people are/have been working on purely numerical methods, e.g. Anastasiou/Beerli/Kunszt et al., Becker/Reuschle/Weinzierl et al., Binoth/Heinrich et al., Boughezal/Melnikov/Petriello et al., Czakon et al., Freitas et al., Kurihara et al., Nagy/Soper et al., Passarino et al.,... Problems beyond the one-loop level mainly are Extraction of IR and UV singularities (solved with SecDec 1) Numerical convergence in the presence of integrable singularities (e.g. thresholds) Speed / accuracy S. Borowka (University of Zurich) SecDec-3. 4

8 Numerical evaluation of Feynman integrals Many people are/have been working on purely numerical methods, e.g. Anastasiou/Beerli/Kunszt et al., Becker/Reuschle/Weinzierl et al., Binoth/Heinrich et al., Boughezal/Melnikov/Petriello et al., Czakon et al., Freitas et al., Kurihara et al., Nagy/Soper et al., Passarino et al.,... Problems beyond the one-loop level mainly are Extraction of IR and UV singularities (solved with SecDec 1) Numerical convergence in the presence of integrable singularities (e.g. thresholds) (solved with SecDec 2) Speed / accuracy S. Borowka (University of Zurich) SecDec-3. 5

9 Numerical evaluation of Feynman integrals Many people are/have been working on purely numerical methods, e.g. Anastasiou/Beerli/Kunszt et al., Becker/Reuschle/Weinzierl et al., Binoth/Heinrich et al., Boughezal/Melnikov/Petriello et al., Czakon et al., Freitas et al., Kurihara et al., Nagy/Soper et al., Passarino et al.,... Problems beyond the one-loop level mainly are Extraction of IR and UV singularities (solved with SecDec 1) Numerical convergence in the presence of integrable singularities (e.g. thresholds) (solved with SecDec 2) Speed / accuracy (further improved in SecDec 3) S. Borowka (University of Zurich) SecDec-3. 6

10 IR and UV singularity extraction beyond 1-loop Diverse methods have been worked out R*-operation Chetyrkin, Tkachov, V.A.Smirnov 7s, 8s Polynomial exponent raising Tkachov 96, Passarino Sector decomposition Binoth & Heinrich Computation of residues within Mellin-Barnes representation Anastasiou, Daleo 6; Czakon 6 Subtraction terms Freitas 12; Becker, Weinzierl 12 Quasi-finite basis Panzer 14; Manteuffel, Schabinger, Panzer 14 + important other works on UV renormalization Bogoliubov, Parasiuk, Hepp, Zimmermann, Broadhurst, Kreimer, Connes,... S. Borowka (University of Zurich) SecDec-3. 7

11 The method of sector decomposition Idea and method of sector decomposition pioneered by Hepp 66, Denner & Roth 96, Binoth & Heinrich 1 x 1 1 dx 1 dx 2 (x 1 + x 2 ) 2+ɛ 1 = = = 1 1 y (1) + (2) 1 1 dx 1 dx 2 (x 1 + x 2 ) 2+ɛ (θ(x 1 x 2 ) + θ(x 2 x 1 )) x1 1 dx 1 dx 2 (x 1 + x 2 ) 2+ɛ + 1 dx 1 dt x 1 (x 1 + x 1 t) 2+ɛ x t x2 1 dx 2 dx 1 (x 1 + x 2 ) 2+ɛ 1 dx 2 d t + t 1 x2 1+ɛ ( t + 1) 2+ɛ iterative sector decomposition is highly automatable S. Borowka (University of Zurich) SecDec-3. 8 y

12 Public codes using the sector decomposition method Public codes: sector decomposition (uses GiNaC) Bogner & Weinzierl 7 supplemented with CSectors Gluza, Kajda, Riemann, Yundin 1 for construction of integrand in terms of Feynman parameters FIESTA* (uses Mathematica, C) A.V. Smirnov, V.A. Smirnov, Tentyukov 8 9, A.V. Smirnov 13 SecDec* (uses Mathematica, Fortran/C++) Carter & Heinrich 1; SB, Carter, Heinrich 12; SB & Heinrich 13; SB, Heinrich, Jones, Kerner, Schlenk, Zirke 15 *Multi-scale integrals not limited to the Euclidean region SB, J. Carter & G. Heinrich 12; A.V. Smirnov 13 S. Borowka (University of Zurich) SecDec-3. 9

13 SecDec 3 can tackle... Feynman graph or parametric function SecDec is a tool to numerically compute General Feynman integrals for arbitrary kinematics and with numerators Integrals matching a Feynman integral structure More general parametric functions S. Borowka (University of Zurich) SecDec-3. 1

14 Feynman loop integrals Scalar multi-loop integral in Feynman parametrization G = ( 1)Nν N j=1 Γ(ν j) Γ(N ν LD/2) N j=1 dx j x ν j 1 j δ(1 N l=1 x l ) U Nν (L+1)D/2 ( x) F Nν LD/2 ( x, s ij ) with N ν = N j=1 ν j in D dimensions with L loops, N propagators to power ν j Feynman integrals with (contracted) numerators of rank R U and F can be constructed via topological cuts or by specifying the individual propagators in momentum space S. Borowka (University of Zurich) SecDec-3. 11

15 Modified Feynman loop integrals More general user-defined polynomial integrals matching the Feynman loop integral structure G user = P(ε) 1 N a dx j x j (ε) j N ( x, s ij, ε) U expou(ε) ( x, s ij ) F expof(ε) ( x, s ij ) j=1 with a prefactor P and a numerator function N and exponents a j U and F can have negative exponents, also a j < allowed integrals without δ-constraint F is used for construction of deformation of the integration contour in the physical region user has more responsibility when using deformation of integration contour S. Borowka (University of Zurich) SecDec-3. 12

16 Multi-dimensional parameter integrals A general parametric function can be a phase space integral where IR divergences are regulated dimensionally, e.g. dφ D ME 2 ds 13 ds 23 s13 1 ε F(s 13, s 23 ) s 13 + s ε F(x, y) dx dy x x + y functions of the type of hypergeometric functions, e.g. 3F 2 (a 1,..., a 3 ; b 1, b 2 ; β) 1 dxdy x a1 1 (1 x) b1 a1 1 y a2 1 (1 y) b2 a2 1 (1 βxy) a3 NEW in SecDec 3: additional ε-dependent functions g(ε, x) can be included (no iterated sector decomposition applied) S. Borowka (University of Zurich) SecDec-3. 13

17 The program - Outline 1a 2 graph info Feynman integral 1b user defined function 3 iterated sector decomposition no multiscale? yes 6 expansion in ǫ 5 subtraction of poles 4 contour deformation 7 8 numerical integration result n Cm ǫ m m= 2L S. Borowka (University of Zurich) SecDec-3. 14

18 Operational sequence of the SecDec 3 program 1a 2 graph info Feynman integral 1b user defined function no 3 iterated sector decomposition multiscale? yes 6 expansion in ǫ 5 subtraction of poles 4 contour deformation 7 8 numerical integration result n Cm ǫ m m= 2L S. Borowka (University of Zurich) SecDec-3. 15

19 Improved user interface in SecDec 3 SecDec needs 3 input files: param.input: minimal info needed to run SecDec math.m: graph definition, enhanced flexibility kinem.input: contains point name and numerical values for kinematics S. Borowka (University of Zurich) SecDec-3. 16

20 Operational sequence of the SecDec 3 program 1a 2 graph info Feynman integral 1b user defined function no 3 iterated sector decomposition multiscale? yes 6 expansion in ǫ 5 subtraction of poles 4 contour deformation 7 8 numerical integration result n Cm ǫ m m= 2L S. Borowka (University of Zurich) SecDec-3. 17

21 Sector decomposition algorithms Iteration of the sector decomposition leads to extraction of IR and UV divergences Heuristic algorithm (Binoth & Heinrich, strategy X) so far most efficient one, included since SecDec-1. Infinite recursion may appear Other strategies avoid infinite recursion Bogner, Weinzierl 7 8, A. Smirnov, Tentyukov 8, Kaneko, Ueda 9 1 For complicated examples: lead to more decomposed sectors or functions of higher complexity NEW in SecDec-3 Geometric strategy by Kaneko and Ueda (G1) Geometric strategy Kaneko and Ueda combined with Cheng-Wu theorem (G2) S. Borowka (University of Zurich) SecDec-3. 18

22 Sector decomposition strategy G2 Exploits Cheng-Wu theorem Cheng, Wu 87: resolve δ-constraint of Feynman integral for one variable, integrate all other Feynman parameters to infinity Then perform the sector decomposition using computational geometry Kaneko, Ueda 9 1 Calculate Newton polytope of F U N If vertex lies in more than N 1 facets of the polytope, a triangulation is performed (with Normaliz Bruns, Ichim, Roemer, Soeger) Perform a change of variables to map upper bound of N 1 Feynman parameters to 1 S. Borowka (University of Zurich) SecDec-3. 19

23 Comparison of decomposition strategies Diagram Strategy X Strategy G1 Strategy G2 282 sectors 1 s 368 sectors 1 s 266 sectors 8 s 36 sectors 9 s 166 sectors 4 s 235 sectors 5 s sectors 3 s 56 sectors 15 s 34 sectors 4 s infinite recursion 72 sectors 5 s 76 sectors 1 s sectrs 551 s 3263 sectrs s sectrs 443 s S. Borowka (University of Zurich) SecDec-3. 2

24 Operational sequence of the SecDec 3 program 1a 2 graph info Feynman integral 1b user defined function no 3 iterated sector decomposition multiscale? yes 6 expansion in ǫ 5 subtraction of poles 4 contour deformation 7 8 numerical integration result n Cm ǫ m m= 2L S. Borowka (University of Zurich) SecDec-3. 21

25 Extension to physical kinematics For kinematics in the physical region, F can still vanish after sector decomposition F Bubble = s t 1 (1 t 1 ) + m 2 iδ but a deformation of the integration contour Im(z) 1 Re(z) and Cauchy s theorem can help 1 f (t)dt = f (t)dt + c 1 z(t) f (z(t))dt = t S. Borowka (University of Zurich) SecDec-3. 22

26 Deformation of the integration contour to integrate Im(z) mass thresholds Integrand is analytically continued into the complex plane 1 Re(z) F( t) F( t + i y( t)) = F( t) + i j y j ( t) F( t) t j + O(y( t) 2 ) The integration contour is deformed by t z = t + i y, y j ( t)= λt j (1 t j ) F( t) t j Soper 99 Soper, Nagy; Binoth; Anastasiou/Beerli/Kunszt et al., Kurihara et al., Freitas et al., Becker/Reuschle/Weinzierl et al. S. Borowka (University of Zurich) SecDec-3. 23

27 Operational sequence of the SecDec 3 program 1a 2 graph info Feynman integral 1b user defined function no 3 iterated sector decomposition multiscale? yes 6 expansion in ǫ 5 subtraction of poles 4 contour deformation 7 8 numerical integration result n Cm ǫ m m= 2L S. Borowka (University of Zurich) SecDec-3. 24

28 Subtraction, Expansion, Numerical Integration Subtraction The factorized poles in a subsector integrand I U, F are extracted by subtraction (e.g. logarithmic divergence) 1 Expansion dt j t 1 b j ɛ I(, ɛ) j I(t j, ɛ) = b j ɛ + 1 dt j t 1 b j ɛ j (I(t j, ɛ) I(, ɛ)) After the extraction of poles, an expansion in the regulator ɛ is done Numerical Integration with Integrators in Cuba-4 library Hahn et al BASES Kawabata 95 NEW in SecDec 3: CQuad Gonnet 1 (fastest for 1-dim), NIntegrate Wolfram Research S. Borowka (University of Zurich) SecDec-3. 25

29 Summary of new features in SecDec version 3 SB, Heinrich, Jones, Kerner, Schlenk, Zirke 15 Two additional decomposition algorithms based on computational geometry (avoid infinite recursion) Numerators can be given in terms of inverse propagators Linear propagators can be treated ε-dependent symbolic functions allowed in parametric integrals Restructured user input helps interfacing with reduction programs 2 new integrators included CQuad, NIntegrate Usage of batch systems facilitated, scans over parameter ranges accelerated Internal structure largely rewritten SecDec is ready for large-scale applications! S. Borowka (University of Zurich) SecDec-3. 26

30 Download SecDec 3 S. Borowka (University of Zurich) SecDec-3. 27

31 Install SecDec 3 Install: tar xzvf SecDec-3..7.tar.gz cd SecDec-3..7 make (make check) Prerequisites: Mathematica (version 7 or above), Perl, Fortran and/or C++ compiler, Normaliz Bruns, Ichim, Roemer, Soeger for usage of geometric decomposition strategies S. Borowka (University of Zurich) SecDec-3. 28

32 Selection of applications - Outline 1) Master integrals 2) Large(r)-scale applications 3) Miscellaneous S. Borowka (University of Zurich) SecDec-3. 29

33 Master Integrals S. Borowka (University of Zurich) SecDec-3. 3

34 Non-planar 2L box with 2 mass scales s = (p 1 + p 2 ) 2 m1 2 = 1, m2 2 =.522, p2 3 = p2 4 = m2 2, p2 1 = p2 2 =, t = m1 p3 p4 p2 p1 m1=1,m2=mh/mt=125/173, t= m1=1,m2=mh/mt=125/173, t= Re[HHNP1].2 Im[HHNP1] Real part s s Imaginary part timings: secs (CPU time), rel. accuracy: 1 3, abs. accuracy: 1 5 SB & Heinrich Nov 14 S. Borowka (University of Zurich) SecDec-3. 31

35 All-massive planar 7-propagator 2L box 13 independent mass scales, full numerical approach Many scales are not a bottleneck Finite part Finite part of planar 2-loop box Real (SecDec) Imag (SecDec) s 12 s 12 = (p 1 + p 2 ) 2 p1 p2 m1 m3 m2 m4 m7 m5 m 2 1 = 2, m2 2 = 6, m 2 3 = 7, m2 4 = 8, m 2 5 = 9, m2 6 = 1, m 2 7 = 12, p2 1 = 1, p 2 2 = 3, p2 3 = 4, p 2 4 = 5, s 23 =.25 timings: 1-8 secs (SecDec 2), rel. accuracy 1 3, abs. accuracy: 1 8 s 12 + s 23 + s 13 = ( 4 i=1 p i ) 2 SB Jun 14 S. Borowka (University of Zurich) SecDec m6 p4 p3

36 Top-quark pair NNLO Two of most complicated 2-loop diagrams: p 4 p 4 m 2 p 2 p 1 m 1 p 1 p 2 m 1 p 3 p 3 (a) ggtt1 (b) ggtt2 ggtt1: enters heavy fermionic corrections: no analytical result available fully numerical approach easy ggtt2: enters light fermionic corrections: more complicated infrared singularity structure, spurious divergences, numerical cancellations pure numerical approach difficult mixed approach: analytical preparation SB & Heinrich Mar 13 S. Borowka (University of Zurich) SecDec-3. 33

37 Results for the non-planar massive 2L-diagram ggtt1 s 12 = (p 1 + p 2 ) 2 p1 m2 p2 m1 p4 m 2 1 = m2 2 = 1, p2 3 = p2 4 = m2 1, p2 1 = p2 2 =, s 23 = 1.25 p3 5 Non-planar scalar massive 2L box diagram ggtt1 2 Non-planar rank 2 massive 2L box diagram ggtt1 1 Finite real and imaginary part Finite real and imaginary part Real (SecDec) Imag (SecDec) s 12 Scalar integral -3 Real (SecDec) Imag (SecDec) s 12 Rank 2 integral timings (SecDec 2): secs (scalar), 5-7 secs (rank 2), rel. accuracy: 1 3, abs. accuracy: 1 5 SB & Heinrich Mar 13 S. Borowka (University of Zurich) SecDec-3. 34

38 Results for the non-planar massive 2L-diagram ggtt2 mixed analytical & numerical approach 1 Real (SecDec) Imag (SecDec) p4 Finite part Finite part of non-planar 2L box diagram ggtt s s = (p 1 + p 2 ) 2 p1 m 2 1 = 1, p2 p 2 1 = p2 2 =, p 2 3 = p2 4 = m2 1, s 23 = 1.25 timings (SecDec 2): 25-4 secs, rel. accuracy 5 1 3, abs. accuracy: 1 5 analytic results: Manteuffel & Studerus Sep 13 SB & Heinrich Mar 13 m1 p3 S. Borowka (University of Zurich) SecDec-3. 35

39 Massive 2-loop master integrals S. Borowka (University of Zurich) SecDec-3. 36

40 Off-shell 2-loop box master integrals S. Borowka (University of Zurich) SecDec-3. 37

41 Large(r)-scale projects S. Borowka (University of Zurich) SecDec-3. 38

42 Higgs-boson self-energy diagrams for O(α s α t ) p 2 = result: Heinemeyer, Hollik, G. Weiglein 98 p 2 result: SB, Hahn, Heinemeyer, Heinrich, Hollik Apr 14; Degrassi, Di Vita, Slavich Oct 14 Tensor reduction with TwoCalc Weiglein et al. 93 & FormCalc Hahn et al Numerical evaluation of momentumdependent integrals with a preliminary version of SecDec 3 φ = h, H, A S. Borowka (University of Zurich) SecDec-3. 39

43 Numerical evaluation of momentum-dependent integrals 34 mass configurations run with SecDec, e.g. Scalar 2L bubble with m 1 =m 2 =173.2, m 2 =1173.2, m 3 =15. Scalar 2L bubble with m 1 = m 2 =173.2, m 3 =826.8, m 4 =15. 5 Real (SecDec) Imag (SecDec).5 Real (SecDec) Imag (SecDec) Real and imaginary finite part of T Real and imaginary finite part of T e+6 p 2 T 1234, finite part e+6 p 2 T 11234, finite part differences of kinematic invariants of up to 14 orders of magnitude rel. accuracy better than 1 5, timings range from.1 1 secs S. Borowka (University of Zurich) SecDec-3. 4

44 Full 2-loop process: gg HH Higgs-boson pair production in gluon fusion interesting for measurement of Higgs-boson self-coupling LO (1-loop) known Glover, van der Bij 88 NLO in m t limit Plehn, Spira, Zerwas 96; Dawson, Dittmaier, Spira 98 NLO with m t but supplemented with 1/m t expansion Grigo, Hoff, Melnikov, Steinhauser 13 NNLO in m t limit De Florian, Mazzitelli 13 NNLO m t with all matching coefficients Grigo, Melnikov, Steinhauser 14 NNLO m t + NNLL threshold resummation De Florian, Mazzitelli 15 Full mass dependence in real radiation part + matching to parton shower Frederix, Hirschi, Mattelaer, Maltoni, Torrielli, Vryonidou, Zaro 14; Maltoni, Vryonidou, Zaro 14 Full top-mass dependence at NLO missing so far! S. Borowka (University of Zurich) SecDec-3. 41

45 gg HH - Two-loop integrals SB, Heinrich, Greiner, Jones, Kerner, Luisoni, Mastrolia, Schlenk, Schubert, Stoyanov, Di Vita, Zirke Requires computation of unknown two-loop integrals 4 independent scales: s 12, s 23, m H, m t numerical evaluation with SecDec m H = 125 GeV m t = 173 GeV Plot by Gudrun Heinrich S. Borowka (University of Zurich) SecDec-3. 42

46 gg HH - Two-loop integral examples I = P 1 ε + P m H = 125 GeV m t = 173 GeV Plot by Gudrun Heinrich S. Borowka (University of Zurich) SecDec-3. 43

47 gg HH - Two-loop integral examples HHNP2b, Re(P) I = P 1 ε + P m H = 125 GeV m t = 173 GeV s23/mt s12/mt Plot by Gudrun Heinrich S. Borowka (University of Zurich) SecDec-3. 44

48 from Jim Talbert s talk at RadcorLoopfest 215 Can make use of the new ε dependent dummy functions feature in SecDec 3 We work together to implement further new features needed for their project S. Borowka (University of Zurich) SecDec-3. 45

49 Miscellaneous S. Borowka (University of Zurich) SecDec-3. 46

50 WIMP el.-magnetic form factors, 2-loop S. Borowka (University of Zurich) SecDec-3. 47

51 Model for neutrino mass generation, 3-loop S. Borowka (University of Zurich) SecDec-3. 48

52 Summary and Outlook Summary SecDec allows for computation of diverse integrals contributing to scattering amplitudes SecDec 3: new decomposition strategies, improved user interface, negative propagator powers and linear propagators allowed, integrators added, efficiency increased New features in SecDec 3 prepare for large(r) scale applications Outlook Push limits of the method further (minimize spurious singularities) Interface to other programs, e.g. FIRE, LiteRed, Reduze Application to phenomenologically relevant processes S. Borowka (University of Zurich) SecDec-3. 49

53 Backup S. Borowka (University of Zurich) SecDec-3. 5

54 Change of variables in decomposition strategy G2 x i = y ei, nf F F S j F : facet S j : Set of facets a vertex lies in y F : new coordinate for each facet F e i : unit vector in R N 1 n F : primitive normal vector of the facet F Kaneko, Ueda 9 1 S. Borowka (University of Zurich) SecDec-3. 51

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

Numerical multi-loop calculations with SecDec

Numerical multi-loop calculations with SecDec Journal of Physics: Conference Series OPEN ACCESS Numerical multi-loop calculations with SecDec To cite this article: Sophia Borowka and Gudrun Heinrich 214 J. Phys.: Conf. Ser. 523 1248 View the article

More information

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich Scientific Board Meeting July 27, 2016 Overview tools FeynArts/FormCalc, Cuba GoSam SecDec NLO phenomenology

More information

NLO QCD corrections to Higgs boson pair production via gluon fusion

NLO QCD corrections to Higgs boson pair production via gluon fusion Wir schaffen Wissen heute für morgen NLO QCD corrections to Higgs boson pair production via gluon fusion Seraina Glaus Theory Group LTP, Paul Scherrer Institute & University Zurich In collaboration with

More information

Numerical evaluation of multi-loop integrals

Numerical evaluation of multi-loop integrals Max-Planck-Institut für Physik, München, Germany E-mail: sjahn@mpp.mpg.de We present updates on the development of pyse CDE C, a toolbox to numerically evaluate parameter integrals in the context of dimensional

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

NLO for Higgs signals

NLO for Higgs signals NLO for Higgs signals Gudrun Heinrich Max Planck Institute for Physics, Munich P.Meridiani, EPS 2017 P.Meridiani, EPS 2017 we need to be sure about the systematic uncertainties to see something like this

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

arxiv: v2 [hep-ph] 21 Sep 2015

arxiv: v2 [hep-ph] 21 Sep 2015 FR-PHENO-2015-001, MPP-2015-27, ZU-TH 1/15 SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop arxiv:1502.06595v2 [hep-ph] 21 Sep 2015 S. Borowka a, G. Heinrich b, S. P. Jones b,c,

More information

Loop-Tree Duality Method

Loop-Tree Duality Method Numerical Implementation of the Loop-Tree Duality Method IFIC Sebastian Buchta in collaboration with G. Rodrigo,! P. Draggiotis, G. Chachamis and I. Malamos 24. July 2015 Outline 1.Introduction! 2.A new

More information

A semi-numerical approach to one-loop multi-leg amplitudes p.1

A semi-numerical approach to one-loop multi-leg amplitudes p.1 A semi-numerical approach to one-loop multi-leg amplitudes Gudrun Heinrich Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII LoopFest V, SLAC, 21.06.06 A semi-numerical approach to one-loop multi-leg

More information

Fully exclusive NNLO QCD computations

Fully exclusive NNLO QCD computations Fully exclusive NNLO QCD computations Kirill Melnikov University of Hawaii Loopfest V, SLAC, June 2006 Fully exclusive NNLO QCD computations p. 1/20 Outline Introduction Technology Higgs boson production

More information

arxiv: v2 [hep-ph] 20 Jul 2014

arxiv: v2 [hep-ph] 20 Jul 2014 arxiv:407.67v [hep-ph] 0 Jul 04 Mass-corrections to double-higgs production & TopoID Jonathan Grigo and Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) E-mail: jonathan.grigo@kit.edu,

More information

Precision Higgs physics. at hadron colliders

Precision Higgs physics. at hadron colliders Precision Higgs physics at hadron colliders Claude Duhr in collaboration with C. Anastasiou, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger RadCor/LoopFest 2015 UCLA, 16/06/2015

More information

The Higgs pt distribution

The Higgs pt distribution The Higgs pt distribution Chris Wever (TUM) In collaboration with: F. Caola, K. Kudashkin, J. Lindert, K. Melnikov, P. Monni, L. Tancredi GGI: Amplitudes in the LHC era, Florence 16 Oktober, 2018 Outline

More information

arxiv: v3 [hep-ph] 20 Apr 2017

arxiv: v3 [hep-ph] 20 Apr 2017 MITP/14-76 A quasi-finite basis for multi-loop Feynman integrals arxiv:1411.7392v3 [hep-ph] 2 Apr 217 Andreas von Manteuffel, a Erik Panzer, b, c and Robert M. Schabinger a a PRISMA Cluster of Excellence

More information

Multi-loop calculations: numerical methods and applications

Multi-loop calculations: numerical methods and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Multi-loop calculations: numerical methods and applications To cite this article: S. Borowka et al 217 J. Phys.: Conf. Ser. 92 123 View the article

More information

Top mass effects in gluon fusion processes

Top mass effects in gluon fusion processes Top mass effects in gluon fusion processes Thomas Rauh AEC, University of Bern Ramona Gröber, Andreas Maier, TR arxiv:1709.07799 JHEP 1803 (2018) 020 Outline 2 Gluon fusion processes Validity of approximations

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

arxiv: v1 [hep-ph] 26 Nov 2017

arxiv: v1 [hep-ph] 26 Nov 2017 Recent Developments in Higher-Order Calculations: Hard Functions at NLO with GoSam arxiv:1711.09462v1 [hep-ph] 26 Nov 2017 Alessandro Broggio a alessandro.broggio@tum.de Andrea Ferroglia b,c aferroglia@citytech.cuny.edu

More information

Sector Decomposition

Sector Decomposition Sector Decomposition J. Carter Institute for Particle Physics Phenomenology University of Durham Student Seminar, 06/05/2009 Outline 1 What is Sector Decomposition? Why is Sector Decomposition Important?

More information

Towards Jet Cross Sections at NNLO

Towards Jet Cross Sections at NNLO Towards Jet Cross Sections at HP.4, September, MPI Munich Expectations at LHC Large production rates for Standard Model processes single jet inclusive and differential di-jet cross section will be measured

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Automatic calculations of Feynman integrals in the Euclidean region

Automatic calculations of Feynman integrals in the Euclidean region Automatic calculations of Feynman integrals in the Euclidean region Krzysztof Kajda University of Silesia 9 dec 2008 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

H + jet(s) (fixed order)

H + jet(s) (fixed order) Mass effects in gg H + jet(s) (fixed order) Gudrun Heinrich Max Planck Institute for Physics, Munich Higgs+jets workshop, IPPP Durham December 9, 2014 Higgs Effective Theory (HEFT) m t L eff = c 1 G µν,a

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

SM/BSM physics with GoSam

SM/BSM physics with GoSam Physik-Institut SM/BSM physics with GoSam Nicolas Greiner On behalf of the GoSam collaboration Monte Carlo Tools for Physics Beyond the Standard Model -- 20-24.7.2016 Beijing Outline q Very brief introduction

More information

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Laura Reina Loops and Legs in Quantum Field Theory Wernigerode, April 2012 Outline Motivations: W +b-jet

More information

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D Germán F. R. Sborlini in collaboration with R. Hernández-Pinto and G. Rodrigo Institut de Física Corpuscular, UV- CSIC (Spain) and Departamento de Física,

More information

Automation of NLO computations using the FKS subtraction method

Automation of NLO computations using the FKS subtraction method Automation of NLO computations using the FKS subtraction method Institute for Theoretical Physics, Universität Zürich E-mail: frederix@physik.uzh.ch In this talk the FKS subtraction method for next-to-leading

More information

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV NLO-QCD calculation in GRACE - GRACE status - Y. Kurihara (KEK) GRACE Group 19/Aug./2005 @ LoopFest IV GRACE Author list J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, Y.

More information

Higher Order QCD Lecture 2

Higher Order QCD Lecture 2 Higher Order QCD Lecture 2 Lance Dixon, SLAC SLAC Summer Institute The Next Frontier: Exploring with the LHC July 21, 2006 Lecture 2 Outline NLO NNLO L. Dixon, 7/21/06 Higher Order QCD: Lect. 2 2 What

More information

SM Predictions for Gluon- Fusion Higgs Production

SM Predictions for Gluon- Fusion Higgs Production SM Predictions for Gluon- Fusion Higgs Production Massimiliano Grazzini, Frank Petriello, Jianming Qian, Fabian Stoeckli Higgs Workshop, CERN, June 5, 2010 Outline Introduction: status of ggh Three updates:

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 1/46 Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD Narayan Rana 20/10/2016 in collaboration with T. Ahmed, M. C. Kumar, M. Mahakhud, M. K. Mandal, P.

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Structural Aspects of Numerical Loop Calculus

Structural Aspects of Numerical Loop Calculus Structural Aspects of Numerical Loop Calculus Do we need it? What is it about? Can we handle it? Giampiero Passarino Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino,

More information

MadGolem: Automated NLO predictions for SUSY and beyond

MadGolem: Automated NLO predictions for SUSY and beyond David López-Val D. Gonçalves Netto (MPI, Munich), T. Plehn (Heidelberg U.), I. Wigmore (Edinburgh U.), K. Mawatari (Vrije U.) together with ITP - Universität Heidelberg SUSY 2013, Trieste (Italy) - August

More information

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Single Higgs production at LHC as a probe for an anomalous Higgs self coupling Brookhaven National Laboratory E-mail: pgiardino@bnl.gov We explore the possibility of probing the trilinear Higgs self coupling

More information

Electroweak LHC NLO QCD

Electroweak LHC NLO QCD Electroweak LHC physics @ NLO QCD Dept. of physics University of Hawaii A. Lazopoulos Wed 24 oct. 2007 QCD corrections to tri-boson production Kirill Melnikov (UH), Frank John Petriello (Wisconsin U.),

More information

The package TopoID and its applications to Higgs physics

The package TopoID and its applications to Higgs physics The package TopoID and its applications to Higgs physics Jens Hoff (DESY, KIT) Theory Seminar, University of Zurich 3rd of November, 2015 1 TopoID Polynomial ordering Topology classification Relations

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

Towards improved predictions for electroweak vector boson pair production at the LHC

Towards improved predictions for electroweak vector boson pair production at the LHC Towards improved predictions for electroweak vector boson pair production at the LHC Kirill Melnikov TTP KIT Based on collaboration with M. Dowling, F. Caola, J. Henn, A. Smirnov, V. Smirnov Outline 1)

More information

HyperInt - exact integration with hyperlogarithms

HyperInt - exact integration with hyperlogarithms HyperInt - exact integration with hyperlogarithms Erik Panzer erikpanzer@ihes.fr (CNRS, ERC grant 257638, F. Brown) Institute des Hautes Études Scientifiques 35 Route de Chartres 9144 Bures-sur-Yvette

More information

arxiv: v1 [hep-ph] 22 Sep 2016

arxiv: v1 [hep-ph] 22 Sep 2016 TTP16-037 arxiv:1609.06786v1 [hep-ph] 22 Sep 2016 Five-loop massive tadpoles Thomas Luthe Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Karlsruhe, Germany E-mail: thomas.luthe@kit.edu

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach Prepared for submission to JHEP TTP15-042 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos ab Damiano Tommasini a and Christopher Wever ac a Institute

More information

Precision Calculations for Collider Physics

Precision Calculations for Collider Physics SFB Arbeitstreffen März 2005 Precision Calculations for Collider Physics Michael Krämer (RWTH Aachen) Radiative corrections to Higgs and gauge boson production Combining NLO calculations with parton showers

More information

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum PhD Seminar 2015, PSI Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum Agnieszka Ilnicka in collaboration with: M. Grazzini M. Spira M. Wiesemann Motivation

More information

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c Complete electroweak corrections to e + e 3 jets C.M. Carloni Calame INFN & University of Southampton Workshop LC08: e + e Physics at TeV scale September 22-25, 2008 in collaboration with S. Moretti, F.

More information

Next-to-leading order multi-leg processes for the Large Hadron Collider

Next-to-leading order multi-leg processes for the Large Hadron Collider Next-to-leading order multi-leg processes for the Large Hadron Collider, Thomas Reiter School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK. E-mail: binoth@ph.ed.ac.uk,thomas.reiter@ed.ac.uk

More information

ggf Theory Overview For Highest Precision

ggf Theory Overview For Highest Precision ggf Theory Overview For Highest Precision Lumley Castle Franz Herzog Nikhef LHC Higgs Production in the Standard Model 2 LHC Higgs Data 3 Theoretical Formalism To compute cross sections we use the Factorisation

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006 Summary and Outlook Davison E. Soper University of Oregon LoopFest V, June 2006 Parton Showers & jet matching R. Erbacher emphasized how important this issue is for CDF analyses. CDF has been using a somewhat

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

NLM introduction and wishlist

NLM introduction and wishlist 1. NLM introduction and wishlist he LHC will be a very complex environment with most of the interesting physics signals, and their backgrounds, consisting of multi-parton (and lepton/photon) final states.

More information

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September Four-fermion production near the W-pair production threshold Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September 12-14 2007 International Linear Collider we all believe that no matter

More information

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1 e + e 3j at NNLO: Results for all QED-type Colour Factors Thomas Gehrmann Universität ürich UNIVERSITAS TURICENSIS MDCCC XXXIII in collaboration with A. Gehrmann De Ridder, E.W.N. Glover, G. Heinrich Loopfest

More information

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO

Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO SFB/CPP-12-93 TTP12-45 LPN12-127 Higgs boson production at the LHC: NNLO partonic cross sections through order ǫ and convolutions with splitting functions to N 3 LO Maik Höschele, Jens Hoff, Aleey Pak,

More information

FeynHiggs. Henning Bahl. TOOLS, , Corfu. Max-Planck Institut für Physik, Munich

FeynHiggs. Henning Bahl. TOOLS, , Corfu. Max-Planck Institut für Physik, Munich FeynHiggs Henning Bahl Max-Planck Institut für Physik, Munich TOOLS, 13.9.2017, Corfu Introduction Higgs mass calculation Other observables Running the code Conclusions 2 / 26 Purpose of FeynHiggs Calculation

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Higgs boson signal and background in MCFM

Higgs boson signal and background in MCFM Higgs boson signal and background in MCFM Zurich, January 11, 2012 Keith Ellis, Fermilab John Campbell, RKE and Ciaran Williams arxiv:1105.0020, 1107.5569 [hep-ph] MCFM MCFM is a unified approach to NLO

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

New physics effects in Higgs cross sections

New physics effects in Higgs cross sections New physics effects in Higgs cross sections Robert Harlander Bergische Universität Wuppertal ERC Workshop Nov 2014, Mainz supported by rescaled couplings new Higgs bosons BSM particle effects new processes

More information

Cross sections for SM Higgs boson production

Cross sections for SM Higgs boson production Cross sections for SM Higgs boson production Massimiliano Grazzini (INFN & ETH Zurich) Higgs MiniWorkshop, Torino, november 24, 2009 Outline Introduction Total cross section: - The NNLL+NNLO calculation

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

m H tanβ 30 LHC(40fb -1 ): LEP2: e + e Zh m A (GeV)

m H tanβ 30 LHC(40fb -1 ): LEP2: e + e Zh m A (GeV) Charged Higgs Bosons Production in Bottom-Gluon Fusion Tilman Plehn, Madison MSSM Higgs Bosons at the LHC Why Bottom Parton Description? QCD Corrections -QCD Corrections MSSM Higgs Bosons at the LHC MSSM

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Summary. Keith Ellis Fermilab

Summary. Keith Ellis Fermilab Summary Keith Ellis Fermilab A world created with us in mind The most significant result of Run I of the LHC is the discovery of the Higgs boson in 2012 Higgs boson (produced predominantly by gluon fusion)

More information

Higgs + Jet angular and p T distributions : MSSM versus SM

Higgs + Jet angular and p T distributions : MSSM versus SM Higgs + Jet angular and p T distributions : MSSM versus SM Oliver Brein ( Institute for Particle Physics Phenomenology, Durham, UK ) in collaboration with Wolfgang Hollik e-mail: oliver.brein@durham.ac.uk

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

SM predictions for electroweak precision observables

SM predictions for electroweak precision observables SM predictions for electroweak precision observables A. Freitas University of Pittsburgh Workshop on Physics at the CEPC, 10-12 August 2015 1. Introduction 2. Electroweak precision observables 3. Current

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Theoretical Predictions For Top Quark Pair Production At NLO QCD Theoretical Predictions For Top Quark Pair Production At NLO QCD Malgorzata Worek Wuppertal Uni. HP2: High Precision for Hard Processes, 4-7 September 2012, MPI, Munich 1 Motivations Successful running

More information

Recent developments in automated NLO calculations

Recent developments in automated NLO calculations Recent developments in automated NLO calculations Giuseppe Bevilacqua NCSR Demokritos, Athens Workshop on Standard Model and Beyond and Standard Cosmology Corfu - August 31, 2009 In collaboration with

More information

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome

Two-loop corrections to t t production in the gluon channel. Matteo Capozi Sapienza University of Rome Two-loop corrections to t t production in the gluon channel Matteo Capozi Sapienza University of Rome November 7, 2016 Top quark With a mass of m t = 172.44 ± 0.13(stat) ± 0.47(syst)GeV, the top quark

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

Dipole subtraction with random polarisations

Dipole subtraction with random polarisations , Christopher Schwan, Stefan Weinzierl PRISMA Cluster of Excellence, Johannes Gutenberg University, Mainz goetz@uni-mainz.de schwan@uni-mainz.de stefanw@thep.physik.uni-mainz.de In this talk, we discuss

More information

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation

A. Mitov 3-loop time-like splitting functions in Mellin space and NNLO fragmentation Three-loop time-like splitting functions in Mellin space and NNLO fragmentation Alexander Mitov DESY Work in progress with: M. Cacciari; Lance Dixon; S-O. Moch Also based on: hep-ph/0604160 (with Sven

More information

Vector boson + jets at NLO vs. LHC data

Vector boson + jets at NLO vs. LHC data Vector boson + jets at NLO vs. LHC data Lance Dixon (SLAC) for the BlackHat collaboration Z. Bern, LD, G. Diana, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maître, K. Ozeren LHC Theory Workshop

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information