Automatic calculations of Feynman integrals in the Euclidean region

Size: px
Start display at page:

Download "Automatic calculations of Feynman integrals in the Euclidean region"

Transcription

1 Automatic calculations of Feynman integrals in the Euclidean region Krzysztof Kajda University of Silesia 9 dec 2008 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

2 Outline Outline 1 Motivation 2 The starting point Feynman parameters 3 Numerical calculation using sector decomposition method CSectors.m 4 Mellin-Barnes approach 5 AMBRE-Automatic Mellin-Barnes REpresentation (new features) 6 Numerical cross-checks 7 Summary Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

3 Motivation Motivation Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

4 Motivation Motivation Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

5 Motivation Motivation Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

6 Motivation Motivation Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

7 Motivation Motivation Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

8 Feynman integral The starting point General Feynman integral L l=1 d d k a µ1 k 1... k a µm m l D ν1 n 1... Dνn d = 4 2ɛ L-number of loops n-number of internal lines m-rank of the numerator D-propagator, q 2 m 2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

9 Feynman parameters The starting point Feynman parameters for general integral G(k µ1 a 1... k µm a m ) = ( 1) Nν Γ(ν 1 )... Γ(ν n ) n Γ ( N ν d 2 L r 2 ( 2) r 2 r m ) dx j x νj 1 j δ ( 1 U Nν d 2 (L+1) m F Nν d 2 L r 2 ) n x i i=1 { Ar P m r} [µ 1,...,µ m] N ν = ν ν n U, F are polynomials and depend on diagram {A r P m r } [µ1,...,µm] is a tensor structure which depends on diagram and numerator Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

10 The starting point F & U polynomials M = det(m)m 1 U = det(m) F = det(m)j + Q MQ M - is L L matrix containing Feynman parameters Q - is an L dimensional vector composed of external momenta and Feynman parameters J - contains kinematic invariants and Feynman parameters More detailed description can be found in literature... Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

11 The starting point F & U polynomials Other method U = x 1 + x 2 + x 3 + x 4 F = tx 1 x 3 + sx 2 x 4 U: (i) every vertex is still connected to every other vertex by a sequence of uncut lines; (ii) no further cuts without violating (i) F : (iii) divide the graph into two disjoint parts such that within each part (i) and (ii) are obeyed and such that at least one external momentum line is connected to each part Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

12 Tensor structure The starting point The object: {A r P m r } [µ1,...,µm] is used to introduce tensor structure: Example m=2 { Ar P 2 r} [µ 1µ 2] r 2 = { A 0 P 2 + A 1 P 1 + A 2 P 0} [µ 1µ 2] = P µ1 P µ2 + g µ1µ2 m=3 { Ar P 3 r} [µ 1µ 2µ 3] = { A 0 P 3 + A 1 P 2 + A 2 P 1 + A 3 P 0} [µ 1µ 2µ 3] r 3 = P µ1 P µ2 P µ3 + g µ1µ2 P µ3 + g µ2µ3 P µ1 + g µ3µ1 P µ2 A 0, P 0 is one. A r is zero for r odd, and A r = g [µ1µ2 g µr 1µr] for r even. Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

13 The starting point Tensor structure P µi and g µiµj... P µi l [ M al Q l ] µi g µiµj ( M 1 ) ab g µiµj Example G(k µ1 1 kµ2 2 ) P µ1 P µ2 + g µ1µ2 l [ M 1l Q l ] µ1 [ M 2l Q l ] µ2 + ( M 1 ) 12 g µ1µ2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

14 Numerical calculation using sector decomposition method Sector decomposition method,,sector decomposition is a method to isolate divergencies from parameter integrals occurring in perturbative quantum field theory More detailed information can be found in hep-ph/ by G. Heinrich Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

15 Numerical calculation using sector decomposition method Sector decomposition method Example Two-dimensional parameter integral 1 1 I = dx dyx 1 aɛ y bɛ 1 x + (1 x)y 0 0 Division of the integration region into two sectors 1 1 I = dx dyx 1 aɛ y bɛ 1[Θ(x x + (1 x)y y) + Θ(y x)] 0 0 Substitution of y = xt in sector (1) and x = yt in sector (2) to remap the integration range to the unit square I = dxx 1 (a+b)ɛ dyy 1 (a+b)ɛ 0 0 dtt bɛ (1 x)t dtt 1 aɛ (1 y)t Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

16 Numerical calculation using sector decomposition method CSectors.m What is CSectors.m? a MATHEMATICA interface which uses c++ libraries from: sector-decomposition, Ch.Bogner, S.Weinzierl (arxiv: [hep-ph]) can build m-rank tensor structure for L-loop integrals process of numerical calculation of integrals is fully automatized Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

17 CSectors.m Numerical calculation using sector decomposition method How CSectors.m works 1 Integral 2 Feynman parameters L Y l=1 d d k µ 1 a k 1... k µm am l D ν Dν N N... Y n! nx dx jx ν j X 1 j δ 1 x i... U Nν d (L+1) m 2 na m ro [µ 1,...,µm] rp i=1 r m F Nν d 2 L r 2 3 Calculating: U and F polynomials, generating tensor structure (also polynomials) 4 Dividing expression into sum of integrals in respect of r 5 We end up with sum of the integrals of the type: I r = C n Y dx jx ν j 1 j δ 1! nx h x i U(x) a+ɛbi h F (x) c+ɛdi [Q r(x)] 6 C++ linked with GiNaC libraries is used to calculate I r integrals sector-decomposition, Ch.Bogner, S.Weinzierl (arxiv: [hep-ph]) i=1 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

18 CSectors.m Numerical calculation using sector decomposition method How CSectors.m works 1 Integral 2 Feynman parameters L Y l=1 d d k µ 1 a k 1... k µm am l D ν Dν N N... Y n! nx dx jx ν j X 1 j δ 1 x i... U Nν d (L+1) m 2 na m ro [µ 1,...,µm] rp i=1 r m F Nν d 2 L r 2 3 Calculating: U and F polynomials, generating tensor structure (also polynomials) 4 Dividing expression into sum of integrals in respect of r 5 We end up with sum of the integrals of the type: I r = C n Y dx jx ν j 1 j δ 1! nx h x i U(x) a+ɛbi h F (x) c+ɛdi [Q r(x)] 6 C++ linked with GiNaC libraries is used to calculate I r integrals sector-decomposition, Ch.Bogner, S.Weinzierl (arxiv: [hep-ph]) i=1 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

19 CSectors.m Numerical calculation using sector decomposition method How CSectors.m works 1 Integral 2 Feynman parameters L Y l=1 d d k µ 1 a k 1... k µm am l D ν Dν N N... Y n! nx dx jx ν j X 1 j δ 1 x i... U Nν d (L+1) m 2 na m ro [µ 1,...,µm] rp i=1 r m F Nν d 2 L r 2 3 Calculating: U and F polynomials, generating tensor structure (also polynomials) 4 Dividing expression into sum of integrals in respect of r 5 We end up with sum of the integrals of the type: I r = C n Y dx jx ν j 1 j δ 1! nx h x i U(x) a+ɛbi h F (x) c+ɛdi [Q r(x)] 6 C++ linked with GiNaC libraries is used to calculate I r integrals sector-decomposition, Ch.Bogner, S.Weinzierl (arxiv: [hep-ph]) i=1 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

20 CSectors.m Numerical calculation using sector decomposition method How CSectors.m works 1 Integral 2 Feynman parameters L Y l=1 d d k µ 1 a k 1... k µm am l D ν Dν N N... Y n! nx dx jx ν j X 1 j δ 1 x i... U Nν d (L+1) m 2 na m ro [µ 1,...,µm] rp i=1 r m F Nν d 2 L r 2 3 Calculating: U and F polynomials, generating tensor structure (also polynomials) 4 Dividing expression into sum of integrals in respect of r 5 We end up with sum of the integrals of the type: I r = C n Y dx jx ν j 1 j δ 1! nx h x i U(x) a+ɛbi h F (x) c+ɛdi [Q r(x)] 6 C++ linked with GiNaC libraries is used to calculate I r integrals sector-decomposition, Ch.Bogner, S.Weinzierl (arxiv: [hep-ph]) i=1 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

21 CSectors.m Numerical calculation using sector decomposition method How CSectors.m works 1 Integral 2 Feynman parameters L Y l=1 d d k µ 1 a k 1... k µm am l D ν Dν N N... Y n! nx dx jx ν j X 1 j δ 1 x i... U Nν d (L+1) m 2 na m ro [µ 1,...,µm] rp i=1 r m F Nν d 2 L r 2 3 Calculating: U and F polynomials, generating tensor structure (also polynomials) 4 Dividing expression into sum of integrals in respect of r 5 We end up with sum of the integrals of the type: I r = C n Y dx jx ν j 1 j δ 1! nx h x i U(x) a+ɛbi h F (x) c+ɛdi [Q r(x)] 6 C++ linked with GiNaC libraries is used to calculate I r integrals sector-decomposition, Ch.Bogner, S.Weinzierl (arxiv: [hep-ph]) i=1 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

22 CSectors.m Numerical calculation using sector decomposition method How CSectors.m works 1 Integral 2 Feynman parameters L Y l=1 d d k µ 1 a k 1... k µm am l D ν Dν N N... Y n! nx dx jx ν j X 1 j δ 1 x i... U Nν d (L+1) m 2 na m ro [µ 1,...,µm] rp i=1 r m F Nν d 2 L r 2 3 Calculating: U and F polynomials, generating tensor structure (also polynomials) 4 Dividing expression into sum of integrals in respect of r 5 We end up with sum of the integrals of the type: I r = C n Y dx jx ν j 1 j δ 1! nx h x i U(x) a+ɛbi h F (x) c+ɛdi [Q r(x)] 6 C++ linked with GiNaC libraries is used to calculate I r integrals sector-decomposition, Ch.Bogner, S.Weinzierl (arxiv: [hep-ph]) i=1 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

23 CSectors.m Numerical calculation using sector decomposition method How CSectors.m works 1 Integral 2 Feynman parameters L Y l=1 d d k µ 1 a k 1... k µm am l D ν Dν N N... Y n! nx dx jx ν j X 1 j δ 1 x i... U Nν d (L+1) m 2 na m ro [µ 1,...,µm] rp i=1 r m F Nν d 2 L r 2 3 Calculating: U and F polynomials, generating tensor structure (also polynomials) 4 Dividing expression into sum of integrals in respect of r 5 We end up with sum of the integrals of the type: I r = C n Y dx jx ν j 1 j δ 1! nx h x i U(x) a+ɛbi h F (x) c+ɛdi [Q r(x)] 6 C++ linked with GiNaC libraries is used to calculate I r integrals sector-decomposition, Ch.Bogner, S.Weinzierl (arxiv: [hep-ph]) i=1 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

24 CSectors.m Numerical calculation using sector decomposition method How CSectors.m works 1 Integral 2 Feynman parameters L Y l=1 d d k µ 1 a... k µm k 1 am l D ν Dν N N... Y n! nx dx jx ν j X 1 j δ 1 x i... U Nν d (L+1) m 2 na m ro [µ 1,...,µm] rp i=1 r m F Nν d 2 L r 2 3 Calculating: U and F polynomials, generating tensor structure (also polynomials) 4 Dividing expression into sum of integrals in respect of r 5 We end up with sum of the integrals of the type: I r = C n Y dx jx ν j 1 j δ 1! nx h x i U(x) a+ɛbi h F (x) c+ɛdi [Q r(x)] 6 C++ linked with GiNaC libraries is used to calculate I r integrals sector-decomposition, Ch.Bogner, S.Weinzierl (arxiv: [hep-ph]) Steps from 1) to 6) are done automatically in MATHEMATICA! i=1 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

25 Numerical calculation using sector decomposition method Using CSectors.m Example k µ 1 1 kµ 2 1 d d k 1d d k 2 [(p 1 k 1 + k 2) 2 m 2 ] 2 k 2 1 [(p2 k2)2 m 2 ]k 2 2 p 2µ1 p 1µ2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

26 Gamma function Mellin-Barnes approach Basic function in M-B method Γ(z) = 0 t z 1 e t dt Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

27 Mellin-Barnes method Mellin-Barnes approach 1) M-B formula 1 (A A n ) λ = 1 1 Γ(λ) (2πi) n 1 +i i... +i i A λ z2... zn 1 Γ(λ + z z n ) 2) Integration over Feynman parameters 1 n ( n ) dx j x νj 1 j δ 1 x i 0 i=1 i=1 dz 2... dz n n i=2 n Γ( z i ) i=2 = Γ(ν 1)... Γ(ν n ) Γ(ν ν n ) A zi i Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

28 Mellin-Barnes approach Mellin-Barnes approach Loop by loop approach 1 define kinematic which depends on external legs (invariants) 2 make decision about the order in which n 1-loop subloops will be worked out in a sequence 3 construct Feynman integral for the chosen subloop, make manipulations on the F polynomial to make it the most suitable for using MB representations G(k µ1... k µm ) = ( 1) Nν n! Y nx dx jx ν j 1 j δ 1 x i Γ(ν 1)... Γ(ν n) i=1 X Γ `N ν d 2 r 2 1 na m ro [µ 1,...,µm] rp r m ( 2) r 2 F Nν d 2 r 2 4 use the basic MB-relation 5 make integration over Feynman parameters 6 go back to the point (3) and repeat the steps till F in the last n subloop will be changed to the M-B integral Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

29 Mellin-Barnes approach Mellin-Barnes approach Loop by loop approach 1 define kinematic which depends on external legs (invariants) 2 make decision about the order in which n 1-loop subloops will be worked out in a sequence 3 construct Feynman integral for the chosen subloop, make manipulations on the F polynomial to make it the most suitable for using MB representations G(k µ1... k µm ) = ( 1) Nν n! Y nx dx jx ν j 1 j δ 1 x i Γ(ν 1)... Γ(ν n) i=1 X Γ `N ν d 2 r 2 1 na m ro [µ 1,...,µm] rp r m ( 2) r 2 F Nν d 2 r 2 4 use the basic MB-relation 5 make integration over Feynman parameters 6 go back to the point (3) and repeat the steps till F in the last n subloop will be changed to the M-B integral Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

30 Mellin-Barnes approach Mellin-Barnes approach Loop by loop approach 1 define kinematic which depends on external legs (invariants) 2 make decision about the order in which n 1-loop subloops will be worked out in a sequence 3 construct Feynman integral for the chosen subloop, make manipulations on the F polynomial to make it the most suitable for using MB representations G(k µ1... k µm ) = ( 1) Nν n! Y nx dx jx ν j 1 j δ 1 x i Γ(ν 1)... Γ(ν n) i=1 X Γ `N ν d 2 r 2 1 na m ro [µ 1,...,µm] rp r m ( 2) r 2 F Nν d 2 r 2 4 use the basic MB-relation 5 make integration over Feynman parameters 6 go back to the point (3) and repeat the steps till F in the last n subloop will be changed to the M-B integral Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

31 Mellin-Barnes approach Mellin-Barnes approach Loop by loop approach 1 define kinematic which depends on external legs (invariants) 2 make decision about the order in which n 1-loop subloops will be worked out in a sequence 3 construct Feynman integral for the chosen subloop, make manipulations on the F polynomial to make it the most suitable for using MB representations G(k µ1... k µm ) = ( 1) Nν n! Y nx dx jx ν j 1 j δ 1 x i Γ(ν 1)... Γ(ν n) i=1 X Γ `N ν d 2 r 2 1 na m ro [µ 1,...,µm] rp r m ( 2) r 2 F Nν d 2 r 2 4 use the basic MB-relation 5 make integration over Feynman parameters 6 go back to the point (3) and repeat the steps till F in the last n subloop will be changed to the M-B integral Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

32 Mellin-Barnes approach Mellin-Barnes approach Loop by loop approach 1 define kinematic which depends on external legs (invariants) 2 make decision about the order in which n 1-loop subloops will be worked out in a sequence 3 construct Feynman integral for the chosen subloop, make manipulations on the F polynomial to make it the most suitable for using MB representations G(k µ1... k µm ) = ( 1) Nν n! Y nx dx jx ν j 1 j δ 1 x i Γ(ν 1)... Γ(ν n) i=1 X Γ `N ν d 2 r 2 1 na m ro [µ 1,...,µm] rp r m ( 2) r 2 F Nν d 2 r 2 4 use the basic MB-relation 5 make integration over Feynman parameters 6 go back to the point (3) and repeat the steps till F in the last n subloop will be changed to the M-B integral Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

33 Mellin-Barnes approach Mellin-Barnes approach Loop by loop approach 1 define kinematic which depends on external legs (invariants) 2 make decision about the order in which n 1-loop subloops will be worked out in a sequence 3 construct Feynman integral for the chosen subloop, make manipulations on the F polynomial to make it the most suitable for using MB representations G(k µ1... k µm ) = ( 1) Nν n! Y nx dx jx ν j 1 j δ 1 x i Γ(ν 1)... Γ(ν n) i=1 X Γ `N ν d 2 r 2 1 na m ro [µ 1,...,µm] rp r m ( 2) r 2 F Nν d 2 r 2 4 use the basic MB-relation 5 make integration over Feynman parameters 6 go back to the point (3) and repeat the steps till F in the last n subloop will be changed to the M-B integral Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

34 Mellin-Barnes approach Mellin-Barnes approach Loop by loop approach 1 define kinematic which depends on external legs (invariants) 2 make decision about the order in which n 1-loop subloops will be worked out in a sequence 3 construct Feynman integral for the chosen subloop, make manipulations on the F polynomial to make it the most suitable for using MB representations G(k µ1... k µm ) = ( 1) Nν n! Y nx dx jx ν j 1 j δ 1 x i Γ(ν 1)... Γ(ν n) i=1 X Γ `N ν d 2 r 2 1 na m ro [µ 1,...,µm] rp r m ( 2) r 2 F Nν d 2 r 2 4 use the basic MB-relation 5 make integration over Feynman parameters 6 go back to the point (3) and repeat the steps till F in the last n subloop will be changed to the M-B integral Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

35 Loop by loop approach Mellin-Barnes approach Example Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

36 Mellin-Barnes approach Mellin-Barnes approach It is very important......to calculate subloops in specific order (in some cases), for example: starting with k 1 leads to F polynomial with huge number of terms over 20dim final representation will appear Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

37 AMBRE-Automatic Mellin-Barnes REpresentation AMBRE.m......is the MATHEMATICA package for creating Mellin-Barnes representations. Comput.Phys.Commun.177: ,2007 (J.Gluza, K.K, T.Riemann) Features M-B representation for: L-loop Feynman scalar integral 1-loop m-rank tensor integral New Features - under developement M-B representation for L-loop and m-rank tensor integral... Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

38 AMBRE-Automatic Mellin-Barnes REpresentation AMBRE.m new features How to calculate L-loop, m-rank tensor integral using loop-by-loop approach? Let s start with simple two loop example... Example (k 1 p 1)(k 1 p 1)(k 2 p 1) [k 2 1 ]ν 1 [(k 2 k 1) 2 ] ν 2 [(k 1 + p 1) 2 ] ν 3 [k 2 2 ]ν 4 [(k 2 + p 1) 2 ] ν 5 dd k 1d d k 2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

39 AMBRE-Automatic Mellin-Barnes REpresentation AMBRE.m new features Example 1 Iteration nr1 (first subloop) (k 1 p 1)(k 1 p 1)(k 2 p 1) [k 2 1 ]ν 1 [(k 2 k 1) 2 ] ν 2 [(k 1 + p 1) 2 ] ν 3 [k 2 2 ]ν 4 [(k 2 + p 1) 2 ] ν 5 dd k 1d d k 2 2 Calculating F polynomial for propagators of first subloop. F contains new propagators F = [k 2 2 ]x1x2 sx1x3 [(k2 + p1)2 ]x 2x 3 3 Generating tensor structure for first subloop, and separating expression into separate integrals P µ1 P µ2 + g µ 1 µ 2 Q µ1 Q µ2 + g µ 1 µ 2 (k µ 1 2 x2 pµ 1 1 x3)(kµ 2 2 x2 pµ 2 1 x3) + gµ 1 µ 2 {k µ 1 2 kµ 2 2 x2 2, kµ 2 2 pµ 1 1 x2x3, kµ 1 2 pµ 2 1 x2x3, pµ 1 1 pµ 2 1 x2 3, gµ 1 µ2 } 4 Apllying M-B formula integrating over x, we obtain M-B representation 5 Iteration nr2 (second subloop). We have to work on five integrals p 1µ1 p 1µ2 (k 2 p 1) [k 2 2 ] ν 4 [(k 2 + p 1) 2 ] ν 5 {kµ 1 2 kµ 2 2 MB1, kµ 2 2 pµ 1 1 MB2, kµ 1 2 pµ 2 1 MB3, pµ 1 1 pµ 2 1 MB4, gµ 1 µ2 MB 5}d d k 2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

40 AMBRE-Automatic Mellin-Barnes REpresentation AMBRE.m new features Example 1 Iteration nr1 (first subloop) (k 1 p 1)(k 1 p 1)(k 2 p 1) [k 2 1 ]ν 1 [(k 2 k 1) 2 ] ν 2 [(k 1 + p 1) 2 ] ν 3 [k 2 2 ]ν 4 [(k 2 + p 1) 2 ] ν 5 dd k 1d d k 2 2 Calculating F polynomial for propagators of first subloop. F contains new propagators F = [k 2 2 ]x1x2 sx1x3 [(k2 + p1)2 ]x 2x 3 3 Generating tensor structure for first subloop, and separating expression into separate integrals P µ1 P µ2 + g µ 1 µ 2 Q µ1 Q µ2 + g µ 1 µ 2 (k µ 1 2 x2 pµ 1 1 x3)(kµ 2 2 x2 pµ 2 1 x3) + gµ 1 µ 2 {k µ 1 2 kµ 2 2 x2 2, kµ 2 2 pµ 1 1 x2x3, kµ 1 2 pµ 2 1 x2x3, pµ 1 1 pµ 2 1 x2 3, gµ 1 µ2 } 4 Apllying M-B formula integrating over x, we obtain M-B representation 5 Iteration nr2 (second subloop). We have to work on five integrals p 1µ1 p 1µ2 (k 2 p 1) [k 2 2 ] ν 4 [(k 2 + p 1) 2 ] ν 5 {kµ 1 2 kµ 2 2 MB1, kµ 2 2 pµ 1 1 MB2, kµ 1 2 pµ 2 1 MB3, pµ 1 1 pµ 2 1 MB4, gµ 1 µ2 MB 5}d d k 2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

41 AMBRE-Automatic Mellin-Barnes REpresentation AMBRE.m new features Example 1 Iteration nr1 (first subloop) (k 1 p 1)(k 1 p 1)(k 2 p 1) [k 2 1 ]ν 1 [(k 2 k 1) 2 ] ν 2 [(k 1 + p 1) 2 ] ν 3 [k 2 2 ]ν 4 [(k 2 + p 1) 2 ] ν 5 dd k 1d d k 2 2 Calculating F polynomial for propagators of first subloop. F contains new propagators F = [k 2 2 ]x1x2 sx1x3 [(k2 + p1)2 ]x 2x 3 3 Generating tensor structure for first subloop, and separating expression into separate integrals P µ1 P µ2 + g µ 1 µ 2 Q µ1 Q µ2 + g µ 1 µ 2 (k µ 1 2 x2 pµ 1 1 x3)(kµ 2 2 x2 pµ 2 1 x3) + gµ 1 µ 2 {k µ 1 2 kµ 2 2 x2 2, kµ 2 2 pµ 1 1 x2x3, kµ 1 2 pµ 2 1 x2x3, pµ 1 1 pµ 2 1 x2 3, gµ 1 µ2 } 4 Apllying M-B formula integrating over x, we obtain M-B representation 5 Iteration nr2 (second subloop). We have to work on five integrals p 1µ1 p 1µ2 (k 2 p 1) [k 2 2 ] ν 4 [(k 2 + p 1) 2 ] ν 5 {kµ 1 2 kµ 2 2 MB1, kµ 2 2 pµ 1 1 MB2, kµ 1 2 pµ 2 1 MB3, pµ 1 1 pµ 2 1 MB4, gµ 1 µ2 MB 5}d d k 2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

42 AMBRE-Automatic Mellin-Barnes REpresentation AMBRE.m new features Example 1 Iteration nr1 (first subloop) (k 1 p 1)(k 1 p 1)(k 2 p 1) [k 2 1 ]ν 1 [(k 2 k 1) 2 ] ν 2 [(k 1 + p 1) 2 ] ν 3 [k 2 2 ]ν 4 [(k 2 + p 1) 2 ] ν 5 dd k 1d d k 2 2 Calculating F polynomial for propagators of first subloop. F contains new propagators F = [k 2 2 ]x1x2 sx1x3 [(k2 + p1)2 ]x 2x 3 3 Generating tensor structure for first subloop, and separating expression into separate integrals P µ1 P µ2 + g µ 1 µ 2 Q µ1 Q µ2 + g µ 1 µ 2 (k µ 1 2 x2 pµ 1 1 x3)(kµ 2 2 x2 pµ 2 1 x3) + gµ 1 µ 2 {k µ 1 2 kµ 2 2 x2 2, kµ 2 2 pµ 1 1 x2x3, kµ 1 2 pµ 2 1 x2x3, pµ 1 1 pµ 2 1 x2 3, gµ 1 µ2 } 4 Apllying M-B formula integrating over x, we obtain M-B representation 5 Iteration nr2 (second subloop). We have to work on five integrals p 1µ1 p 1µ2 (k 2 p 1) [k 2 2 ] ν 4 [(k 2 + p 1) 2 ] ν 5 {kµ 1 2 kµ 2 2 MB1, kµ 2 2 pµ 1 1 MB2, kµ 1 2 pµ 2 1 MB3, pµ 1 1 pµ 2 1 MB4, gµ 1 µ2 MB 5}d d k 2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

43 AMBRE-Automatic Mellin-Barnes REpresentation AMBRE.m new features Example 1 Iteration nr1 (first subloop) (k 1 p 1)(k 1 p 1)(k 2 p 1) [k 2 1 ]ν 1 [(k 2 k 1) 2 ] ν 2 [(k 1 + p 1) 2 ] ν 3 [k 2 2 ]ν 4 [(k 2 + p 1) 2 ] ν 5 dd k 1d d k 2 2 Calculating F polynomial for propagators of first subloop. F contains new propagators F = [k 2 2 ]x1x2 sx1x3 [(k2 + p1)2 ]x 2x 3 3 Generating tensor structure for first subloop, and separating expression into separate integrals P µ1 P µ2 + g µ 1 µ 2 Q µ1 Q µ2 + g µ 1 µ 2 (k µ 1 2 x2 pµ 1 1 x3)(kµ 2 2 x2 pµ 2 1 x3) + gµ 1 µ 2 {k µ 1 2 kµ 2 2 x2 2, kµ 2 2 pµ 1 1 x2x3, kµ 1 2 pµ 2 1 x2x3, pµ 1 1 pµ 2 1 x2 3, gµ 1 µ2 } 4 Apllying M-B formula integrating over x, we obtain M-B representation 5 Iteration nr2 (second subloop). We have to work on five integrals p 1µ1 p 1µ2 (k 2 p 1) [k 2 2 ] ν 4 [(k 2 + p 1) 2 ] ν 5 {kµ 1 2 kµ 2 2 MB1, kµ 2 2 pµ 1 1 MB2, kµ 1 2 pµ 2 1 MB3, pµ 1 1 pµ 2 1 MB4, gµ 1 µ2 MB 5}d d k 2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

44 AMBRE-Automatic Mellin-Barnes REpresentation AMBRE.m new features Example 1 Iteration nr1 (first subloop) (k 1 p 1)(k 1 p 1)(k 2 p 1) [k 2 1 ]ν 1 [(k 2 k 1) 2 ] ν 2 [(k 1 + p 1) 2 ] ν 3 [k 2 2 ]ν 4 [(k 2 + p 1) 2 ] ν 5 dd k 1d d k 2 2 Calculating F polynomial for propagators of first subloop. F contains new propagators F = [k 2 2 ]x1x2 sx1x3 [(k2 + p1)2 ]x 2x 3 3 Generating tensor structure for first subloop, and separating expression into separate integrals P µ1 P µ2 + g µ 1 µ 2 Q µ1 Q µ2 + g µ 1 µ 2 (k µ 1 2 x2 pµ 1 1 x3)(kµ 2 2 x2 pµ 2 1 x3) + gµ 1 µ 2 {k µ 1 2 kµ 2 2 x2 2, kµ 2 2 pµ 1 1 x2x3, kµ 1 2 pµ 2 1 x2x3, pµ 1 1 pµ 2 1 x2 3, gµ 1 µ2 } 4 Apllying M-B formula integrating over x, we obtain M-B representation 5 Iteration nr2 (second subloop). We have to work on five integrals p 1µ1 p 1µ2 (k 2 p 1) [k 2 2 ] ν 4 [(k 2 + p 1) 2 ] ν 5 {kµ 1 2 kµ 2 2 MB1, kµ 2 2 pµ 1 1 MB2, kµ 1 2 pµ 2 1 MB3, pµ 1 1 pµ 2 1 MB4, gµ 1 µ2 MB 5}d d k 2 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

45 AMBRE-Automatic Mellin-Barnes REpresentation AMBRE.m new features Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

46 Numerical cross-checks Cross-checks So far the following cross-checks have been made between CSectors.m, AMBRE.m with MB.m (M. Czakon; hep-ph/ ) and/or analytic result obtained after IBP reduction to known master integrals also Self-Energy diagrams up to: rank five, two loop Vertex up to: rank five, two loop Boxes up to: rank two, three loop Scalar four loop tadpoles CSectors.m and AMBRE.m (R. Boughezal, M. Czakon; hep-ph/ ) Five and six point diagrams up to rank four checked between CSectors.m and hexagon.m (6pt and 5pt reduction) (T. Diakonidis, J. Fleischer, J. Gluza, K.K, T. Riemann, J.B. Tausk; Nucl.Phys.Proc.Suppl.183: ,2008) Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

47 Summary Summary Summary and present status... two methods were presented: sector decomposition and Mellin-Barnes CSectors.m is able to calculate m-rank and L-loop integral using sectordecoposition s GiNaC libraries AMBRE.m is able to build Mellin-Barnes for m-rank and 2-loop (at the moment) integrals. Some further work must be done to L-loop version... Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals in the Euclidean region 9 dec / 24

arxiv: v1 [hep-ph] 19 Apr 2007

arxiv: v1 [hep-ph] 19 Apr 2007 DESY 07-037 HEPTOOLS 07-009 SFB/CPP-07-14 arxiv:0704.2423v1 [hep-ph] 19 Apr 2007 AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals Abstract J. Gluza,

More information

AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals

AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals DESY 07-037 -- DRAFT version -- 2007-03-26 14:59 AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals J. Gluza, K. Kajda Department of Field Theory and

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Feynman Integrals Mellin-Barnes representations Sums

Feynman Integrals Mellin-Barnes representations Sums T. Riemann CALC July 0-20, 2009, JINR, Dubna, Russia Feynman Integrals Mellin-Barnes representations Sums Helmholtz International School Calculations for Modern and Future Colliders July 0 20, 2009, JINR,

More information

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Laura Reina Loops and Legs in Quantum Field Theory Wernigerode, April 2012 Outline Motivations: W +b-jet

More information

Feynman Integrals Mellin-Barnes representations Sums

Feynman Integrals Mellin-Barnes representations Sums T. Riemann 30 March 03 April 2009 CAPP, DESY, Zeuthen 1 Feynman Integrals Mellin-Barnes representations Sums Computer Algebra and Particle Physics The DESY CAPP School 30 March 3 April, 2009, Zeuthen,

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Some variations of the reduction of one-loop Feynman tensor integrals

Some variations of the reduction of one-loop Feynman tensor integrals Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Some variations of the reduction of one-loop Feynman tensor integrals Tord Riemann DESY, Zeuthen in

More information

Numerical multi-loop calculations with SecDec

Numerical multi-loop calculations with SecDec Journal of Physics: Conference Series OPEN ACCESS Numerical multi-loop calculations with SecDec To cite this article: Sophia Borowka and Gudrun Heinrich 214 J. Phys.: Conf. Ser. 523 1248 View the article

More information

Introduction to Loop Calculations

Introduction to Loop Calculations Introduction to Loop Calculations May Contents One-loop integrals. Dimensional regularisation............................... Feynman parameters................................. 3.3 Momentum integration................................

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Structural Aspects of Numerical Loop Calculus

Structural Aspects of Numerical Loop Calculus Structural Aspects of Numerical Loop Calculus Do we need it? What is it about? Can we handle it? Giampiero Passarino Dipartimento di Fisica Teorica, Università di Torino, Italy INFN, Sezione di Torino,

More information

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Feynman integrals and multiple polylogarithms. Stefan Weinzierl Feynman integrals and multiple polylogarithms Stefan Weinzierl Universität Mainz I. Basic techniques II. Nested sums and iterated integrals III. Multiple Polylogarithms IV. Applications The need for precision

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

Sector Decomposition

Sector Decomposition Sector Decomposition J. Carter Institute for Particle Physics Phenomenology University of Durham Student Seminar, 06/05/2009 Outline 1 What is Sector Decomposition? Why is Sector Decomposition Important?

More information

Feynman Integrals Mellin-Barnes representations Sums

Feynman Integrals Mellin-Barnes representations Sums Tord Riemann 6 + 23 June 200 HUB Berlin Feynman Integrals Mellin-Barnes representations Sums Two lectures given at HUB, Berlin, June 200 Tord Riemann, DESY, Zeuthen for exercises and additional material:

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Tord Riemann. DESY, Zeuthen, Germany

Tord Riemann. DESY, Zeuthen, Germany 1/ v. 2010-08-31 1:2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic tensor Feynman integral reduction Tord Riemann DESY, Zeuthen, Germany Based on work done in collaboration with Jochem Fleischer

More information

Five-loop massive tadpoles

Five-loop massive tadpoles Five-loop massive tadpoles York Schröder (Univ del Bío-Bío, Chillán, Chile) recent work with Thomas Luthe and earlier work with: J. Möller, C. Studerus Radcor, UCLA, Jun 0 Motivation pressure of hot QCD

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

Two-loop Heavy Fermion Corrections to Bhabha Scattering

Two-loop Heavy Fermion Corrections to Bhabha Scattering Two-loop Heavy Fermion Corrections to Bhabha Scattering S. Actis 1, M. Czakon 2, J. Gluza 3 and T. Riemann 1 1 Deutsches Elektronen-Synchrotron DESY Platanenallee 6, D 15738 Zeuthen, Germany 2 Institut

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

N = 4 SYM and new insights into

N = 4 SYM and new insights into N = 4 SYM and new insights into QCD tree-level amplitudes N = 4 SUSY and QCD workshop LPTHE, Jussieu, Paris Dec 12, 2008 Henrik Johansson, UCLA Bern, Carrasco, HJ, Kosower arxiv:0705.1864 [hep-th] Bern,

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

arxiv:hep-ph/ v2 23 Jan 2006

arxiv:hep-ph/ v2 23 Jan 2006 WUE-ITP-2005-014 arxiv:hep-ph/0511200v2 23 Jan 2006 Abstract Automatized analytic continuation of Mellin-Barnes integrals M. Czakon Institut für Theoretische Physik und Astrophysik, Universität Würzburg,

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

Feynman Integral Calculus

Feynman Integral Calculus Feynman Integral Calculus Vladimir A. Smirnov Feynman Integral Calculus ABC Vladimir A. Smirnov Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics Moscow 119992, Russia E-mail: smirnov@theory.sinp.msu.ru

More information

Numerical evaluation of multi-scale integrals with SecDec 3

Numerical evaluation of multi-scale integrals with SecDec 3 Numerical evaluation of multi-scale integrals with SecDec 3 Sophia Borowka University of Zurich Project in collaboration with G. Heinrich, S. Jones, M. Kerner, J. Schlenk, T. Zirke 152.6595 [hep-ph] (CPC,

More information

Loop-Tree Duality Method

Loop-Tree Duality Method Numerical Implementation of the Loop-Tree Duality Method IFIC Sebastian Buchta in collaboration with G. Rodrigo,! P. Draggiotis, G. Chachamis and I. Malamos 24. July 2015 Outline 1.Introduction! 2.A new

More information

Feynman integrals as Periods

Feynman integrals as Periods Feynman integrals as Periods Pierre Vanhove Amplitudes 2017, Higgs Center, Edinburgh, UK based on [arxiv:1309.5865], [arxiv:1406.2664], [arxiv:1601.08181] Spencer Bloch, Matt Kerr Pierre Vanhove (IPhT)

More information

QCD Factorization and PDFs from Lattice QCD Calculation

QCD Factorization and PDFs from Lattice QCD Calculation QCD Evolution 2014 Workshop at Santa Fe, NM (May 12 16, 2014) QCD Factorization and PDFs from Lattice QCD Calculation Yan-Qing Ma / Jianwei Qiu Brookhaven National Laboratory ² Observation + Motivation

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops Physics Amplitudes Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops Josh Nohle [Bern, Davies, Dennen, Huang, JN - arxiv: 1303.6605] [JN - arxiv:1309.7416] [Bern, Davies, JN

More information

7 Veltman-Passarino Reduction

7 Veltman-Passarino Reduction 7 Veltman-Passarino Reduction This is a method of expressing an n-point loop integral with r powers of the loop momentum l in the numerator, in terms of scalar s-point functions with s = n r, n. scalar

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

arxiv: v2 [hep-ph] 21 Sep 2015

arxiv: v2 [hep-ph] 21 Sep 2015 FR-PHENO-2015-001, MPP-2015-27, ZU-TH 1/15 SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop arxiv:1502.06595v2 [hep-ph] 21 Sep 2015 S. Borowka a, G. Heinrich b, S. P. Jones b,c,

More information

Numerical evaluation of multi-loop integrals

Numerical evaluation of multi-loop integrals Max-Planck-Institut für Physik, München, Germany E-mail: sjahn@mpp.mpg.de We present updates on the development of pyse CDE C, a toolbox to numerically evaluate parameter integrals in the context of dimensional

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

The Feynman Propagator and Cauchy s Theorem

The Feynman Propagator and Cauchy s Theorem The Feynman Propagator and Cauchy s Theorem Tim Evans 1 (1st November 2018) The aim of these notes is to show how to derive the momentum space form of the Feynman propagator which is (p) = i/(p 2 m 2 +

More information

Unitarity-based methods and Integration-by-parts identities for Feynman Integrals

Unitarity-based methods and Integration-by-parts identities for Feynman Integrals Università degli Studi di Padova DIPARTIMENTO DI FISICA ED ASTRONOMIA G. GALILEI Corso di Laurea Magistrale in Fisica Tesi di laurea magistrale Unitarity-based methods and Integration-by-parts identities

More information

Fundamental equations of relativistic fluid dynamics

Fundamental equations of relativistic fluid dynamics CHAPTER VI Fundamental equations of relativistic fluid dynamics When the energy density becomes large as may happen for instance in compact astrophysical objects, in the early Universe, or in high-energy

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

S. Ghorai 1. Lecture XV Bessel s equation, Bessel s function. e t t p 1 dt, p > 0. (1)

S. Ghorai 1. Lecture XV Bessel s equation, Bessel s function. e t t p 1 dt, p > 0. (1) S Ghorai 1 1 Gamma function Gamma function is defined by Lecture XV Bessel s equation, Bessel s function Γp) = e t t p 1 dt, p > 1) The integral in 1) is convergent that can be proved easily Some special

More information

Renormalization of the fermion self energy

Renormalization of the fermion self energy Part I Renormalization of the fermion self energy Electron self energy in general gauge The self energy in n = 4 Z i 0 = ( ie 0 ) d n k () n (! dimensions is i k )[g ( a 0 ) k k k ] i /p + /k m 0 use Z

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

arxiv: v3 [hep-ph] 20 Apr 2017

arxiv: v3 [hep-ph] 20 Apr 2017 MITP/14-76 A quasi-finite basis for multi-loop Feynman integrals arxiv:1411.7392v3 [hep-ph] 2 Apr 217 Andreas von Manteuffel, a Erik Panzer, b, c and Robert M. Schabinger a a PRISMA Cluster of Excellence

More information

Fractal Geometry of Minimal Spanning Trees

Fractal Geometry of Minimal Spanning Trees Fractal Geometry of Minimal Spanning Trees T. S. Jackson and N. Read Part I: arxiv:0902.3651 Part II: arxiv:0909.5343 Accepted by Phys. Rev. E Problem Definition Given a graph with costs on the edges,

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

Progress on Color-Dual Loop Amplitudes

Progress on Color-Dual Loop Amplitudes Progress on Color-Dual Loop Amplitudes Henrik Johansson IPhT Saclay Nov 11, 2011 Amplitudes 2011 U. of Michigan 1004.0476, 1106.4711 [hep-th] (and ongoing work) Zvi Bern, John Joseph Carrasco, HJ Outline

More information

4 4 and perturbation theory

4 4 and perturbation theory and perturbation theory We now consider interacting theories. A simple case is the interacting scalar field, with a interaction. This corresponds to a -body contact repulsive interaction between scalar

More information

arxiv: v1 [hep-ph] 20 Jan 2012

arxiv: v1 [hep-ph] 20 Jan 2012 ZU-TH 01/12 MZ-TH/12-03 BI-TP 2012/02 Reduze 2 Distributed Feynman Integral Reduction arxiv:1201.4330v1 [hep-ph] 20 Jan 2012 A. von Manteuffel, a,b C. Studerus c a Institut für Theoretische Physik, Universität

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma! sensarma@theory.tifr.res.in Lecture #22 Path Integrals and QM Recap of Last Class Statistical Mechanics and path integrals in imaginary time Imaginary time

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Michael Borinsky 1 Humboldt-University Berlin Departments of Physics and Mathematics Workshop on Enumerative

More information

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration

Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Hopf algebras and factorial divergent power series: Algebraic tools for graphical enumeration Michael Borinsky 1 Humboldt-University Berlin Departments of Physics and Mathematics Workshop on Enumerative

More information

Linear reducibility of Feynman integrals

Linear reducibility of Feynman integrals Linear reducibility of Feynman integrals Erik Panzer Institute des Hautes Études Scientifiques RADCOR/LoopFest 2015 June 19th, 2015 UCLA, Los Angeles Feynman integrals: special functions and numbers Some

More information

Bessel Functions Michael Taylor. Lecture Notes for Math 524

Bessel Functions Michael Taylor. Lecture Notes for Math 524 Bessel Functions Michael Taylor Lecture Notes for Math 54 Contents 1. Introduction. Conversion to first order systems 3. The Bessel functions J ν 4. The Bessel functions Y ν 5. Relations between J ν and

More information

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS O.V.Tarasov DESY Zeuthen, Platanenallee 6, D 5738 Zeuthen, Germany E-mail: tarasov@ifh.de (Received December 7, 998) An algorithm

More information

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011)

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011) Outline Elise de Doncker 1 Fukuko Yuasa 2 1 Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S. 2 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki

More information

Gaussian processes and Feynman diagrams

Gaussian processes and Feynman diagrams Gaussian processes and Feynman diagrams William G. Faris April 25, 203 Introduction These talks are about expectations of non-linear functions of Gaussian random variables. The first talk presents the

More information

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University One-Loop Integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions CALC 2012 Samara State University 1. Basic examples and an idea for extended Higgs potentials

More information

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT Chung-I Tan Brown University Dec. 19, 2008 Miami R. Brower, J. Polchinski, M. Strassler, and C-I Tan, The Pomeron and Gauge/String

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Section 4: The Quantum Scalar Field

Section 4: The Quantum Scalar Field Physics 8.323 Section 4: The Quantum Scalar Field February 2012 c 2012 W. Taylor 8.323 Section 4: Quantum scalar field 1 / 19 4.1 Canonical Quantization Free scalar field equation (Klein-Gordon) ( µ µ

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV NLO-QCD calculation in GRACE - GRACE status - Y. Kurihara (KEK) GRACE Group 19/Aug./2005 @ LoopFest IV GRACE Author list J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, Y.

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz Overview 2 1.Motivation and Introduction 4. 3PI DSE results 2. DSEs and BSEs 3. npi effective action 6. Outlook and conclusion 5. 3PI meson

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

Convergence of sequences and series

Convergence of sequences and series Convergence of sequences and series A sequence f is a map from N the positive integers to a set. We often write the map outputs as f n rather than f(n). Often we just list the outputs in order and leave

More information

Deep inelastic scattering and the OPE in lattice QCD

Deep inelastic scattering and the OPE in lattice QCD Deep inelastic scattering and the OPE in lattice QCD William Detmold [WD & CJD Lin PRD 73, 014501 (2006)] DIS structure of hadrons Deep-inelastic scattering process critical to development of QCD k, E

More information

Gaussian integrals and Feynman diagrams. February 28

Gaussian integrals and Feynman diagrams. February 28 Gaussian integrals and Feynman diagrams February 28 Introduction A mathematician is one to whom the equality e x2 2 dx = 2π is as obvious as that twice two makes four is to you. Lord W.T. Kelvin to his

More information

A New Identity for Gauge Theory Amplitudes

A New Identity for Gauge Theory Amplitudes A New Identity for Gauge Theory Amplitudes Hidden Structures workshop, NBI Sept 10, 2008 Henrik Johansson, UCLA Z. Bern, J.J. Carrasco, HJ arxive:0805 :0805.3993 [hep-ph[ hep-ph] Z. Bern, J.J. Carrasco,

More information

1 Probability : Worked Examples

1 Probability : Worked Examples 1 Probability : Worked Examples 1) The information entropy of a distribution {p n } is defined as S = n p n log 2 p n, where n ranges over all possible configurations of a given physical system and p n

More information

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing.

Physics 217 FINAL EXAM SOLUTIONS Fall u(p,λ) by any method of your choosing. Physics 27 FINAL EXAM SOLUTIONS Fall 206. The helicity spinor u(p, λ satisfies u(p,λu(p,λ = 2m. ( In parts (a and (b, you may assume that m 0. (a Evaluate u(p,λ by any method of your choosing. Using the

More information

STA G. Conformal Field Theory in Momentum space. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre.

STA G. Conformal Field Theory in Momentum space. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre. Southampton Theory Astrophysics and Gravity research centre STA G Research Centre Oxford University 3 March 2015 Outline 1 Introduction 2 3 4 5 Introduction Conformal invariance imposes strong constraints

More information

Ward Takahashi Identities

Ward Takahashi Identities Ward Takahashi Identities There is a large family of Ward Takahashi identities. Let s start with two series of basic identities for off-shell amplitudes involving 0 or 2 electrons and any number of photons.

More information

Mathematics of Physics and Engineering II: Homework problems

Mathematics of Physics and Engineering II: Homework problems Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Renormalizability in (noncommutative) field theories

Renormalizability in (noncommutative) field theories Renormalizability in (noncommutative) field theories LIPN in collaboration with: A. de Goursac, R. Gurău, T. Krajewski, D. Kreimer, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, P. Vitale, J.-C. Wallet,

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

Review of Power Series

Review of Power Series Review of Power Series MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Introduction In addition to the techniques we have studied so far, we may use power

More information

Loop Integrands from Ambitwistor Strings

Loop Integrands from Ambitwistor Strings Loop Integrands from Ambitwistor Strings Yvonne Geyer Institute for Advanced Study QCD meets Gravity UCLA arxiv:1507.00321, 1511.06315, 1607.08887 YG, L. Mason, R. Monteiro, P. Tourkine arxiv:1711.09923

More information

Spectral Representation of Random Processes

Spectral Representation of Random Processes Spectral Representation of Random Processes Example: Represent u(t,x,q) by! u K (t, x, Q) = u k (t, x) k(q) where k(q) are orthogonal polynomials. Single Random Variable:! Let k (Q) be orthogonal with

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information