Tord Riemann. DESY, Zeuthen, Germany

Size: px
Start display at page:

Download "Tord Riemann. DESY, Zeuthen, Germany"

Transcription

1 1/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic tensor Feynman integral reduction Tord Riemann DESY, Zeuthen, Germany Based on work done in collaboration with Jochem Fleischer Corfu Summer Institute, Aug 29 Sep, 2010, Corfu, Greece

2 Introduction 1-loop n-point tensor integrals of rank R: (n,r)-integrals I µ 1 µ R d d k R r=1 n = k µr iπ d/2, (1) n j=1 cν j j d = 2ɛ and denominators c j have indices ν j and chords q j c j = (k q j ) 2 m 2 j + iε (2) k q1 k q2 k k q3 k qn 1 tensor integrals due to: fermion propagators three-gauge boson couplings e.g. unitary gauge propagators 2/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece

3 3/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece A simple example 1-loop self-energy: I µ 2 = d d k k µ iπ d/2 [k 2 M1 2] [(k + p)2 M2 2] = p µb 1 Solve: p µi µ 2 = p 2 B 1 (p, M 1, M 2 ) d d k pk d d k pk = iπ d/2 [k 2 M1 2] [(k + p)2 M2 2] = iπ d/2 D 1 D 2 [ d d k D2 (p 2 M2 2 = M2 1 ) D ] 1 iπ d/2, D 1 D 2 1 [ ] B 1 (p, M 1, M 2 ) = 2p 2 A 0 (M 1 ) A 0 (M 2 ) (p 2 M2 2 M2 1 )B 0(p, M 1, M 2 ) A tensor Feynman integral is expressed in terms of scalar Feynman integrals.

4 / v :2 T. Riemann Tensor reduction Corfu 2010, Greece Systematic approach: Passarino, Veltman 1978 [1] Need in addition a library of scalar functions: thooft, Veltman 1979 [2] State of the art: Hahn, LoopTools/FF [3, ]

5 / v :2 T. Riemann Tensor reduction Corfu 2010, Greece This talk: derive efficient reduction formulae in the algebraic Fleischer-Davydychev-Tarasov approach The original Passarino-Veltman reduction allows to express tensor integrals by a small set of scalar -,3-,2-,1-point functions integrals in d dimensions. Need Extensions: Reduction of n-point functions with n > Need Improvements: Avoid the break-down in certain kinematical configurations Recent developments in the Fleischer-Davydychev-Tarasov approach get tensor reduction such that one may : kill pentagon Gram determinants treat sub-diagram Gram determinants

6 6/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Outline [] 1991 Davydychev,... Reducing Feynman diagrams to scalar integrals [6] 1996 Tarasov, Connection [of] Feynman integrals [with] different... space-time dimensions [7] 1999 Fleischer et al., Algebraic reduction of one-loop Feynman graph amplitudes 1 Introduction 2 Recursions 3 Simplifying recursions Numbers: D 111 Summary 6 Backup transparencies References: [8] Diakonidis et al., PRD 80 (2009) [9] Diakonidis et al., PLB 683 (2010) 69 [10] J. Fleischer, T. Riemann, PoS(ACAT2010)07 [arxiv: ] and unpubl. work

7 7/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Notations: I {µ 1, },s n 1 etc. The tensor integral I {µ 1, },s n 1,ab is obtained from the integral I {µ 1, } n by shrinking line s raising the powers of inverse propagators a, b s a + b + I {µ 1, } n = I {µ 1, },s n 1,ab (3) The operators i ±, j ±, k ± act by shifting the indices ν i, ν j, ν k by ±1.

8 8/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Notations: Gram and modified Cayley determinant, signed minors [Melrose:196] Gram determinant G n: G n = 2q i q j, i, j = 1,... n () Modified Cayley determinant () N of a diagram with N internal lines and chords q j : () N Y 11 Y Y 1N 1 Y 12 Y Y 2N Y 1N Y 2N... Y NN, () with matrix elements Y ij = (q i q j ) 2 + mi 2 + mj 2, (i, j = 1... N) (6) For a choice q n = 0, both determinants are related: () N = G N 1 The Gram determinant () N does not depend on the masses.

9 9/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Notations: signed minors [Melrose:196] signed minors of () N are constructed by deleting m rows and m columns from () N, and multiplying with a sign factor: ( ) j1 j 2 j m k 1 k 2 k m N ( 1) l (j l +k l ) rows j sgn {j} sgn 1 j m deleted {k} columns k 1 k m deleted where sgn {j} and sgn {k} are the signs of permutations that sort the deleted rows j 1 j m and columns k 1 k m into ascending order. Example: (7) ( 0 0 ) N Y 11 Y Y 1N Y 12 Y Y 2N Y 1N Y 2N... Y NN, (8)

10 10/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Example: Getting a -point function from a six-point function I e + Z µ µ t eµ e e Z d W u d t ed 0 ν µ 0 0 M Z 0 0 s µνu s νu Figure: A six-point topology (a) leading to four-point functions (b) with realistically vanishing Gram determinants.

11 11/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Example: Getting a -point function from a six-point function II The example is taken from [11]. The corresponding -point tensor integrals are, in LoopTools [3, 12] notation: D0i(id, 0, 0, s νu, t ed, tēµ, s µ νu, 0, MZ 2, 0, 0). (9) The Gram determinant is: () = 2tēµ [s 2 µ νu + s νut ed s µ νu(s νu + t ed tēµ )], (10) It vanishes if: t ed t ed,crit = sµ νu(sµ νu s νu + tēµ ) s µ νu s νu. (11) In terms of a dimensionless scaling parameter x, t ed = (1 + x)t ed,crit, (12)

12 12/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Example: Getting a -point function from a six-point function III the Gram determinant becomes: () = 2 x s µ νutēµ (s µ νu s νu + tēµ ). (13) We will also need the modified Cayley determinant: ( 0 0) = 2M 2 Z M 2 Z M 2 Z sµ νu M2 Z M 2 Z 0 s νu M 2 Z MZ 2 sµ νu s νu 0 t ed MZ 2 tēµ t ed 0 = s 2 µ νut 2 ēµ + 2 M2 Z tēµ [ 2s νut ed + s µ νu(s νu + t ed tēµ )] + M Z (s2 νu + (t ed tēµ ) 2 2s νu(t ed + tēµ )).

13 13/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Recursions for hexagons Express any hexagon by pentagons [Fleischer:1999,Binoth:200,Denner:200,Diakonidis:2008 [7, 13, 1, 8] ] I µ 1...µ R 1 ρ 6 = 6 s=1 I µ 1...µ R 1,s Q ρ s. (1) auxiliary vectors Q ρ s = 6 q ρ i i=1 ( 0s ) 0i 6 ( 0 0) 6, s = (1)

14 1/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Dimensional shifts and recurrence relations for pentagons (I) Following [Davydychev:1991 []] Replace tensors by scalar integrals in higher dimensions: Example R = 3: I µνλ = = d 2ɛ k iπ d/2 i,j,k=1 r=1 and n ijk = (1 + δ ij )(1 + δ ik + δ jk ). c 1 r k µ k ν k λ (16) q µ q ν i j qk λ n ijk I [d+]3 + 1 n 1 (g µν q,ijk i λ + g µλ qi ν + g νλ q µ )I [d+]2, 2 i,i i=1 [d+] l = 2ɛ + 2l, and for definition of I [d+]2,i etc. see (3).

15 1/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Dimensional shifts and recurrence relations for pentagons (II) Naive, direct approach just perform dimensional recurrences Following [Tarasov:1996,Fleischer:1999 [6, 7]] apply recurrence relations, relating scalar integrals of different dimensions, in order to get rid of the dimensionalities [d+] l = 2ɛ + 2l: (d [ ( ) ( ν j j + I [d+] ) 1 j = () 0 i=1 + [( ) ν i + 1)I [d+] = 1 0 () 0 ( ) ] j k I (17) k k=1 ( ) ] 0 k I, (18) k where the operators i ±, j ±, k ± act by shifting the indices ν i, ν j, ν k by ±1. k=1

16 16/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Dimensional shifts and recurrence relations for pentagons (III) Represent a pentagon tensor of rank R: After repeated use of the recurrence relations, all the higher dimensional scalar integrals disappear A representation by the simple scalar functions in d dimensions is achieved: self-energies B 0 vertices C 0 boxes D 0 For the tensor rank R one gets ) R inverse powers of Gram determinants:( 1 () The algebraic derivations have to be re-organized in order to cancel in a controlled way these inverse powers of Gram determinants

17 The result of simplifying manipulations [indicated in the backup slides (mark 8)] and collecting all contributions, our final result for e.g. the tensor of rank R = 3 can be written as follows: I µ ν λ = i,j,k=1 q µ i q ν j q λ k E ijk + k=1 g [µν q λ] k E 00k, (19) with: E 00j = s=1 1 ( 0 0) [ 1 ( 0s ) I [d+],s d 1 ( s ) ] I [d+]2,s, (20) 2 0j 3 j E ijk = s=1 1 ( 0 0) {[ (0j ) I [d+]2,s sk ] + (i j),i no scalar -point integrals in higher dimensions no inverse Gram det. () We have yet: scalar -point integrals in higher dimensions: I [d+]2,s inverse Gram det. ( 0 0 ) (),ij etc. + ( 0s ) } ν ij I [d+]2,s. (21) 0k,ij 17/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece

18 18/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Isolation of inverse sub-gram det s () I We have now two kinds of objects in higher dim s to be evaluated: I s, I[d+],s, I [d+]2,s boxes (22) I [d+],s,i, I [d+]2,s,i I [d+]2,s,ij boxes with higher indices (23) Application of dimension-shifting recurrence relations produces powers of 1/(). They will be the unwanted and unavoidable sub-gram-determinants (). Next and last two steps: Reduce the I [d+],s,i, I [d+]2,s,i, I [d+]2,s,ij etc. to non-indexed scalars Then look at the non-indexed scalars

19 19/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Reduce I [d+]l,s,ij to I [d+]l,s plus simpler objects I By nontrivial manipulations we get e.g.: [ ( ) I [d+],s 1 0s,i = ) is ( 0s 0s (d 3)I [d+],s + t=1 ( ) ] 0st I3 st 0si (2) ν ij I [d+]2,ij = ( 0 i ) ( 0 0) ( 0 j ) ( 0 0) ( 0 j ) ( 0 0) d 2 ( 0 0) (d 2)(d 1)I [d+]2 + t=1 ( 0i ) 0j ( 0 0) ( ) 0t I [d+],t 3 + ( 1 0i 0 0) t=1 I [d+] ( ) 0t I [d+],t 3,i (2) 0j These equations are free of inverse Gram determinants (). But they contain yet the generic -point and (partly indexed) 3-point functions in higher dimensions, I [d+],s, I [d+],t 3, etc.

20 20/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Last step: evaluate the I [d+],s, I [d+],t 3, etc. I Several strategies are now possible: Just evaluate them analytically in d + 2l 2ɛ dimensions if you may do that Just evaluate them numerically in d + 2l 2ɛ dimensions Reduce them further by recurrences buy the towers of 1/() apply (18) Make a small Gram determinant expansion apply (18) another way round Last two items are done here.

21 21/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Reduction of scalars I D to the generic dimension Id = D 0, I d 3 = C 0 I Non-small -point Gram determinants: Direct, iterative use of (18) yields e.g.: [( 0 ( I [d+]l = 0) I [d+] l 1 t 0) I [d+] 3 () () I [d+]l,t 3 = ( 0t ) 0t ( t t) I [d+]l 1,t 3 t=1 u=1,u t And we are done. This works fine if () is not small. l 1,t ] ( ut ) 0t ( t I t) [d+]l 1,tu 2 1 d + 2l (26) 1 d + 2l (27)

22 22/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Make a small Gram expansion I Again use (18): () (d i=1 If () = 0, then it follows (n = ): ν i + 1)I [d+] = [ ] (0 ) ( 0 I I3 0 k) k k=1 I D n = ( n 0 k) n ( 0 I k 0) D,k n 1 (28) n If () << 1, re-write (18), as follows: I D n = ( n 0 k) n ( 0 I k 0) D,k n 1 ( ()n 0 [(D + 1) n 0) n n i ν i ]I D+2 n. (29) Effectively we may evaluate In D in terms of simpler functions I D,k n 1 with a small correction depending on In D+2.

23 23/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece We may go a step further, and insert into (29) for In D+2 the rhs. of (28), taken now at D = D + 2: I D n = ( n 0 k) n ( 0 I k 0) D,k n 1 n ()n ( 0 0) [(D + 1) n [ n ( 0 k) n ( 0 I k 0) D+2,k n 1 n n ν i ] i ()n ( 0 0) n [(D + 3) n i ν i ]I D+ n The terms proportional to [() ( 0) n/ 0 n ]a, a = 0, 1 may be evaluated at the correct kinematics. They depend on three-point functions, and their reduction by normal recurrences will not introduce the unwanted powers of 1/(). The last term, suppressed by the factor [() ( 0 n/ 0 )n ]2, depends on In D+. It may either be taken approximately at () n = 0, where it can also be represented by 3-point functions (and their reductions), or it may be evaluated more correctly by another iteration based on (28). And so on and so on In the numerical example next section we worked out up to 10 stable iterations. ].

24 2/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece A quite similar attempt to perform such a series of approximations was undertaken in [1] (see equation () there), where a specific example, forward light-by-light scattering through a massless fermion loop, was studied. The approach was then not further followed. W. Giele, E. W. N. Glover, and G. Zanderighi, in: Proceedings of Loops ans Legs 200: Numerical evaluation of one-loop diagrams near exceptional momentum configurations,

25 2/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece An example from A. Denner [11]: -point tensor of rank 3 D 111 Few figures copied from: A.Denner, plenary talk DESY Theory Workshop 2009, p.69 (backup transparency) box integral 0 t e d 0 tēµ M Z s µ νu e + s νu appears, e.g., in subgraph of diagram Gramdet.: (N) 0 if t e d t crit s µ νu(s µ νu s νu + tēµ ) s µ νu s νu e e Z Z µ d W µ ν µ u d

26 26/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece The figure demonstrates the effects of careful treatment of vanishing Gram determinant (). Gramdet.: (N) 0 if t e d t crit s µ νu(s µ νu s νu + tēµ ) s µ νu s νu numerical comparison: maximal tensor rank = 6 (similar to ee f application) Absolute predictions D 1 D 111 D 0 D 11 (etc.) Passarino Veltman reduction improved by Gram expansion Z Relative deviations from best Passarino--Veltman region x t e d t crit 1 s µ νu = GeV 2 s νu = GeV 2 tēµ = 10 GeV 2 t crit = 6 10 GeV 2 PV reduction breaks down, but Gram exp. stable for (N) 0!

27 27/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Following Davydychev, [], one gets I µνλ = d k µ k ν k λ n r=1 cr = n i,j,k=1 q µ i q ν j q λ k ν ijk I [d+]3 n,ijk n i=1 g [µν q λ] I [d+]2 (30) i n,i We identify the tensor coefficient D 111 a la LoopTools: D 111 ν ijk I [d+]3,ijk for ijk = 222

28 28/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Rank R = tensor D 1111 Numerics with dimensional recurrences From (29) we see that a small Gram determinant expansion will be useful when the following dimensionless parameter becomes small: R = () ( 0 0) where s is a typical scale of the process, e.g. we will choose s = s µ νu. Following [11], we further choose: s µ νu = 2 10 GeV 2, s νu = 1 10 GeV 2, tēµ = 10 GeV 2, s, (31) and get t ed,crit = 6 10 GeV 2. For x=1, the Gram determinant becomes () = GeV 3. The small expansion parameter R(x) and D 1111 are shown in figure 2. R x D

29 x Re D 1111 Im D 1111 Re D 0. [exp0] E E [exp2] E E [exp] E E [exp6] E E [pade] E E [direct] E E [exp6] E E [pade] E E [direct] E E [exp6] E E [pade] E E [fit] E [direct] E E [LoopT] E E [exp6] E E [pade] E E [direct] E E [LoopT] E E-10 29/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Rank R = tensor D 1111 Numerics with dimensional recurrences

30 30/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Rank R = 3 D 111 Numerics with dimensional recurrences x Re D 111 Im D [exp0] E E [exp1] E E [exp] E E [exp6] E E [pade] E E E E [exp6] E E [pade] E E E E [exp6] E E [pade] E E E E [exp6] E E [pade] E E E E E E E E

31 31/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Rank R = 2 D 11 etc. Numerics based on the dimensional recurrences x Re D 11 Im D 11 R 0 [exp0] E E [exp0] E E [exp2] E E [exp6] E E [pade] E E E E [exp6] E E [pade] E E E E [exp6] E E [pade] E E E E [exp6] E E [pade] E E E E E E E E

32 32/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Summary Recursive treatment of hexagon and pentagon tensor integrals of rank R in terms of pentagons and boxes of rank R 1 Systematic derivation of expressions which are explicitely free of inverse Gram determinants () until pentagons of rank R = Proper isolation of inverse Gram determinants of subdiagrams of the type ( ) s s, which cannot be completely n avoided Some numerics, so far in Mathematica, and a numerical C++ package (together with V. yundin) under way

33 References I G. Passarino and M. Veltman, One loop corrections for e + e annihilation into µ + µ in the Weinberg model, Nucl. Phys. B160 (1979) 11. G. t Hooft and M. Veltman, Scalar one loop integrals, Nucl. Phys. B13 (1979) T. Hahn and M. Perez-Victoria, Automatized one-loop calculations in four and d dimensions, Comput. Phys. Commun. 118 (1999) 13, [hep-ph/98076]. G. J. van Oldenborgh, FF: A Package to evaluate one loop Feynman diagrams, Comput. Phys. Commun. 66 (1991) 1 1. A. I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B263 (1991) O. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D (1996) , [hep-th/ ]. J. Fleischer, F. Jegerlehner, and O. Tarasov, Algebraic reduction of one-loop Feynman graph amplitudes, Nucl. Phys. B66 (2000) 23 0, [hep-ph/ ]. T. Diakonidis, J. Fleischer, J. Gluza, K. Kajda, T. Riemann, and J. Tausk, A complete reduction of one-loop tensor - and 6-point integrals, Phys. Rev. D80 (2009) , [arxiv: ]. T. Diakonidis, J. Fleischer, T. Riemann, and J. B. Tausk, A recursive reduction of tensor Feynman integrals, Phys. Lett. B683 (2010) 69 7, [arxiv: ]. 33/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece

34 References II J. Fleischer and T. Riemann, Some variations of the reduction of one-loop Feynman tensor integrals, PoS RADCOR2010 (2010) 07, [arxiv: ]. A. Denner, Techniques and concepts for higher order calculations, Introductory Lecture at DESY Theory Workshop on Collider Phenomenology, Hamburg, 29 Sep - 2 Oct T. Hahn, LoopTools 2. User s Guide, LT2Guide.pdf. T. Binoth, J. Guillet, G. Heinrich, E. Pilon, and C. Schubert, An algebraic / numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (200) 01, [hep-ph/00267]. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B73 (2006) 62 11, [hep-ph/00911]. W. Giele, E. W. N. Glover, and G. Zanderighi, Numerical evaluation of one-loop diagrams near exceptional momentum configurations, Nucl. Phys. Proc. Suppl. 13 (200) , [hep-ph/007016]. T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon, and T. Reiter, Golem9: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) , [ ]. T. Riemann, G. Mann, and D. Ebert. Nonconservation of lepton number in Z decay, in: F. Kaschluhn (ed.), Proc. XVth Int. Symp. Ahrenshoop on Special Topics In Gauge Field Theories, Nov -12, 1981, Ahrenshoop, GDR, AdW, Zeuthen (1981) PHE 81-07, pp / v :2 T. Riemann Tensor reduction Corfu 2010, Greece

35 References III G. Mann and T. Riemann, Effective flavor changing weak neutral current in the standard theory and Z boson decay, Annalen Phys. 0 (198) 33. J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D23 (1981) T. Diakonidis, J. Fleischer, J. Gluza, K. Kajda, T. Riemann, and J. Tausk, On the tensor reduction of one-loop pentagons and hexagons, Nucl. Phys. Proc. Suppl. 183 (2008) , [ ]. R. K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002, [arxiv: ]. J. Campbell, E. W. N. Glover, and D. Miller, One-loop tensor integrals in dimensional regularisation, Nucl. Phys. B98 (1997) 397 2, [hep-ph/961213]. A. Denner and S. Dittmaier, Reduction of one-loop tensor -point integrals, Nucl. Phys. B68 (2003) , [hep-ph/021229]. T. Binoth, J. P. Guillet, and G. Heinrich, Reduction formalism for dimensionally regulated one-loop N-point integrals, Nucl. Phys. B72 (2000) , [hep-ph/991132]. Z. Bern, L. J. Dixon, and D. A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B12 (199) , [hep-ph/930620]. G. Ossola, C. Papadopoulos, and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B763 (2007) , [hep-ph/ ]. 3/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece

36 36/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Numbers (I) Pentagons Randomly chosen phase space point with massive and massless internal particles p E E E E+00 p E E E E+00 p E E E E+00 p E E E E+01 p E E E E+01 m 1 = 0.0, m 2 = 2.0, m 3 = 3.0, m =.0, m =.0 p 3 p 1 + p 2 m 3 p 1 + p 2 m p1 m2 p2 m 1 m m 1 m 3 p 1 + p 2 + p 3 p + p m3 m1 p m p3 m p m p p + p m p 3 m 1 p

37 Selected pentagon components Shown are the constant terms of the tensor components E 2 E 12 E 232 E 0321 E Pentagon.F ( E-0, E-0) ( E-06, E-06) ( E-0, E-0) ( E-06, E-0) ( E-0, E-0) Box.F LoopTools ( E-03, E-03) ( E-03, E-03 ) ( E-03, E-02) ( E-03, E-02) ( E-03, E-03) ( E-03, E-03) ( E-0, E-0) ( E-0, E-0) Triangle.F LoopTools C 2 ( E-0, E-03) ( E-0, E-03) C 01 ( E-02, E-02) ( E-02, E-02) C 133 ( E-02, E-02) ( E-02, E-02) Bubble.F LoopTools B 3 ( E+00, E+00) ( , ) B 12 ( E+00, E-02) ( , E-02) 37/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece

38 here some text 1. p 3 p 2 k+q 2 k+q 3 m 3 m p k+q 1 m 2 m k+q p 1 m 1 m 6 p k+q 0 k+q p 6 Figure: Momenta flow for the massive six-point topology. here some text 2. 38/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece

39 39/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Numbers (II) Hexagons p E E+03 p E E+03 p E E E E+02 p E E E E+02 p E E E E+01 p E E E E+01 m 1 = 110.0, m 2 = 120.0, m 3 = 130.0, m = 10.0, m = 10.0, m 6 = F E 18 i E 19 µ F µ E 17 + i E E 17 i E E 17 + i E E 16 + i E 17 µ ν F µν E 1 i E E 1 + i E E 1 i E E 1 i E E 1 i E E 16 + i E E 1 i E E 1 i E E 1 + i E E 1 + i E 1

40 0/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece µ ν λ F µνλ E 11 i E E 13 i E E 13 + i E E 12 + i E E 12 + i E E 13 i E E 13 i E E 12 + i E E 13 + i E E 12 + i E E 13 + i E E 13 i E E 12 i E E 13 + i E E 1 + i E E 13 + i E E 13 i E E 12 i E E 13 i E E 12 i E 12 Table: Tensor components for a massive rank R = 3 six-point function

41 µ ν λ ρ F µνλρ E 09 + i E E 10 + i E E 10 i E E 10 i E E 10 i E E 11 + i E E 11 + i E E 10 i E E 11 i E E 10 i E E 10 i E E 11 i E E 10 + i E E 11 + i E E 11 i E E 11 i E E 11 i E E 10 + i E E 11 + i E E 09 + i E E 10 + i E E 12 i E E 11 i E E 11 + i E E 11 + i E E 10 + i E E 12 i E E 11 i E E 12 i E E 11 i E E 10 + i E E 11 + i E E 10 + i E 10 1/ 2 v : E 11 + i E 11 T. Riemann Tensor reduction Corfu 2010, Greece

42 p p p p p p 6 = (p 1 + p 2 + p 3 + p + p ) Table: Phase space point of massless six-point functions taken from [Binoth:2008 [16]]. Golem9: Binoth, Guillet, Heinrich, Pilon, Reiter [arxiv:hep-ph/ ] Shown are only the constant terms of the tensor components. Hexagon.F Golem9 F ( E+00, E-01 ) ( E+00, E-01 ) F ( E+01, E+00 ) ( E+01, E+00) F ( E+02, E+02 ) ( E+02, E+02 ) F ( E+00, E+00 ) ( E+00, E+00 ) F ( E+00, E+00) ( E+00, E+00) 2/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece

43 3/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic simplifications, 1st step With the identity ( ) ( ) 0 s 0 i = ( ) ( ) ( ) 0s 0 s () + 0i i 0 (32) we eliminate the inverse Gram determinant from all terms with exclusion of Q µ 0 : [ I µ 1...µ R 1 µ = I µ 1...µ R 1 ( s 0) ( 0 0) s=1 ] I µ 1...µ R 1,s Q µ 0 s=1 I µ 1...µ R 1,s Q µ s (33) The auxiliary vectors Q µ s were introduced already for n = 6: Q µ 0 = q µ i i=1 ( 0 i ) () while Q µ s = q µ i i=1 ( 0s ) 0i ( 0 0) (3)

44 / v :2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic simplifications, 2nd step I Have to show for the product T µ 1...µ R 1 Q µ 0 that the Gram determinant cancels. This came out to be a complicated task. [ (0 ) T µ 1...µ R 1 = I µ 1...µ R 1 0 s=1 ( ) ] s I µ 1...µ R 1,s 0 (3) Example: For R = 3 pentagons need rank 2 tensor: [ (0 ) T µν = I µν 0 s=1 ( ) ] s I µν,s 0 (36)

45 / v :2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic simplifications, 2nd step I Example R = 3: the building blocks are here I µν and I µν : I µν = work!!! q µ i qj ν i,j=1 q µ i qj ν i,j=1 ] [ [(1 + δ ij )I [d+]2,ij + g µν 1 ] 2 I[d+] 1 ( 0 0) [ +g µν 1 1 ( 2 0 0) s=1 s=1 [( ) 0i I [d+],s sj + ] ( ) s I [d+],s 0 See: The I µν had already been made free of 1/(). ( ) ] 0s I [d+],s 0j,i (37)

46 6/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Davydychev s higher dimensional integrals The second term with I µν is a typical example of [Davydychev:1991 []] : tensor scalars in d + 2l I µν = q µ i qj ν i,j=1 ] [ [(1 + δ ij )I [d+]2,ij + g µν 1 ] 2 I[d+] Further, at this point, we have to reduce the scalar integrals etc. to generic dimension d with Tarasov s recurrence relations, see next slide. The I µν is naturally free of 1/(). I [d+]2,ij (38)

47 7/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Reduction of tensor integrals express them by a (very) small set of scalar integrals Presently needed for massive processes: n 6 and rank R n For box diagrams and simpler ones: Use of the conventional Passarino-Veltman reduction [Passarino:1978jh [1]] Examples: LO (Lowest order) of e.g. Z e + µ is one-loop [Riemann:1981 [17], Mann:1983 [18]] NLO: one-loop corrections to e.g. H τ + τ, WW, ZZ [Fleischer:1980 [19]] NNLO: e.g. radiative loop corrections e + e e + e γ (here with -point functions)

48 Some opensource packages package FF [vanoldenborgh:1990 []] package LoopTools/FF v.2 [Hahn:1998,2006 [3]] covers also -point functions, rank R 1/ɛ 2 not covered, and we observed sometimes problems in certain configurations with light-like external particles package Golem9 [Binoth:2008 [16]] for n 6, but only massless propagators Mathematica package hexagon.m [Diakonidis:2008 [20, 8]] for n 6, rank R package for all n scalar integrals: QCDloop [Ellis:2007 [21]] see also: review A.Denner, DESY TH workshop 2009 Our approach: Package hexagon.m by Kajda et al. Package olotic.f by Diakonidis et al. In preparation: C++ package fry by V. Yundin et al. 8/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece

49 9/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Crucial contributions [of course, list is incomplete... ] [Campbell:1996 [22]] [Denner:2002,200 [23, 1]] [Binoth:1999,200 [2, 13]] [Bern:1993 [2]] [Ossola:2006 [26] ] In the following, I will describe recent developments in the Fleischer-Davydychev-Tarasov approach. [Davydychev:1991, Tarasov:1996, Fleischer:1999,Diakonidis:2008,2009 [, 6, 7, 8, 9]] get tensor reduction kill pentagon-gram det s treat sub-gram det s

50 0/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic simplifications, 2nd step Work out the red part in ( [ (0 0 0) Iµνλ = 0) Iµν ( s s=1 0 work!!! ) Iµν,s Use of identities for the determinants ( ) ( ) ( ) ( ) ( ) 0 s 0s 0 s = () + 0 i 0i i 0 ] Q0 λ s=1 Iµν,s Q 0,λ s (39) ( ) ( ( ( ) 0 ( ) ( ) i i s j 0i s j) j) = +, g µν = 2 q µ q ν i () sj 0 () () i j (0) i,j=1 ( ) ( ) ( ) ( ) ( ) ( ) s 0s s 0s s 0s = 0 is i 0s s 0i (1) ( ) ( ) ( ) ( ) ( ) ( ) s ts s ts s ts = 0 js j 0s s 0j (2)

51 1/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic simplifications, 2nd step Use of identities for the determinants work!!! ( ) ( ) ( ) ( ) ( ) ( ) s is s 0s s 0i = + 0 js i js s sj (3) ( ) ( ) ( ) ( ) ( ) s 0st 0s st ts 2 = s 0st 0s st 0s () [ ( ) ( ) ( ) ( ) ] (s ) [ ( ) ( ) ( ) ( ) ] (st ) ts ust ts ust ts us ts us = 0s jst js 0st s 0s js js 0s st () ( ) ts = 0 (6) is t=1

52 2/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Express pentagons I µ, Iµν, Iµνλ etc. by d-shifted scalar boxes I Intermediate result with I [d+],s, I [d+]2,s,ij etc. I µ = [ 1 ( 0 0) i=1 s=1 ( ) ] 0i I s q µ 0s i (7) I µ ν = E ij = i,j=1 1 ( 0 0) q µ i q ν j E ij + g µν E 00 (8) s=1 E 00 = 1 1 ( 2 0 0) [( ) 0i I [d+],s sj + ) s=1 ( s 0 ( ) ] 0s I [d+],s 0j,i (9) I [d+],s (0)

53 3/ v :2 T. Riemann Tensor reduction Corfu 2010, Greece Express pentagons I µ, Iµν, Iµνλ etc. by d-shifted scalar boxes II I µ ν λ = i,j,k=1 E ijk = 1 ( 0 0) E 00j = 1 ( 0 0) q µ i q ν j q λ k E ijk + s=1 s=1 [ 1 2 k=1 g [µν q λ] k E 00k (1) {[( ) 0j I [d+]2,s sk,i + (i j) ( ) 0s I [d+],s 0j d 1 3 ] + ( ) ] s I [d+]2,s j These presentations are evidently free of inverse Gram determinants. ( ) } 0s ν ij I [d+]2,s 0k,ij (2) (3)

54 / v :2 T. Riemann Tensor reduction Corfu 2010, Greece OLD Numerics, : LoopTools versus our approach Using LoopTools call and our math numerics (preliminary): x D111-7 : I D0i[dd111] I Zd30,Zd20,Iid20-6 : I D0i[dd111] I Zd30,Zd20,Iid20 - : I D0i[dd111] I Zd30,Zd20,Iid20 x< -: LoopTools dies out - : I D0i[dd111] I flei x < -3: loss of accuracy -3 : I D0i[dd111] I flei -2 : I D0i[dd111] I flei -1 : I D0i[dd111] I flei

Some variations of the reduction of one-loop Feynman tensor integrals

Some variations of the reduction of one-loop Feynman tensor integrals Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Some variations of the reduction of one-loop Feynman tensor integrals Tord Riemann DESY, Zeuthen in

More information

Tensor reduction of Feynman integrals

Tensor reduction of Feynman integrals TOPICS colliders Methods of multiloop calculations and resummation Computer codes for calculations in high energy physics Theoretical predictions beyond the Standard Model Physical program of future experiments

More information

7 Veltman-Passarino Reduction

7 Veltman-Passarino Reduction 7 Veltman-Passarino Reduction This is a method of expressing an n-point loop integral with r powers of the loop momentum l in the numerator, in terms of scalar s-point functions with s = n r, n. scalar

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Laura Reina Loops and Legs in Quantum Field Theory Wernigerode, April 2012 Outline Motivations: W +b-jet

More information

Next-to-leading order multi-leg processes for the Large Hadron Collider

Next-to-leading order multi-leg processes for the Large Hadron Collider Next-to-leading order multi-leg processes for the Large Hadron Collider, Thomas Reiter School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK. E-mail: binoth@ph.ed.ac.uk,thomas.reiter@ed.ac.uk

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

A semi-numerical approach to one-loop multi-leg amplitudes p.1

A semi-numerical approach to one-loop multi-leg amplitudes p.1 A semi-numerical approach to one-loop multi-leg amplitudes Gudrun Heinrich Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII LoopFest V, SLAC, 21.06.06 A semi-numerical approach to one-loop multi-leg

More information

Automation of One-Loop Calculations with Golem/Samurai

Automation of One-Loop Calculations with Golem/Samurai Automation of One-Loop Calculations with Golem/Samurai Giovanni Ossola New York City College of Technology City University of New York (CUNY) In collaboration with: G. Cullen, N. Greiner, G. Heinrich,

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

Automatic calculation of one-loop amplitudes

Automatic calculation of one-loop amplitudes The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego, - Krakow, Poland E-mail: hameren@if.edu.pl C.G. Papadopoulos Institute of Nuclear Physics, NCSR Demokritos,

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c Complete electroweak corrections to e + e 3 jets C.M. Carloni Calame INFN & University of Southampton Workshop LC08: e + e Physics at TeV scale September 22-25, 2008 in collaboration with S. Moretti, F.

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders including leptonic W decays at hadron colliders Stefan Dittmaier a, b and Peter Uwer c a Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, D-79104 Freiburg, Germany b Paul Scherrer Institut,

More information

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011)

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011) Outline Elise de Doncker 1 Fukuko Yuasa 2 1 Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S. 2 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki

More information

Recent developments in automated NLO calculations

Recent developments in automated NLO calculations Recent developments in automated NLO calculations Giuseppe Bevilacqua NCSR Demokritos, Athens Workshop on Standard Model and Beyond and Standard Cosmology Corfu - August 31, 2009 In collaboration with

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

arxiv:hep-ph/ v1 9 Jun 1997

arxiv:hep-ph/ v1 9 Jun 1997 DTP/97/44 RAL TR 97-027 hep-ph/9706297 arxiv:hep-ph/9706297v1 9 Jun 1997 The One-loop QCD Corrections for γ q qgg J. M. Campbell, E. W. N. Glover Physics Department, University of Durham, Durham DH1 3LE,

More information

Automatic calculations of Feynman integrals in the Euclidean region

Automatic calculations of Feynman integrals in the Euclidean region Automatic calculations of Feynman integrals in the Euclidean region Krzysztof Kajda University of Silesia 9 dec 2008 Krzysztof Kajda (University of Silesia) Automatic calculations of Feynman integrals

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS O.V.Tarasov DESY Zeuthen, Platanenallee 6, D 5738 Zeuthen, Germany E-mail: tarasov@ifh.de (Received December 7, 998) An algorithm

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

W + W + jet compact analytic results

W + W + jet compact analytic results W + W + jet compact analytic results Tania Robens. based on. J. Campbell, D. Miller, TR (arxiv:1506.xxxxx) IKTP, TU Dresden 2015 Radcor-Loopfest UCLA, Los Angeles, California WW + jet: Motivation from

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

arxiv: v1 [hep-ph] 4 Jan 2012

arxiv: v1 [hep-ph] 4 Jan 2012 DESY 11 258 WUB/11-28 arxiv:1201.0968v1 [hep-ph] 4 Jan 2012 Theoretical improvements for luminosity monitoring at low energies, Michał Gunia Institute of Physics, University of Silesia, 40-007 Katowice,

More information

arxiv:hep-ph/ v1 30 Oct 2002

arxiv:hep-ph/ v1 30 Oct 2002 DESY 02-179 hep-ph/0210426 Calculating two- and three-body decays with FeynArts and FormCalc Michael Klasen arxiv:hep-ph/0210426v1 30 Oct 2002 II. Institut für Theoretische Physik, Universität Hamburg,

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

arxiv:hep-ph/ v2 1 Feb 2005

arxiv:hep-ph/ v2 1 Feb 2005 UG-FT-62/04 CAFPE-32/04 August 2, 208 arxiv:hep-ph/040420v2 Feb 2005 Recursive numerical calculus of one-loop tensor integrals F. del Aguila and R. Pittau Departamento de Física Teórica y del Cosmos and

More information

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Nuclear Physics B123 (1977) 89-99 North-Holland Publishing Company LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Received

More information

Automation of NLO computations using the FKS subtraction method

Automation of NLO computations using the FKS subtraction method Automation of NLO computations using the FKS subtraction method Institute for Theoretical Physics, Universität Zürich E-mail: frederix@physik.uzh.ch In this talk the FKS subtraction method for next-to-leading

More information

Reduction at the integrand level beyond NLO

Reduction at the integrand level beyond NLO Reduction at the integrand level beyond NLO Costas G. Papadopoulos NCSR Demokritos, Athens, Greece & CERN, Geneva, Switzerland Corfu 2012, September 15, 2012 Costas G. Papadopoulos (NCSR-D & CERN) NNLO

More information

Loop-Tree Duality Method

Loop-Tree Duality Method Numerical Implementation of the Loop-Tree Duality Method IFIC Sebastian Buchta in collaboration with G. Rodrigo,! P. Draggiotis, G. Chachamis and I. Malamos 24. July 2015 Outline 1.Introduction! 2.A new

More information

Automation of Multi-leg One-loop virtual Amplitudes

Automation of Multi-leg One-loop virtual Amplitudes Automation of Multi-leg One-loop virtual Amplitudes Institute for Particle Physics Phenomenology University of Durham Science Laboratories South Rd DURHAM DH1 3LE, UK E-mail: daniel.maitre@durham.ac.uk

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

Modern Feynman Diagrammatic One-Loop Calculations

Modern Feynman Diagrammatic One-Loop Calculations Modern Feynman Diagrammatic One-Loop Calculations G. Cullen, a N. Greiner, b A. Guffanti, c J.P. Guillet, d G. Heinrich, e S. Karg, f N. Kauer, g T. Kleinschmidt, e M. Koch-Janusz, h G. Luisoni, e P. Mastrolia,

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Two-loop Heavy Fermion Corrections to Bhabha Scattering

Two-loop Heavy Fermion Corrections to Bhabha Scattering Two-loop Heavy Fermion Corrections to Bhabha Scattering S. Actis 1, M. Czakon 2, J. Gluza 3 and T. Riemann 1 1 Deutsches Elektronen-Synchrotron DESY Platanenallee 6, D 15738 Zeuthen, Germany 2 Institut

More information

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September Four-fermion production near the W-pair production threshold Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September 12-14 2007 International Linear Collider we all believe that no matter

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

Higgs boson signal and background in MCFM

Higgs boson signal and background in MCFM Higgs boson signal and background in MCFM Zurich, January 11, 2012 Keith Ellis, Fermilab John Campbell, RKE and Ciaran Williams arxiv:1105.0020, 1107.5569 [hep-ph] MCFM MCFM is a unified approach to NLO

More information

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV NLO-QCD calculation in GRACE - GRACE status - Y. Kurihara (KEK) GRACE Group 19/Aug./2005 @ LoopFest IV GRACE Author list J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, Y.

More information

Automating Feynman-diagrammatic calculations

Automating Feynman-diagrammatic calculations Automating Feynman-diagrammatic calculations Thomas Hahn Max-Planck-Institut für Physik T. Hahn, Automating Feynman-diagrammatic calculations p.1/28 What those Loop Calculations are all about Theorists

More information

Unitarization procedures applied to a Strongly Interacting EWSBS

Unitarization procedures applied to a Strongly Interacting EWSBS Unitarization procedures applied to a Strongly Interacting EWSBS Rafael L. Delgado A.Dobado, M.J.Herrero, Felipe J.Llanes-Estrada and J.J.Sanz-Cillero, 2015 Intern. Summer Workshop on Reaction Theory,

More information

arxiv:hep-ph/ v1 26 May 1994

arxiv:hep-ph/ v1 26 May 1994 ETH-TH/94-4 KLTE-DTP/94-3 May 5, 994 arxiv:hep-ph/9405386v 6 May 994 One-loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon Zoltan Kunszt a, Adrian

More information

W + W Production with Many Jets at the LHC

W + W Production with Many Jets at the LHC W + W Production with Many Jets at the LHC NLO QCD with BlackHat+Sherpa Fernando Febres Cordero Department of Physics, University of Freiburg Radcor-Loopfest 2015, UCLA June 2015 With Philipp Hofmann and

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

arxiv: v1 [hep-ph] 19 Apr 2007

arxiv: v1 [hep-ph] 19 Apr 2007 DESY 07-037 HEPTOOLS 07-009 SFB/CPP-07-14 arxiv:0704.2423v1 [hep-ph] 19 Apr 2007 AMBRE a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals Abstract J. Gluza,

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

Recent QCD results from ATLAS

Recent QCD results from ATLAS Recent QCD results from ATLAS PASCOS 2013 Vojtech Pleskot Charles University in Prague 21.11.2013 Introduction / Outline Soft QCD: Underlying event in jet events @7TeV (2010 data) Hard double parton interactions

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

NLM introduction and wishlist

NLM introduction and wishlist 1. NLM introduction and wishlist he LHC will be a very complex environment with most of the interesting physics signals, and their backgrounds, consisting of multi-parton (and lepton/photon) final states.

More information

arxiv:hep-ph/ v1 13 Oct 2000

arxiv:hep-ph/ v1 13 Oct 2000 DIRECT CP VIOLATION IN NONLEPTONIC KAON DECAYS BY AN EFFECTIVE CHIRAL LAGRANGIAN APPROACH AT O(p 6 ) 1 A.A. Bel kov 1, G. Bohm 2, A.V. Lanyov 1 and A.A. Moshkin 1 (1) Particle Physics Laboratory, Joint

More information

Numerical multi-loop calculations with SecDec

Numerical multi-loop calculations with SecDec Journal of Physics: Conference Series OPEN ACCESS Numerical multi-loop calculations with SecDec To cite this article: Sophia Borowka and Gudrun Heinrich 214 J. Phys.: Conf. Ser. 523 1248 View the article

More information

Diphoton production at LHC

Diphoton production at LHC 1 Diphoton production at LHC 120 GeV < M γγ < 140 GeV Leandro Cieri Universidad de Buenos Aires - Argentina & INFN Sezione di Firenze Rencontres de Moriond March 11, 2012 Outline Introduction Available

More information

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach Peter Stoffer in collaboration with G. Colangelo, M. Hoferichter and M. Procura JHEP 09 (2015) 074 [arxiv:1506.01386 [hep-ph]] JHEP

More information

Automated NLO calculations with GoSam

Automated NLO calculations with GoSam Automated NLO calculations with GoSam Gionata Luisoni gionata.luisoni@durham.ac.uk Institute for Particle Physics Phenomenology University of Durham Max-Planck-Institut für Physik München In collaboration

More information

One-Loop Calculations with BlackHat

One-Loop Calculations with BlackHat July 2008 MIT-CTP 3963 Saclay-IPhT-T08/117 SLAC-PUB-13295 UCLA/08/TEP/21 One-Loop Calculations with BlackHat C. F. Berger a, Z. Bern b, L. J. Dixon c, F. Febres Cordero b, D. Forde c, H. Ita b, D. A. Kosower

More information

Vector boson + jets at NLO vs. LHC data

Vector boson + jets at NLO vs. LHC data Vector boson + jets at NLO vs. LHC data Lance Dixon (SLAC) for the BlackHat collaboration Z. Bern, LD, G. Diana, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maître, K. Ozeren LHC Theory Workshop

More information

Corrections to the SM effective action and stability of EW vacuum

Corrections to the SM effective action and stability of EW vacuum Corrections to the SM effective action and stability of EW vacuum Zygmunt Lalak ITP Warsaw Corfu Summer Institute 2015 with M. Lewicki and P. Olszewski arxiv:1402.3826 (JHEP), arxiv:1505.05505, and to

More information

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 News on B K µ + µ Danny van Dyk B Workshop Neckarzimmern February 19th, 2010 Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35 The Goal 15 1 10 0.8 5 0.6 C10 0-5 0.4-10 0.2-15 -15-10 -5 0 5 10 15 C

More information

arxiv:math-ph/ v2 19 Oct 2005

arxiv:math-ph/ v2 19 Oct 2005 Reduction of su(n) loop tensors to trees arxiv:math-ph/050508v 9 Oct 005 Maciej Trzetrzelewski M. Smoluchowski Institute of Physics, Jagiellonian University Reymonta, 0-059 Cracow, Poland April 0, 07 Abstract

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Fully exclusive NNLO QCD computations

Fully exclusive NNLO QCD computations Fully exclusive NNLO QCD computations Kirill Melnikov University of Hawaii Loopfest V, SLAC, June 2006 Fully exclusive NNLO QCD computations p. 1/20 Outline Introduction Technology Higgs boson production

More information

Colour octet potential to three loops

Colour octet potential to three loops SFB/CPP-13-54 TTP13-8 Colour octet potential to three loops Chihaya Anzai a), Mario Prausa a), Alexander V. Smirnov b), Vladimir A. Smirnov c), Matthias Steinhauser a) a) Institut für Theoretische Teilchenphysik,

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

arxiv: v1 [hep-ph] 22 Jan 2008

arxiv: v1 [hep-ph] 22 Jan 2008 January 2008 NIKHEF/2007-025, WUB/07-12 Gluon-Induced Weak Boson Fusion Robert V. Harlander (1), Jens Vollinga (2) and Marcus M. Weber (3) arxiv:0801.3355v1 [hep-ph] 22 Jan 2008 (1) Fachbereich C, Bergische

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Search for new physics in rare D meson decays

Search for new physics in rare D meson decays Search for new physics in rare D meson decays Svjetlana Fajfer and Sasa Prelovsek Department of Physics, University of Ljubljana and J. Stefan Institute, Ljubljana, Slovenia XXXIII INTERNATIONAL CONFERENCE

More information

WW scattering at the LHC Part 2 simulations

WW scattering at the LHC Part 2 simulations WW scattering at the LHC Part 2 simulations Jan Kalinowski, Stefan Pokorski, Janusz Rosiek (IFT UW) Krzysztof Doroba (IFD UW), Michał Szleper (IPJ), Sławek Tkaczyk (Fermilab) Cracow Warsaw LHC Workshop

More information

Scattering amplitudes and AdS/CFT

Scattering amplitudes and AdS/CFT Scattering amplitudes and AdS/CFT Cristian Vergu Brown University BOX 1843 Providence, RI 02912 1 Introduction and notation Scattering amplitudes in the maximally supersymmetric N = 4 gauge theory are

More information

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results E-mail: bijnens@thep.lu.se Niclas Danielsson and Division of Mathematical Physics, LTH, Lund University, Box 118, S 221

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Numerical evaluation of multi-loop integrals

Numerical evaluation of multi-loop integrals Max-Planck-Institut für Physik, München, Germany E-mail: sjahn@mpp.mpg.de We present updates on the development of pyse CDE C, a toolbox to numerically evaluate parameter integrals in the context of dimensional

More information

Z+jet production at the LHC: Electroweak radiative corrections

Z+jet production at the LHC: Electroweak radiative corrections Z+jet production at the LHC: Electroweak radiative corrections Ansgar Denner Universität Würzburg, Institut für Theoretische Physik und Astrophysik Am Hubland, 9774 Würzburg, Germany E-mail: denner@physik.uni-wuerzburg.de

More information

Coefficients of one-loop integral

Coefficients of one-loop integral functions by recursion International Workshop: From Twistors to Amplitudes 1 Niels Emil Jannik Bjerrum-Bohr together with Zvi Bern, David Dunbar and Harald Ita Motivation The LHC collider at CERN is approaching

More information