Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Size: px
Start display at page:

Download "Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations"

Transcription

1 Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

2 Outline 1 Introduction: Wishlists and Troubles 2 OPP Reduction 3 Numerical Tests 4-photon amplitudes 6-photon amplitudes ZZZ production Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

3 Introduction: LHC needs NLO The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

4 Introduction: LHC needs NLO The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course) In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

5 Introduction: LHC needs NLO The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course) In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

6 Introduction: LHC needs NLO The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course) In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO) As a result, a big effort has been devoted by several groups to the problem of an efficient computation of one-loop corrections for multi-particle processes! Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

7 NLO Wishlist Les Houches [from G. Heinrich s Summary talk] Wishlist Les Houches pp V V + jet 2. pp t t b b 3. pp t t + 2 jets 4. pp W W W 5. pp V V b b 6. pp V V + 2 jets 7. pp V + 3 jets 8. pp t t b b 9. pp 4 jets Processes for which a NLO calculation is both desired and feasible Will we finish in time for LHC? Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

8 What has been done? ( ) Some recent results Cross Sections available pp Z Z Z pp t tz [Lazopoulos, Melnikov, Petriello] pp H + 2 jets [Campbell, et al., J. R. Andersen, et al.] pp VV + 2 jets via VBF [Bozzi, Jäger, Oleari, Zeppenfeld] Mostly 2 3, very few 2 4 complete calculations. e + e 4 fermions [Denner, Dittmaier, Roth] e + e H H ν ν [GRACE group (Boudjema et al.)] This is NOT a complete list (A lot of work has been done at NLO calculations & new methods) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

9 NLO troubles Problems arising in NLO calculations Large Number of Feynman diagrams Reduction to Scalar Integrals (or sets of known integrals) Numerical Instabilities (inverse Gram determinants, spurious phase-space singularities) Extraction of soft and collinear singularities (we need virtual and real corrections) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

10 Methods available - Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction: general applicability major achievements but major problem: not amplitude level Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

11 Methods available - Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction: - Semi-Numerical Approach (Algebraic/Partly Numerical Improved traditional) Reduction to set of well-known integrals - Numerical Approach (Numerical/Partly Algebraic) Compute tensor integrals numerically Ellis, Giele, Glover, Zanderighi; Binoth, Guillet, Heinrich, Schubert; Denner, Dittmaier; Del Aguila, Pittau; Ferroglia, Passera, Passarino, Uccirati; Nagy, Soper; van Hameren, Vollinga, Weinzierl; Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

12 Methods available - Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction: - Semi-Numerical Approach (Algebraic/Partly Numerical Improved traditional) Reduction to set of well-known integrals - Numerical Approach (Numerical/Partly Algebraic) Compute tensor integrals numerically - Analytic Approach (Twistor-inspired) extract information from lower-loop, lower-point amplitudes determine scattering amplitudes by their poles and cuts major advantage: designed to amplitude level quadruple and triple cuts major simplifications Bern, Dixon, Dunbar, Kosower, Berger, Forde; Anastasiou, Britto, Cachazo, Feng, Kunszt, Mastrolia; Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

13 Methods available - Traditional Method: Feynman Diagrams & Passarino-Veltman Reduction: - Semi-Numerical Approach (Algebraic/Partly Numerical Improved traditional) Reduction to set of well-known integrals - Numerical Approach (Numerical/Partly Algebraic) Compute tensor integrals numerically - Analytic Approach (Twistor-inspired) extract information from lower-loop, lower-point amplitudes determine scattering amplitudes by their poles and cuts OPP Integrand-level reduction combine: PV@integrand + n-particle cuts Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

14 OPP Reduction - Intro G. Ossola., C. G. Papadopoulos and R. Pittau, Nucl. Phys. B 763, 147 (2007) arxiv:hep-ph/ and JHEP 0707 (2007) 085 arxiv: [hep-ph] Any m-point one-loop amplitude can be written, before integration, as A( q) = N(q) D 0 D1 D m 1 A bar denotes objects living in n = 4 + ǫ dimensions D i = ( q + p i ) 2 m 2 i q 2 = q 2 + q 2 D i = D i + q 2 External momenta p i are 4-dimensional objects Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

15 The old master formula A = + + m 1 i 0 <i 1 <i 2 <i 3 d(i 0 i 1 i 2 i 3 )D 0 (i 0 i 1 i 2 i 3 ) m 1 i 0 <i 1 <i 2 c(i 0 i 1 i 2 )C 0 (i 0 i 1 i 2 ) m 1 i 0 <i 1 b(i 0 i 1 )B 0 (i 0 i 1 ) m 1 + a(i 0 )A 0 (i 0 ) i 0 + rational terms Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

16 OPP master formula - I General expression for the 4-dim N(q) at the integrand level in terms of D i N(q) = m 1 i 0 <i 1 <i 2 <i 3 m 1 [ ] m 1 d(i 0 i 1 i 2 i 3 ) + d(q;i 0 i 1 i 2 i 3 ) D i i i 0,i 1,i 2,i 3 i 0 <i 1 <i 2 [c(i 0 i 1 i 2 ) + c(q;i 0 i 1 i 2 )] m 1 i 0 <i 1 m 1 [ b(i 0 i 1 ) + b(q;i 0 i 1 ) i 0 [a(i 0 ) + ã(q;i 0 )] m 1 ] m 1 i i 0 D i i i 0,i 1 D i m 1 i i 0,i 1,i 2 D i Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

17 OPP master formula - II N(q) = + m 1 i 0 <i 1 <i 2 <i 3 m 1 i 0 <i 1 [ b(i 0 i 1 ) [ d(i 0 i 1 i 2 i 3 ) ] m 1 i i 0,i 1 D i + ] m 1 m 1 m 1 D i + [c(i 0 i 1 i 2 ) ] D i i i 0,i 1,i 2,i 3 i 0 <i 1 <i 2 i i 0,i 1,i 2 m 1 m 1 [a(i 0 ) ] D i i 0 i i 0 The quantities d(i 0 i 1 i 2 i 3 ) are the coefficients of 4-point functions with denominators labeled by i 0, i 1, i 2, and i 3. c(i 0 i 1 i 2 ), b(i 0 i 1 ), a(i 0 ) are the coefficients of all possible 3-point, 2-point and 1-point functions, respectively. Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

18 OPP master formula - II N(q) = + m 1 i 0 <i 1 <i 2 <i 3 m 1 i 0 <i 1 [ ] m 1 m 1 m 1 d(i 0 i 1 i 2 i 3 ) + d(q; i 0 i 1 i 2 i 3 ) D i + [c(i 0 i 1 i 2 ) + c(q; i 0 i 1 i 2 )] D i i i 0,i 1,i 2,i 3 i 0 <i 1 <i 2 i i 0,i 1,i 2 [ ] m 1 m 1 m 1 b(i 0 i 1 ) + b(q; i 0 i 1 ) D i + [a(i 0 ) + ã(q; i 0 )] D i i i 0,i 1 i 0 i i 0 The quantities d, c, b, ã are the spurious terms They still depend on q (integration momentum) They should vanish upon integration What is the explicit expression of the spurious term? Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

19 Spurious Terms - I Following F. del Aguila and R. Pittau, arxiv:hep-ph/ Express any q in N(q) as q µ = p µ i=1 G i l µ i, l i 2 = 0 k 1 = l 1 + α 1 l 2, k 2 = l 2 + α 2 l 1, k i = p i p 0 l 3 µ =< l 1 γ µ l 2 ], l 4 µ =< l 2 γ µ l 1 ] The coefficients G i either reconstruct denominators D i They give rise to d, c, b, a coefficients Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

20 Spurious Terms - I Following F. del Aguila and R. Pittau, arxiv:hep-ph/ Express any q in N(q) as q µ = p µ i=1 G i l µ i, l i 2 = 0 k 1 = l 1 + α 1 l 2, k 2 = l 2 + α 2 l 1, k i = p i p 0 l 3 µ =< l 1 γ µ l 2 ], l 4 µ =< l 2 γ µ l 1 ] The coefficients G i either reconstruct denominators D i or vanish upon integration They give rise to d, c, b, a coefficients They form the spurious d, c, b, ã coefficients Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

21 Spurious Terms - II d(q) term (only 1) d(q) = d T(q), where d is a constant (does not depend on q) T(q) Tr[(/q + /p 0 )/l 1 /l 2 /k 3 γ 5 ] Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

22 Spurious Terms - II d(q) term (only 1) d(q) = d T(q), where d is a constant (does not depend on q) T(q) Tr[(/q + /p 0 )/l 1 /l 2 /k 3 γ 5 ] c(q) terms (they are 6) j max c(q) = { c1j [(q + p 0 ) l 3 ] j + c 2j [(q + p 0 ) l 4 ] j} j=1 In the renormalizable gauge, j max = 3 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

23 Spurious Terms - II d(q) term (only 1) d(q) = d T(q), where d is a constant (does not depend on q) c(q) terms (they are 6) j max T(q) Tr[(/q + /p 0 )/l 1 /l 2 /k 3 γ 5 ] c(q) = { c1j [(q + p 0 ) l 3 ] j + c 2j [(q + p 0 ) l 4 ] j} j=1 In the renormalizable gauge, j max = 3 b(q) and ã(q) give rise to 8 and 4 terms, respectively Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

24 A simple example 1 D 0 D 1 D 2 D 3 D 4 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

25 A simple example 1 D 0 D 1 D 2 D 3 D 4 1 = [d(i 0 i 1 i 2 i 3 ) + d(q;i ] 0 i 1 i 2 i 3 ) D i4 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

26 A simple example D 0 D 1 D 2 D 3 D 4 1 = [d(i 0 i 1 i 2 i 3 ) + d(q;i ] 0 i 1 i 2 i 3 ) 1 D i4 1 [ d(i 0 i 1 i 2 i 3 ) + D 0 D 1 D 2 D 3 D d(q;i ] 0 i 1 i 2 i 3 ) D i4 4 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

27 A simple example D 0 D 1 D 2 D 3 D 4 1 = [d(i 0 i 1 i 2 i 3 ) + d(q;i ] 0 i 1 i 2 i 3 ) 1 D i4 1 [ d(i 0 i 1 i 2 i 3 ) + D 0 D 1 D 2 D 3 D d(q;i ] 0 i 1 i 2 i 3 ) 4 1 = d(i 0 i 1 i 2 i 3 )D 0 (i 0 i 1 i 2 i 3 ) D 0 D 1 D 2 D 3 D 4 D i4 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

28 A simple example D 0 D 1 D 2 D 3 D 4 1 = [d(i 0 i 1 i 2 i 3 ) + d(q;i ] 0 i 1 i 2 i 3 ) 1 D i4 1 [ d(i 0 i 1 i 2 i 3 ) + D 0 D 1 D 2 D 3 D d(q;i ] 0 i 1 i 2 i 3 ) 4 1 = d(i 0 i 1 i 2 i 3 )D 0 (i 0 i 1 i 2 i 3 ) D 0 D 1 D 2 D 3 D 4 d(i 0 i 1 i 2 i 3 ) = 1 ( ) 1 2 D i4 (q + ) + 1 D i4 (q ) D i4 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

29 A simple example D 0 D 1 D 2 D 3 D 4 1 = [d(i 0 i 1 i 2 i 3 ) + d(q;i ] 0 i 1 i 2 i 3 ) 1 D i4 1 [ d(i 0 i 1 i 2 i 3 ) + D 0 D 1 D 2 D 3 D d(q;i ] 0 i 1 i 2 i 3 ) 4 1 = d(i 0 i 1 i 2 i 3 )D 0 (i 0 i 1 i 2 i 3 ) D 0 D 1 D 2 D 3 D 4 d(i 0 i 1 i 2 i 3 ) = 1 ( ) 1 2 D i4 (q + ) + 1 D i4 (q ) D i4 Melrose, Nuovo Cim. 40 (1965) 181 G. Källén, J.Toll, J. Math. Phys. 6, 299 (1965) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

30 General strategy Now we know the form of the spurious terms: N(q) = + m 1 i 0 <i 1 <i 2 <i 3 m 1 i 0 <i 1 [ ] m 1 m 1 m 1 d(i 0 i 1 i 2 i 3 ) + d(q; i 0 i 1 i 2 i 3 ) D i + [c(i 0 i 1 i 2 ) + c(q; i 0 i 1 i 2 )] D i i i 0,i 1,i 2,i 3 i 0 <i 1 <i 2 i i 0,i 1,i 2 [ ] m 1 m 1 m 1 b(i 0 i 1 ) + b(q; i 0 i 1 ) D i + [a(i 0 ) + ã(q; i 0 )] D i i i 0,i 1 i 0 i i 0 Our calculation is now reduced to an algebraic problem Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

31 General strategy Now we know the form of the spurious terms: N(q) = + m 1 i 0 <i 1 <i 2 <i 3 m 1 i 0 <i 1 [ ] m 1 m 1 m 1 d(i 0 i 1 i 2 i 3 ) + d(q; i 0 i 1 i 2 i 3 ) D i + [c(i 0 i 1 i 2 ) + c(q; i 0 i 1 i 2 )] D i i i 0,i 1,i 2,i 3 i 0 <i 1 <i 2 i i 0,i 1,i 2 [ ] m 1 m 1 m 1 b(i 0 i 1 ) + b(q; i 0 i 1 ) D i + [a(i 0 ) + ã(q; i 0 )] D i i i 0,i 1 i 0 i i 0 Our calculation is now reduced to an algebraic problem Extract all the coefficients by evaluating N(q) for a set of values of the integration momentum q Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

32 General strategy Now we know the form of the spurious terms: N(q) = + m 1 i 0 <i 1 <i 2 <i 3 m 1 i 0 <i 1 [ ] m 1 m 1 m 1 d(i 0 i 1 i 2 i 3 ) + d(q; i 0 i 1 i 2 i 3 ) D i + [c(i 0 i 1 i 2 ) + c(q; i 0 i 1 i 2 )] D i i i 0,i 1,i 2,i 3 i 0 <i 1 <i 2 i i 0,i 1,i 2 [ ] m 1 m 1 m 1 b(i 0 i 1 ) + b(q; i 0 i 1 ) D i + [a(i 0 ) + ã(q; i 0 )] D i i i 0,i 1 i 0 i i 0 Our calculation is now reduced to an algebraic problem Extract all the coefficients by evaluating N(q) for a set of values of the integration momentum q There is a very good set of such points: Use values of q for which a set of denominators D i vanish The system becomes triangular : solve first for 4-point functions, then 3-point functions and so on Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

33 Example: 4-particles process N(q) = d + d(q) [c(i) + c(q; i)]d i + i=0 3 [a(i 0 ) + ã(q; i 0 )] D i i0 D j i0 D k i0 i 0=0 3 i 0<i 1 [ b(i 0 i 1 ) + b(q; ] i 0 i 1 ) D i0 D i1 We look for a q of the form q µ = p µ 0 + x il µ i such that D 0 = D 1 = D 2 = D 3 = 0 we get a system of equations in x i that has two solutions q ± 0 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

34 Example: 4-particles process N(q) = d + d(q) Our master formula for q = q ± 0 is: N(q ± 0 ) = [d + d T(q ± 0 )] solve to extract the coefficients d and d Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

35 Example: 4-particles process N(q) d d(q) = + 3 [c(i) + c(q; i)]d i + i=0 3 i 0<i 1 3 [a(i 0 ) + ã(q; i 0 )] D i i0 D j i0 D k i0 i 0=0 [ b(i 0 i 1 ) + b(q; ] i 0 i 1 ) D i0 D i1 Then we can move to the extraction of c coefficients using N (q) = N(q) d dt(q) and setting to zero three denominators (ex: D 1 = 0, D 2 = 0, D 3 = 0) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

36 Example: 4-particles process N(q) d d(q) = [c(0) + c(q; 0)]D 0 We have infinite values of q for which D 1 = D 2 = D 3 = 0 and D 0 0 Here we need 7 of them to determine c(0) and c(q; 0) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

37 Rational Terms - I Let s go back to the integrand A( q) = N(q) D 0 D 1 D m 1 Insert the expression for N(q) we know all the coefficients N(q) = m 1 i 0<i 1<i 2<i 3 [ d + d(q) ] m 1 D i + i i 0,i 1,i 2,i 3 Finally rewrite all denominators using D i D i = Z i, with Z i m 1 i 0<i 1<i 2 [c + c(q)] (1 q2 D i ) m 1 i i 0,i 1,i 2 D i + Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

38 Rational Terms - II A( q) = m 1 d(i 0 i 1 i 2 i 3 ) + d(q; i 0 i 1 i 2 i 3 ) D i i0 Di1 Di2 Di3 0<i 1<i 2<i 3 m 1 c(i 0 i 1 i 2 ) + c(q; i 0 i 1 i 2 ) D i i0 Di1 Di2 0<i 1<i 2 m 1 b(i 0 i 1 ) + b(q; i0 i 1 ) D i i0 D i1 0<i 1 m 1 a(i 0 ) + ã(q; i 0 ) D i i0 0 m 1 m 1 i i 0 Zi i i 0,i 1 Zi m 1 i i 0,i 1,i 2 Z i m 1 i i 0,i 1,i 2,i 3 Z i The rational part is produced, after integrating over d n q, by the q 2 dependence in Z i Zi ( 1 q2 D i ) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

39 Rational Terms - III The Extra Integrals are of the form where I s;µ (n;2l) 1 µ r d n q q 2l q µ1 q µr D(k 0 ) D(k s ), D(k i ) ( q + k i ) 2 m 2 i,k i = p i p 0 These integrals: - have dimensionality D = 2(1 + l s) + r - contribute only when D 0, otherwise are of O(ǫ) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

40 Rational Terms - IV Tensor reduction iteratively leads to rank m m-point tensors with 1 m 5, that are ultraviolet divergent when m 4. For this reason, we introduced, the d-dimensional denominators D i, that differs by an amount q 2 from their 4-dimensional counterparts D i = D i + q 2. (1) The result of this is a mismatch in the cancelation of the d-dimensional denominators with the 4-dimensional ones. The rational part of the amplitude, called R 1, comes from such a lack of cancelation. A different source of Rational Terms, called R 2, can also be generated from the ǫ-dimensional part of N(q) R 2 are generated by the difference N( q) N(q) = q 2 N 1 + ǫn 2 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

41 Rational Terms - IV q µ = q µ + q µ γ µ = γ µ + γ µ q µ q 2 γ µ ǫ Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

42 Rational Terms - IV d n q q2 d n q D i Dj q 2 D i D j D k = iπ2 2 = iπ2 2 + O(ǫ), [m 2i + m 2j (p i p j ) 2 3 ] + O(ǫ), d n q q 4 D i D j D k D l = iπ2 6 + O(ǫ).(2) b(ij; q 2 ) = b(ij) + q 2 b (2) (ij), c(ijk; q 2 ) = c(ijk) + q 2 c (2) (ijk). (3) Furthermore, by defining D (m) (q, q 2 ) m 1 i 0<i 1<i 2<i 3 [ ] m 1 d(i 0 i 1 i 2 i 3 ; q 2 ) + d(q; i 0 i 1 i 2 i 3 ; q 2 ) D i, (4) i i 0,i 1,i 2,i 3 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

43 Rational Terms - IV the following expansion holds D (m) (q, q 2 ) = m q (2j 4) d (2j 4) (q), (5) j=2 where the last coefficient is independent on q d (2m 4) (q) = d (2m 4). (6) In practice, once the 4-dimensional coefficients have been determined, one can redo the fits for different values of q 2, in order to determine b (2) (ij), c (2) (ijk) and d (2m 4). Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

44 Summary Calculate N(q) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

45 Summary Calculate N(q) We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

46 Summary Calculate N(q) We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly Calculate N(q) numerically via recursion relations Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

47 Summary Calculate N(q) We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly Calculate N(q) numerically via recursion relations Just specify external momenta, polarization vectors and masses and proceed with the reduction! Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

48 Summary Calculate N(q) We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly Calculate N(q) numerically via recursion relations Just specify external momenta, polarization vectors and masses and proceed with the reduction! Compute all coefficients Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

49 Summary Calculate N(q) We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly Calculate N(q) numerically via recursion relations Just specify external momenta, polarization vectors and masses and proceed with the reduction! Compute all coefficients by evaluating N(q) at certain values of integration momentum Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

50 Summary Calculate N(q) We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly Calculate N(q) numerically via recursion relations Just specify external momenta, polarization vectors and masses and proceed with the reduction! Compute all coefficients by evaluating N(q) at certain values of integration momentum Evaluate scalar integrals Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

51 Summary Calculate N(q) We do not need to repeat this for all Feynman diagrams. We can group them and solve for (sub)amplitudes directly Calculate N(q) numerically via recursion relations Just specify external momenta, polarization vectors and masses and proceed with the reduction! Compute all coefficients by evaluating N(q) at certain values of integration momentum Evaluate scalar integrals massive integrals FF [G. J. van Oldenborgh] massless integrals OneLOop [A. van Hameren] Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

52 What we gain PV: Unitarity Methods: Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

53 What we gain PV: N(q) or A(q) hasn t to be known analytically Unitarity Methods: Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

54 What we gain PV: N(q) or A(q) hasn t to be known analytically No computer algebra Unitarity Methods: Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

55 What we gain PV: N(q) or A(q) hasn t to be known analytically No computer algebra Mathematica Numerica Unitarity Methods: Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

56 What we gain PV: N(q) or A(q) hasn t to be known analytically No computer algebra Mathematica Numerica Unitarity Methods: A more transparent algebraic method Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

57 What we gain PV: N(q) or A(q) hasn t to be known analytically No computer algebra Mathematica Numerica Unitarity Methods: A more transparent algebraic method A solid way to get all rational terms Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

58 The Master Equation Properties of the master equation Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

59 The Master Equation Properties of the master equation Polynomial equation in q Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

60 The Master Equation Properties of the master equation Polynomial equation in q Highly redundant: the a-terms have a degree of m 2 2 compared to m as a function of q Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

61 The Master Equation Properties of the master equation Polynomial equation in q Highly redundant: the a-terms have a degree of m 2 2 compared to m as a function of q Zeros of (a tower of ) polynomial equations Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

62 The Master Equation Properties of the master equation Polynomial equation in q Highly redundant: the a-terms have a degree of m 2 2 compared to m as a function of q Zeros of (a tower of ) polynomial equations Different ways of solving it, besides unitarity method Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

63 The Master Equation Properties of the master equation Polynomial equation in q Highly redundant: the a-terms have a degree of m 2 2 compared to m as a function of q Zeros of (a tower of ) polynomial equations Different ways of solving it, besides unitarity method The N N test A tool to efficiently treat phase-space points with numerical instabilities Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

64 4-photon and 6-photon amplitudes As an example we present 4-photon and 6-photon amplitudes (via fermionic loop of mass m f ) Input parameters for the reduction: External momenta p i Masses of propagators in the loop Polarization vectors Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

65 4-photon and 6-photon amplitudes As an example we present 4-photon and 6-photon amplitudes (via fermionic loop of mass m f ) Input parameters for the reduction: External momenta p i in this example massless, i.e. p 2 i = 0 Masses of propagators in the loop all equal to m f Polarization vectors various helicity configurations Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

66 Four Photons Comparison with Gounaris et al. F f ++++ α 2 Q 4 f = 8 Rational Part Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

67 Four Photons Comparison with Gounaris et al. F f ++++ α 2 Q 4 f = ( 1 + 2û ŝ (ˆt 2 + û 2 8 ŝ 2 [ 4 ) ( B 0 (û) ˆt ŝ ) B 0 (ˆt) ) [ˆtC 0 (ˆt) + ûc 0 (û)] ˆt 2 + û 2 ŝ 2 ] D 0 (ˆt, û) Massless four-photon amplitudes Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

68 Four Photons Comparison with Gounaris et al. F f ++++ α 2 Q 4 f = ( 1 + 2û ŝ (ˆt 2 + û 2 8 ) ( B 0 (û) ˆt ŝ ŝ 2 4m2 f ŝ 4 [4m 4f (2ŝm2f + ˆtû)ˆt 2 + û 2 ) B 0 (ˆt) ) [ˆtC 0 (ˆt) + ûc 0 (û)] ŝ 2 + 8m 2 f (ŝ 2m 2 f )[D 0 (ŝ,ˆt) + D 0 (ŝ, û)] + 4m2ˆtû ] f D 0 (ˆt, û) ŝ Massive four-photon amplitudes Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

69 Four Photons Comparison with Gounaris et al. F f ++++ α 2 Q 4 f = ( 1 + 2û ŝ (ˆt 2 + û 2 8 ) ( B 0 (û) ˆt ŝ ŝ 2 4m2 f ŝ 4 [4m 4f (2ŝm 2f + ˆtû)ˆt 2 + û 2 ) B 0 (ˆt) ) [ˆtC 0 (ˆt) + ûc 0 (û)] ŝ 2 + 8m 2 f (ŝ 2m2 f )[D 0(ŝ,ˆt) + D 0 (ŝ, û)] + 4m2ˆtû ] f D 0 (ˆt, û) ŝ Massive four-photon amplitudes Results also checked for F f +++ and F f ++ Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

70 Six Photons Comparison with Nagy-Soper and Mahlon Massless case: [+ + ] and [+ + + ] Plot presented by Nagy and Soper hep-ph/ (also Binoth et al., hep-ph/ ) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

71 Six Photons Comparison with Nagy-Soper and Mahlon Massless case: [+ + ] and [+ + + ] Analogous plot produced with OPP reduction Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

72 Six Photons Comparison with Binoth, Heinrich, Gehrmann, Mastrolia Massless case: [+ + ] and [+ + + ] Same plot as before for a wider range of θ Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

73 Six Photons Comparison with Mahlon Massless case: [+ + ] and [+ + + ] s M /α θ Same idea for a different set of external momenta Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

74 Six Photons with Massive Fermions Massless result [Mahlon] Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

75 Six Photons with Massive Fermions Massless result [Mahlon] m = 0.5 GeV Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

76 Six Photons with Massive Fermions Massless result [Mahlon] m = 0.5 GeV m = 4.5 GeV Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

77 Six Photons with Massive Fermions Massless result [Mahlon] m = 0.5 GeV m = 4.5 GeV m = 12.0 GeV Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

78 Six Photons with Massive Fermions Massless result [Mahlon] m = 0.5 GeV m = 4.5 GeV m = 12.0 GeV m = 20.0 GeV Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

79 q q ZZZ virtual corrections A. Lazopoulos, K. Melnikov and F. Petriello, [arxiv:hep-ph/ ] Poles 1/ǫ 2 and 1/ǫ σ NLO,virt div = C F α s π ( Γ(1 + ǫ) 1 (4π) ǫ (s 12) ǫ ǫ ) σ LO 2ǫ Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

80 q q ZZZ virtual corrections A still naive implementation Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

81 q q ZZZ virtual corrections A still naive implementation Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices! Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

82 q q ZZZ virtual corrections A still naive implementation Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices! Calculate 4d and rational R 1 terms by CutTools Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

83 q q ZZZ virtual corrections A still naive implementation Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices! Calculate 4d and rational R 1 terms by CutTools R 2 terms added by hand Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

84 q q ZZZ virtual corrections A still naive implementation Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices! Calculate 4d and rational R 1 terms by CutTools R 2 terms added by hand Comparison with LMP Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

85 q q ZZZ virtual corrections A still naive implementation Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices! Calculate 4d and rational R 1 terms by CutTools R 2 terms added by hand Comparison with LMP Of course full agreement for the 1/ǫ 2 and 1/ǫ terms Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

86 q q ZZZ virtual corrections A still naive implementation Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices! Calculate 4d and rational R 1 terms by CutTools R 2 terms added by hand Comparison with LMP Of course full agreement for the 1/ǫ 2 and 1/ǫ terms An easy agreement for all graphs with up to 4-point loop integrals Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

87 q q ZZZ virtual corrections A still naive implementation Calculate the N(q) by brute (numerical) force namely multiplying gamma matrices! Calculate 4d and rational R 1 terms by CutTools R 2 terms added by hand Comparison with LMP Of course full agreement for the 1/ǫ 2 and 1/ǫ terms An easy agreement for all graphs with up to 4-point loop integrals A bit more work to uncover the differences in scalar function normalization that happen to show to order ǫ 2 thus influence only 5-point loop integrals. Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

88 q q ZZZ virtual corrections Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

89 q q ZZZ virtual corrections Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

90 q q ZZZ virtual corrections Typical precision: Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

91 q q ZZZ virtual corrections Typical precision: LMP: 9.573(66) about 1% error Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

92 q q ZZZ virtual corrections Typical precision: LMP: 9.573(66) about 1% error OPP: { Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

93 q q ZZZ virtual corrections Typical precision: LMP: 9.573(66) about 1% error OPP: { Typical time: 10 4 times faster (for non-singular PS-points) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

94 q q ZZZ real corrections σ NLO q q = σ NLO gq = VVV VVV [dσ B q q + dσv q q + dσc q q + [ +dσgq C g dσ A gq ] + VVVg g dσ A q q ] + VVVg [ ] dσgq R dσgq A, [ ] dσq q R dσa q q Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

95 q q ZZZ real corrections σ NLO q q = σ NLO gq = VVV VVV [dσ B q q + dσv q q + dσc q q + [ +dσgq C g dσ A gq ] + VVVg g dσ A q q ] + VVVg [ ] dσgq R dσgq A, [ ] dσq q R dσa q q D q 1g 6, q 2 = 8πα sc F 2 x p 1 p 6 ( 1 + x 2 1 x x = p 1 p 2 p 2 p 6 p 1 p 6 p 1 p 2 ) M B q q({ p}) 2 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

96 q q ZZZ real corrections σ NLO q q = σ NLO gq = VVV VVV [dσ B q q + dσv q q + dσc q q + [ +dσgq C g dσ A gq ] + VVVg g dσ A q q ] + VVVg [ ] dσgq R dσgq A, [ ] dσq q R dσa q q D q 1g 6, q 2 = 8πα sc F 2 x p 1 p 6 ( 1 + x 2 1 x x = p 1 p 2 p 2 p 6 p 1 p 6 p 1 p 2 ) M B q q({ p}) 2 dσq q R dσa q q = [ C F M R q q 6 N 2s ({p j}) 2 D q 1g 6, q 2 D q 2g 6,q 1 ]dφ VVVg 12 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

97 q q ZZZ real corrections dσq q C + g + α sc F 2π + α sc F 2π dσ A q q = α sc F 2π Γ(1 + ǫ) (4π) ǫ ( s12 µ 2 ) ǫ [ 2 ǫ ] ǫ 2π2 dσ B ({p j }) 3 dx K q q (x)dσ B (xp 1,p 2 ;p 3,p 4,p 5 ) F 0 (xp 1,p 2 ;p 3,p 4,p 5 ) dx K q q (x)dσ B (p 1,xp 2 ;p 3,p 4,p 5 ) F 0 (p 1,xp 2 ;p 3,p 4,p 5 ) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

98 q q ZZZ real corrections dσq q C + g + α sc F 2π + α sc F 2π dσ A q q = α sc F 2π Γ(1 + ǫ) (4π) ǫ ( s12 µ 2 ) ǫ [ 2 ǫ ] ǫ 2π2 dσ B ({p j }) 3 dx K q q (x)dσ B (xp 1,p 2 ;p 3,p 4,p 5 ) F 0 (xp 1,p 2 ;p 3,p 4,p 5 ) dx K q q (x)dσ B (p 1,xp 2 ;p 3,p 4,p 5 ) F 0 (p 1,xp 2 ;p 3,p 4,p 5 ) K q q (x) = ( ) 1 + x 2 log 1 x + ( s12 µ 2 F ) ( 4 log(1 x) + 1 x ) + (1 x) 2(1 + x) log(1 x) + Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

99 q q ZZZ real corrections σ NLO gq = [ ] dσgq A + dσgq C + [ ] dσgq R dσgq A V V V g V V V g Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

100 q q ZZZ real corrections σ NLO gq = [ ] dσgq A + dσgq C + [ ] dσgq R dσgq A V V V g V V V g dσ R gq dσ A gq = 1 N 1 [ ] T R M R 2s gq({p j } ) 2 F 1 ({p j } ) D g1q6,q2 F 0 ({ p j }) dφ V V V q 12 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

101 q q ZZZ real corrections σ NLO gq = [ ] dσgq A + dσgq C + [ ] dσgq R dσgq A V V V g V V V g dσ R gq dσ A gq = 1 N 1 [ ] T R M R 2s gq({p j } ) 2 F 1 ({p j } ) D g1q6,q2 F 0 ({ p j }) dφ V V V q 12 D g 1q 6,q 2 = 8πα s T R x 2 p 1 p 6 [1 2 x(1 x)] M B q q({ p j }) 2 Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

102 q q ZZZ real corrections dσgq C + q dσ A gq = α st R 2π 1 K gq (x) = [x 2 + (1 x) 2 ]log 0 dx K gq (x) dσ B (xp 1,p 2 ;p 3,p 4,p 5 ) F 0 (xp 1,p 2 ;p 3,p 4,p 5 ) ( s12 µ 2 F ) + 2x(1 x) + 2[x 2 + (1 x) 2 ]log(1 x) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

103 q q ZZZ real corrections dσgq C + q dσ A gq = α st R 2π 1 K gq (x) = [x 2 + (1 x) 2 ]log 0 dx K gq (x) dσ B (xp 1,p 2 ;p 3,p 4,p 5 ) F 0 (xp 1,p 2 ;p 3,p 4,p 5 ) ( s12 µ 2 F ) + 2x(1 x) + 2[x 2 + (1 x) 2 ]log(1 x) check also with phase-space slicing method Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

104 q q ZZZ NLO scale σ 0 σ V /σ 0 σ R σ NLO µ = M Z 1.481(5) 0.536(1) 0.238(2) 2.512(2) µ = 2M Z 1.487(5) 0.481(1) 0.232(2) 2.434(2) µ = 3M Z 1.477(5) 0.452(1) 0.232(2) 2.376(2) µ = 4M Z 1.479(5) 0.436(1) 0.232(2) 2.355(2) µ = 5M Z 1.479(5) 0.424(1) 0.237(2) 2.343(2) Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

105 q q ZZZ NLO Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

106 Outlook Reduction at the integrand level Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

107 Outlook Reduction at the integrand level changes the computational approach at one loop Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

108 Outlook Reduction at the integrand level changes the computational approach at one loop Numerical but still algebraic: speed and precision not a problem Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

109 Outlook Reduction at the integrand level Current changes the computational approach at one loop Numerical but still algebraic: speed and precision not a problem Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

110 Outlook Reduction at the integrand level changes the computational approach at one loop Numerical but still algebraic: speed and precision not a problem Current Understand potential stability problems Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

111 Outlook Reduction at the integrand level changes the computational approach at one loop Numerical but still algebraic: speed and precision not a problem Current Understand potential stability problems Combine with the real corrections Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

112 Outlook Reduction at the integrand level changes the computational approach at one loop Numerical but still algebraic: speed and precision not a problem Current Understand potential stability problems Combine with the real corrections Automatize through Dyson-Schwinger equations Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

113 Outlook Reduction at the integrand level changes the computational approach at one loop Numerical but still algebraic: speed and precision not a problem Current Understand potential stability problems Combine with the real corrections Automatize through Dyson-Schwinger equations A generic NLO calculator seems feasible Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

114 Outlook Reduction at the integrand level changes the computational approach at one loop Numerical but still algebraic: speed and precision not a problem Current Understand potential stability problems Combine with the real corrections Automatize through Dyson-Schwinger equations A generic NLO calculator seems feasible CUTTOOLS version 0. is ready! Costas G. Papadopoulos (Athens) OPP Reduction Epiphany / 43

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

Recent developments in automated NLO calculations

Recent developments in automated NLO calculations Recent developments in automated NLO calculations Giuseppe Bevilacqua NCSR Demokritos, Athens Workshop on Standard Model and Beyond and Standard Cosmology Corfu - August 31, 2009 In collaboration with

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

Reduction at the integrand level beyond NLO

Reduction at the integrand level beyond NLO Reduction at the integrand level beyond NLO Costas G. Papadopoulos NCSR Demokritos, Athens, Greece & CERN, Geneva, Switzerland Corfu 2012, September 15, 2012 Costas G. Papadopoulos (NCSR-D & CERN) NNLO

More information

Automatic calculation of one-loop amplitudes

Automatic calculation of one-loop amplitudes The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego, - Krakow, Poland E-mail: hameren@if.edu.pl C.G. Papadopoulos Institute of Nuclear Physics, NCSR Demokritos,

More information

Next-to-leading order multi-leg processes for the Large Hadron Collider

Next-to-leading order multi-leg processes for the Large Hadron Collider Next-to-leading order multi-leg processes for the Large Hadron Collider, Thomas Reiter School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK. E-mail: binoth@ph.ed.ac.uk,thomas.reiter@ed.ac.uk

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

Automation of One-Loop Calculations with Golem/Samurai

Automation of One-Loop Calculations with Golem/Samurai Automation of One-Loop Calculations with Golem/Samurai Giovanni Ossola New York City College of Technology City University of New York (CUNY) In collaboration with: G. Cullen, N. Greiner, G. Heinrich,

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

W + W + jet compact analytic results

W + W + jet compact analytic results W + W + jet compact analytic results Tania Robens. based on. J. Campbell, D. Miller, TR (arxiv:1506.xxxxx) IKTP, TU Dresden 2015 Radcor-Loopfest UCLA, Los Angeles, California WW + jet: Motivation from

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Some variations of the reduction of one-loop Feynman tensor integrals

Some variations of the reduction of one-loop Feynman tensor integrals Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Some variations of the reduction of one-loop Feynman tensor integrals Tord Riemann DESY, Zeuthen in

More information

Automation of Multi-leg One-loop virtual Amplitudes

Automation of Multi-leg One-loop virtual Amplitudes Automation of Multi-leg One-loop virtual Amplitudes Institute for Particle Physics Phenomenology University of Durham Science Laboratories South Rd DURHAM DH1 3LE, UK E-mail: daniel.maitre@durham.ac.uk

More information

A semi-numerical approach to one-loop multi-leg amplitudes p.1

A semi-numerical approach to one-loop multi-leg amplitudes p.1 A semi-numerical approach to one-loop multi-leg amplitudes Gudrun Heinrich Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII LoopFest V, SLAC, 21.06.06 A semi-numerical approach to one-loop multi-leg

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Twistors and Unitarity

Twistors and Unitarity Twistors and Unitarity NLO six-gluon Amplitude in QCD Pierpaolo Mastrolia Institute for Theoretical Physics, University of Zürich IFAE 2006, April 19, 2006 in collaboration with: Ruth Britto and Bo Feng

More information

One-Loop Calculations with BlackHat

One-Loop Calculations with BlackHat July 2008 MIT-CTP 3963 Saclay-IPhT-T08/117 SLAC-PUB-13295 UCLA/08/TEP/21 One-Loop Calculations with BlackHat C. F. Berger a, Z. Bern b, L. J. Dixon c, F. Febres Cordero b, D. Forde c, H. Ita b, D. A. Kosower

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Tord Riemann. DESY, Zeuthen, Germany

Tord Riemann. DESY, Zeuthen, Germany 1/ v. 2010-08-31 1:2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic tensor Feynman integral reduction Tord Riemann DESY, Zeuthen, Germany Based on work done in collaboration with Jochem Fleischer

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

NLO QCD corrections to pp W ± Z γ with leptonic decays

NLO QCD corrections to pp W ± Z γ with leptonic decays NLO QCD corrections to pp W ± Z γ in collaboration with F. Campanario, H. Rzehak and D. Zeppenfeld Michael Rauch March 2010 I NSTITUTE FOR T HEORETICAL P HYSICS KIT University of the State of Baden-Wuerttemberg

More information

Towards One-Loop MHV Techniques

Towards One-Loop MHV Techniques Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005 Carola F. Berger, SLAC Snowmass - August 22, 2005 Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005

More information

Automation of NLO computations using the FKS subtraction method

Automation of NLO computations using the FKS subtraction method Automation of NLO computations using the FKS subtraction method Institute for Theoretical Physics, Universität Zürich E-mail: frederix@physik.uzh.ch In this talk the FKS subtraction method for next-to-leading

More information

Towards Jet Cross Sections at NNLO

Towards Jet Cross Sections at NNLO Towards Jet Cross Sections at HP.4, September, MPI Munich Expectations at LHC Large production rates for Standard Model processes single jet inclusive and differential di-jet cross section will be measured

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Coefficients of one-loop integral

Coefficients of one-loop integral functions by recursion International Workshop: From Twistors to Amplitudes 1 Niels Emil Jannik Bjerrum-Bohr together with Zvi Bern, David Dunbar and Harald Ita Motivation The LHC collider at CERN is approaching

More information

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c Complete electroweak corrections to e + e 3 jets C.M. Carloni Calame INFN & University of Southampton Workshop LC08: e + e Physics at TeV scale September 22-25, 2008 in collaboration with S. Moretti, F.

More information

Standard Model Theory for collider physics

Standard Model Theory for collider physics Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland E-mail: babis@phys.ethz.ch In this talk we review some of the latest theoretical developments in Standard Model collider physics.

More information

Renormalization in the Unitarity Method

Renormalization in the Unitarity Method CEA Saclay NBI Summer Institute: Strings, Gauge Theory and the LHC August 23, 2011 One-loop amplitudes Events / 10 GeV 100 80 60 40 tth(120) ttjj ttbb (QCD) ttbb (EW) 20 0 0 50 100 150 200 250 300 350

More information

Higher Order Calculations

Higher Order Calculations Higher Order Calculations Zoltan Kunszt, ETH, Zurich QCD at the LHC St Andrews, Scotland, August 23, 2011 C The predictions of the SM for LHC are given in perturbation theory in the QCD improved standard

More information

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1 e + e 3j at NNLO: Results for all QED-type Colour Factors Thomas Gehrmann Universität ürich UNIVERSITAS TURICENSIS MDCCC XXXIII in collaboration with A. Gehrmann De Ridder, E.W.N. Glover, G. Heinrich Loopfest

More information

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders including leptonic W decays at hadron colliders Stefan Dittmaier a, b and Peter Uwer c a Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, D-79104 Freiburg, Germany b Paul Scherrer Institut,

More information

Modern Approaches to Scattering Amplitudes

Modern Approaches to Scattering Amplitudes Ph.D. Workshop, 10 October 2017 Outline Scattering Amplitudes 1 Scattering Amplitudes Introduction The Standard Method 2 On-Shell vs Off-Shell On-Shell building blocks BCFW Recursion Relations 3 Amplitudes

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Theoretical Predictions For Top Quark Pair Production At NLO QCD Theoretical Predictions For Top Quark Pair Production At NLO QCD Malgorzata Worek Wuppertal Uni. HP2: High Precision for Hard Processes, 4-7 September 2012, MPI, Munich 1 Motivations Successful running

More information

Higher Order QCD Lecture 2

Higher Order QCD Lecture 2 Higher Order QCD Lecture 2 Lance Dixon, SLAC SLAC Summer Institute The Next Frontier: Exploring with the LHC July 21, 2006 Lecture 2 Outline NLO NNLO L. Dixon, 7/21/06 Higher Order QCD: Lect. 2 2 What

More information

Modern Feynman Diagrammatic One-Loop Calculations

Modern Feynman Diagrammatic One-Loop Calculations Modern Feynman Diagrammatic One-Loop Calculations G. Cullen, a N. Greiner, b A. Guffanti, c J.P. Guillet, d G. Heinrich, e S. Karg, f N. Kauer, g T. Kleinschmidt, e M. Koch-Janusz, h G. Luisoni, e P. Mastrolia,

More information

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Laura Reina Loops and Legs in Quantum Field Theory Wernigerode, April 2012 Outline Motivations: W +b-jet

More information

A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity. Continuous Advances in QCD 2006 Zvi Bern, UCLA

A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity. Continuous Advances in QCD 2006 Zvi Bern, UCLA A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity Continuous Advances in QCD 2006 Zvi Bern, UCLA 1 1 Outline A method is more important that a discovery, since the right method can lead to

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

Recent Advances in NLO QCD for the LHC Seattle, Institute for Nuclear Theory Sept 27, 2011 Zvi Bern, UCLA, on behalf of BlackHat

Recent Advances in NLO QCD for the LHC Seattle, Institute for Nuclear Theory Sept 27, 2011 Zvi Bern, UCLA, on behalf of BlackHat Recent Advances in NLO QCD for the LHC Seattle, Institute for Nuclear Theory Sept 27, 2011 Zvi Bern, UCLA, on behalf of BlackHat BlackHat Collaboration current members: ZB, L. Dixon, F. Febres Cordero,

More information

Dipole subtraction with random polarisations

Dipole subtraction with random polarisations , Christopher Schwan, Stefan Weinzierl PRISMA Cluster of Excellence, Johannes Gutenberg University, Mainz goetz@uni-mainz.de schwan@uni-mainz.de stefanw@thep.physik.uni-mainz.de In this talk, we discuss

More information

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy Jets in pp at NNLO João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova HP.5-5 September 014 Florence, Italy based on: Second order QCD corrections to gluonic jet production

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

Recent developments on Perturbative QCD (Part I)

Recent developments on Perturbative QCD (Part I) Recent developments on Perturbative QCD (Part I) Jianwei Qiu Iowa State University/Argonne National Laboratory 威海高能物理前沿暑期论坛 (Weihai Summer Topic Seminar On the Frontiers of High Energy Physics) 山东大学 -

More information

Theory Summary of the SM and NLO Multi-leg WG

Theory Summary of the SM and NLO Multi-leg WG Theory Summary of the SM and NLO Multi-leg WG Departamento de Física Teórica y del Cosmos Universidad de Granada Les Houches June 17th 2009 Theory Summary of the SM and NLO Multi-leg WG Departamento de

More information

Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations

Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations 2005 International Linear Collider Workshop - Stanford, U.S.A. Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations Lance J. Dixon SLAC, Stanford, CA 94025, USA I briefly review how on-shell

More information

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Generalized Prescriptive Unitarity Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Organization and Outline Overview: Generalized & Prescriptive Unitarity

More information

arxiv: v2 [hep-ph] 9 Sep 2009

arxiv: v2 [hep-ph] 9 Sep 2009 Preprint typeset in JHEP style - HYPER VERSION PITHA 09/18 WUB/09-09 Assault on the NLO Wishlist: pp t tb b arxiv:0907.4723v2 [hep-ph] 9 Sep 2009 G. Bevilacqua a, M. Czakon b, C. G. Papadopoulos a, R.

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

arxiv:hep-ph/ v2 1 Feb 2005

arxiv:hep-ph/ v2 1 Feb 2005 UG-FT-62/04 CAFPE-32/04 August 2, 208 arxiv:hep-ph/040420v2 Feb 2005 Recursive numerical calculus of one-loop tensor integrals F. del Aguila and R. Pittau Departamento de Física Teórica y del Cosmos and

More information

7 Veltman-Passarino Reduction

7 Veltman-Passarino Reduction 7 Veltman-Passarino Reduction This is a method of expressing an n-point loop integral with r powers of the loop momentum l in the numerator, in terms of scalar s-point functions with s = n r, n. scalar

More information

Precision Phenomenology and Collider Physics p.1

Precision Phenomenology and Collider Physics p.1 Precision Phenomenology and Collider Physics Nigel Glover IPPP, University of Durham Computer algebra and particle physics, DESY Zeuthen, April 4, 2005 Precision Phenomenology and Collider Physics p.1

More information

W + W Production with Many Jets at the LHC

W + W Production with Many Jets at the LHC W + W Production with Many Jets at the LHC NLO QCD with BlackHat+Sherpa Fernando Febres Cordero Department of Physics, University of Freiburg Radcor-Loopfest 2015, UCLA June 2015 With Philipp Hofmann and

More information

Weak boson scattering at the LHC

Weak boson scattering at the LHC Weak boson scattering at the LHC RADCOR 2009 Barbara Jäger University of Würzburg outline weak boson fusion at the LHC: Higgs production at high precision V V jj production @ NLO QCD strongly interacting

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach Prepared for submission to JHEP TTP15-042 The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos ab Damiano Tommasini a and Christopher Wever ac a Institute

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Vector boson + jets at NLO vs. LHC data

Vector boson + jets at NLO vs. LHC data Vector boson + jets at NLO vs. LHC data Lance Dixon (SLAC) for the BlackHat collaboration Z. Bern, LD, G. Diana, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maître, K. Ozeren LHC Theory Workshop

More information

Beyond Feynman Diagrams Lecture 2. Lance Dixon Academic Training Lectures CERN April 24-26, 2013

Beyond Feynman Diagrams Lecture 2. Lance Dixon Academic Training Lectures CERN April 24-26, 2013 Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013 Modern methods for trees 1. Color organization (briefly) 2. Spinor variables 3. Simple examples 4. Factorization

More information

arxiv: v1 [hep-ph] 26 Nov 2017

arxiv: v1 [hep-ph] 26 Nov 2017 Recent Developments in Higher-Order Calculations: Hard Functions at NLO with GoSam arxiv:1711.09462v1 [hep-ph] 26 Nov 2017 Alessandro Broggio a alessandro.broggio@tum.de Andrea Ferroglia b,c aferroglia@citytech.cuny.edu

More information

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September Four-fermion production near the W-pair production threshold Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September 12-14 2007 International Linear Collider we all believe that no matter

More information

Vector Boson + Jets with BlackHat and Sherpa

Vector Boson + Jets with BlackHat and Sherpa SLAC-PUB-405 UCLA/0/TEP/04 MIT-CTP 450 SB/F/380-0 IPPP/0/34 Saclay IPhT T0/??? NIKHEF-200-??? CERN-PH-TH/200-??? ector Boson + Jets with BlackHat and Sherpa C. F. Berger a, Z. Bern b, L. J. Dixon c, F.

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Antenna Subtraction at NNLO

Antenna Subtraction at NNLO Antenna Subtraction at NNLO Aude Gehrmann-De Ridder ETH Zürich in collaboration with T. Gehrmann, E.W.N. Glover Loopfest IV Snowmass 2005 Antenna Subtraction at NNLO p.1 Outline Jet observables Jets in

More information

Perturbative QCD and NLO Monte Carlo Simulations TASI John Campbell MS 106, PO Box 500 Fermilab, Batavia IL

Perturbative QCD and NLO Monte Carlo Simulations TASI John Campbell MS 106, PO Box 500 Fermilab, Batavia IL Perturbative QCD and NLO Monte Carlo Simulations TASI 2011 John Campbell MS 106, PO Box 500 Fermilab, Batavia IL 60510 June 10, 2011 Abstract This is a set of notes for lectures which I am giving at TASI2011,

More information

Recent Progress in One-Loop Multi-Parton Calculations

Recent Progress in One-Loop Multi-Parton Calculations SLAC-PUB-6658 hep-ph/940914 September, 1994 (M) Recent Progress in One-Loop Multi-Parton Calculations Zvi Bern Department of Physics University of California, Los Angeles Los Angeles, CA 9004 Lance Dixon

More information

HELAC: a package to compute electroweak helicity amplitudes

HELAC: a package to compute electroweak helicity amplitudes DEMO-HEP-2000/01 arxiv:hep-ph/0002082v2 9 Feb 2000 HELAC: a package to compute electroweak helicity amplitudes Aggeliki Kanaki and Costas G. Papadopoulos Institute of Nuclear Physics, NCSR ηµóκ ιτoς, 15310

More information

Scattering Amplitudes

Scattering Amplitudes Scattering Amplitudes LECTURE 1 Jaroslav Trnka Center for Quantum Mathematics and Physics (QMAP), UC Davis ICTP Summer School, June 2017 Particle experiments: our probe to fundamental laws of Nature Theorist

More information

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011)

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011) Outline Elise de Doncker 1 Fukuko Yuasa 2 1 Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S. 2 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki

More information

Automated NLO calculations with GoSam

Automated NLO calculations with GoSam Automated NLO calculations with GoSam Gionata Luisoni gionata.luisoni@durham.ac.uk Institute for Particle Physics Phenomenology University of Durham Max-Planck-Institut für Physik München In collaboration

More information

MHV Vertices and On-Shell Recursion Relations

MHV Vertices and On-Shell Recursion Relations 0-0 MHV Vertices and On-Shell Recursion Relations Peter Svrček Stanford University/SLAC QCD 2006 May 12th 2006 In December 2003, Witten proposed a string theory in twistor space dual to perturbative gauge

More information

A shower algorithm based on the dipole formalism. Stefan Weinzierl

A shower algorithm based on the dipole formalism. Stefan Weinzierl A shower algorithm based on the dipole formalism Stefan Weinzierl Universität Mainz in collaboration with M. Dinsdale and M. Ternick Introduction: I.: II: III: Event generators and perturbative calculations

More information

Higgs boson signal and background in MCFM

Higgs boson signal and background in MCFM Higgs boson signal and background in MCFM Zurich, January 11, 2012 Keith Ellis, Fermilab John Campbell, RKE and Ciaran Williams arxiv:1105.0020, 1107.5569 [hep-ph] MCFM MCFM is a unified approach to NLO

More information

Electroweak LHC NLO QCD

Electroweak LHC NLO QCD Electroweak LHC physics @ NLO QCD Dept. of physics University of Hawaii A. Lazopoulos Wed 24 oct. 2007 QCD corrections to tri-boson production Kirill Melnikov (UH), Frank John Petriello (Wisconsin U.),

More information

Analytic 2-loop Form factor in N=4 SYM

Analytic 2-loop Form factor in N=4 SYM Analytic 2-loop Form factor in N=4 SYM Gang Yang University of Hamburg Nordic String Theory Meeting Feb 20-21, 2012, NBI Based on the work Brandhuber, Travaglini, GY 1201.4170 [hep-th] Brandhuber, Gurdogan,

More information

A program for Matrix Element

A program for Matrix Element A program for Matrix Element Olivier Mattelaer University of Illinois at Urbana Champaign May 20 2013 Olivier Mattelaer 1 Aims of this seminar Motivate Monte-Carlo Physics Describe the methods Advertise

More information

Sector Decomposition

Sector Decomposition Sector Decomposition J. Carter Institute for Particle Physics Phenomenology University of Durham Student Seminar, 06/05/2009 Outline 1 What is Sector Decomposition? Why is Sector Decomposition Important?

More information

Vector Boson Fusion approaching the (yet) unknown

Vector Boson Fusion approaching the (yet) unknown Vector Boson Fusion approaching the (yet) unknown Barbara Jäger KEK Theory Group Southern Methodist University February 2008 outline Higgs searches at the LHC Higgs production via vector boson fusion (VBF):

More information

arxiv:hep-ph/ v1 9 Jun 1997

arxiv:hep-ph/ v1 9 Jun 1997 DTP/97/44 RAL TR 97-027 hep-ph/9706297 arxiv:hep-ph/9706297v1 9 Jun 1997 The One-loop QCD Corrections for γ q qgg J. M. Campbell, E. W. N. Glover Physics Department, University of Durham, Durham DH1 3LE,

More information

Loop-Tree Duality Method

Loop-Tree Duality Method Numerical Implementation of the Loop-Tree Duality Method IFIC Sebastian Buchta in collaboration with G. Rodrigo,! P. Draggiotis, G. Chachamis and I. Malamos 24. July 2015 Outline 1.Introduction! 2.A new

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

GoSam: automated multi-process scattering amplitudes at one loop

GoSam: automated multi-process scattering amplitudes at one loop GoSam: automated multi-process scattering amplitudes at one loop Gionata Luisoni luisonig@mpp.mpg.de Max Planck Institute for Physics Munich In collaboration with: G.Cullen, N. Greiner, G.Heinrich, P.Mastrolia,

More information

Master integrals without subdivergences

Master integrals without subdivergences Master integrals without subdivergences Joint work with Andreas von Manteuffel and Robert Schabinger Erik Panzer 1 (CNRS, ERC grant 257638) Institute des Hautes Études Scientifiques 35 Route de Chartres

More information

Scattering amplitudes and AdS/CFT

Scattering amplitudes and AdS/CFT Scattering amplitudes and AdS/CFT Cristian Vergu Brown University BOX 1843 Providence, RI 02912 1 Introduction and notation Scattering amplitudes in the maximally supersymmetric N = 4 gauge theory are

More information

Progress on Color-Dual Loop Amplitudes

Progress on Color-Dual Loop Amplitudes Progress on Color-Dual Loop Amplitudes Henrik Johansson IPhT Saclay Sept 28, 2011 INT: Frontiers in QCD U. of Washington 1106.4711 [hep-th], 1107.1935 [hep-th], (and ongoing work) Zvi Bern, Camille Boucher-Veronneau,

More information

Z+jet production at the LHC: Electroweak radiative corrections

Z+jet production at the LHC: Electroweak radiative corrections Z+jet production at the LHC: Electroweak radiative corrections Ansgar Denner Universität Würzburg, Institut für Theoretische Physik und Astrophysik Am Hubland, 9774 Würzburg, Germany E-mail: denner@physik.uni-wuerzburg.de

More information

arxiv:hep-ph/ v1 26 May 1994

arxiv:hep-ph/ v1 26 May 1994 ETH-TH/94-4 KLTE-DTP/94-3 May 5, 994 arxiv:hep-ph/9405386v 6 May 994 One-loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon Zoltan Kunszt a, Adrian

More information

On-shell Recursion Relations of Scattering Amplitudes at Tree-level

On-shell Recursion Relations of Scattering Amplitudes at Tree-level On-shell Recursion Relations of Scattering Amplitudes at Tree-level Notes for Journal Club by Yikun Wang June 9, 206 We will introduce the on-shell recursion relations of scattering amplitudes at tree-level

More information

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D Germán F. R. Sborlini in collaboration with R. Hernández-Pinto and G. Rodrigo Institut de Física Corpuscular, UV- CSIC (Spain) and Departamento de Física,

More information