Recent Progress in One-Loop Multi-Parton Calculations

Size: px
Start display at page:

Download "Recent Progress in One-Loop Multi-Parton Calculations"

Transcription

1 SLAC-PUB-6658 hep-ph/ September, 1994 (M) Recent Progress in One-Loop Multi-Parton Calculations Zvi Bern Department of Physics University of California, Los Angeles Los Angeles, CA 9004 Lance Dixon Stanford Linear Accelerator Center Stanford University, Stanford, CA David C. Dunbar University College of Swansea Swansea, Wales, United Kingdom David A. Kosower Service de Physique Théorique de Saclay Centre d Etudes de Saclay F Gif-sur-Yvette cedex, France Presented by L.D. at the High-Energy Physics QCD Workshop 94, Montpellier, France, July 7-13, 1994 Research supported by the Department of Energy under grants DE-AC03-76SF00515 and DE-FG03-91ER4066, by the Alfred P. Sloan Foundation under grant BR-3, by the National Science Foundation under grant PHY , by the Commissariat à l Energie Atomique of France, and by NATO Collaborative Research Grants CRG 913 and CRG

2 Abstract We describe techniques that simplify the calculation of one-loop QCD amplitudes with many external legs, which are needed for next-to-leading-order (NLO) corrections to multi-jet processes. The constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes are particularly useful. Certain sequences of one-loop helicity amplitudes may be obtained for an arbitrary number of external gluons using these techniques. We also report on progress in completing the set of one-loop helicity amplitudes required for NLO threejet production at hadron colliders, namely the amplitudes with two external quarks and three gluons. 1

3 1 INTRODUCTION High-p T events in hadronic collisions and high-energy e + e annihilations often produce a large number of jets. Quantitative QCD predictions for such multi-jet rates are important, but require at least next-to-leading-order (NLO) calculations. NLO corrections in turn require one-loop amplitudes with many external partons. The analytic complexity of oneloop calculations grows very rapidly with the number of external legs. As a result, complete NLO results are currently available only for processes with up to four external partons or vector bosons, such as e + e 3 jets, and p p (or pp) production of inclusive jets, di-jets, and (W, Z) + 1 jet. To go further requires one-loop QCD amplitudes with five or more external partons or vector bosons. Here we briefly describe some very useful tools for carrying out such calculations, and summarize recent progress. ORGANIZATIONAL TOOLS The basic principle in calculating a complicated one-loop amplitude is to break it up into as many simpler, yet physical, pieces as possible. Traditional Feynman diagrams are not a good way to do this since individual diagrams are gauge-variant, and hence unphysical. Instead one should use the quantum numbers of the external particles, namely their helicities (±) and color quantum-numbers, to decompose the amplitude into color-ordered helicity subamplitudes, or sub-amplitudes for short. The helicity [1] and color [] decompositions of multi-parton tree-level amplitudes have been essential to their efficient calculation, and the same is true at one loop. The analytic properties of the one-loop sub-amplitudes namely their collinear behavior (poles) and their unitarity properties (cuts) are simpler than those of the full amplitude, yet they provide powerful constraints. They are simpler mainly because they only involve color-adjacent kinematic invariants such as (k i + k i+1 ), where

4 k i and k i+1 are adjacent momenta with respect to the color ordering. Consequently the subamplitudes themselves tend to be simple; analytic expressions for each one-loop five-parton sub-amplitude takes up less than a page [3, 4], whereas the color-summed cross-section would fill hundreds of pages. Thus one should calculate sub-amplitudes analytically, and carry out the squaring of amplitudes and the sum over colors and helicities numerically at the very end. The analytic properties of the sub-amplitudes can be exploited to simplify their calculation. Consider the constraints from perturbative unitarity. It is well known that the cuts (absorptive parts) of a loop amplitude are much easier to calculate than the full amplitude, because they are given by phase-space integrals of products of tree amplitudes [5]. The phase-space integrals can be performed to obtain integral functions with the correct cuts, omitting the need to do a dispersion integral [6]. Thus the full amplitude is easily reconstructed from the various cuts, up to additive polynomial terms (lacking branch cuts). It may be possible to determine the polynomial terms recursively using their collinear singularities (there is still a uniqueness question here). If a certain power-counting criterion holds the degree of the loop-momentum polynomial for each diagram should be two fewer than the maximum possible in gauge theory then there are actually no polynomial ambiguities and the sub-amplitudes can be completely reconstructed from the cuts [6, 7]. Supersymmetric amplitudes provide examples satisfying the criterion; infinite sequences of maximally helicity violating n-gluon supersymmetric amplitudes can be efficiently calculated via their cuts [6, 7]. Direct calculation of sub-amplitudes can also be simplified using a decomposition based on the internal (spin) quantum numbers of particles going around the loop. For example, in a one-loop n-gluon amplitude the contribution of a gluon propagating around the loop would traditionally lead to a large amount of algebra, due to the complicated non- 3

5 abelian self-interaction vertex. However, it is possible to rewrite the gluon self-interaction (using either background-field gauge [8] or a string-based approach [9]) so that the gluon in the loop looks like a scalar in the loop, plus a little bit more. One can rewrite [3], gluon = scalar 4 [fermion + scalar] + [gluon + 4 fermion + 3 scalar], (1) where all entries correspond to two-component fields circulating in the loop (gluons, Weyl fermions, complex scalars). The little bit more represented by the last two lines is supersymmetric (the contribution of 4 N = 1 chiral multiplets, and of an N = 4 super-yang-mills theory), and is calculable via its cuts. In this way the gluon computation can be traded for the easier scalar case. Recursive techniques, which were first applied at tree-level by Berends and Giele [10, 11], are now beginning to show promise at loop-level. Mahlon [1] has recently obtained two infinite sequences of one-loop n-gluon amplitudes by sewing up recursively determined off-shell tree amplitudes. 3 EXPLICIT RESULTS What are the practical consequences of these tools so far? At the one-loop five-parton level, they have been used to calculate the full set of helicity amplitudes for five external gluons [3] and for two quarks and three gluons (which are almost complete [13]). In contrast, the calculation of the four-quark one-gluon amplitudes used (of the above tools) only the sub-amplitude decomposition [4]. Here we present one of the qqggg partial amplitudes, A 5;1 (1 q, + q, 3, 4 +, 5 + ), which is 4

6 the coefficient of the color structure N c (T a 3 T a 4 T a 5 ) i ī1 for the indicated helicity assignments; particles 3,4,5 are gluons. For the gauge group SU(N c ) with n f flavors of quark and n s flavors of scalar quarks, A 5;1 can be decomposed into primitive amplitudes, from which all factors of N c,n f,n s have been extracted, as: A 5;1 (1 q, + q ;3,4 +,5 + ) = ( 1+ 1 ) Nc A L 5(1 q, + q, 3, 4 +, 5 + ) 1 N c 3 31 ASUSY 5;1 (1, +, 3, 4 +, 5 + ) ( nf + 1 ) ( A f N c N 5(1 q, + c q ;3,4 +,5 + ns n f )+ 1 ) A s N c N 5(1 q, + c q ;3,4 +,5 + ), () where A SUSY 5;1 (1, +, 3, 4 +, 5 + ) is the pure super-yang-mills amplitude for five external gluons, taken from ref. [3]. In the remaining components, the poles in ɛ in D = 4 ɛ dimensional reduction are separated out into V pieces by A x 5 = c Γ ( V x A tree 5 + if x), x = L, f, s, (3) where and c Γ = 1 Γ(1 + ɛ)γ (1 ɛ) (4π) ɛ Γ(1 ɛ), (4) A tree = i , (5) V L = 1 5 µ ɛ 5 sj,j+1 sj+,j + ln ln ɛ j= s j,j+1 j=1 s j+1,j+ s j,j π 3 ɛ ( µ ) ɛ +ln s51 s 1 3, V f = V s =0. (6) 5

7 The finite terms possess all the analytic complexity, and are given by F L = F s [ 4] [ 5] Ls s1, s 51 s 3 34 Ls s3 s 51, s 51 ( [ 4] Ls s3 1 s 51, s [ 5] Ls s s s [ 4] Ls s3 0 s 51, s [ 5] Ls s1 0, s s s 34 ( 13 3 [ 5] s ) s34 [1 ] 3 [ 5] L1 s s [ 4] s3 L1 s [4 5] L s s1 s s34 [ ] s1 [ 4] L0 s [4 5] s [ 5] L s [ 4] [4 5] 45 [ 3] [3 4] s [ 5] [4 5] 1 s [5 1] 1 13 [1 ] 3 [ 5], s s 51 ), s 51 F s = 1 3 [ 15 [ 5] [4 5] 45 ) s1 L( s [ 4] [4 5] 1 [1 ] [3 4] 45 + [ 4] ] [ 5], [1 ] [ 3] [3 4] [4 5] 1 45 L1 s1 s 34 s1 F f = 13 [4 5] L0, (7) 1 45 s 34 6

8 where the logarithms and dilogarithms (Li ) are contained in L0(r) = ln(r) 1 r, L1(r) = L0 (r)+1 1 r, L(r)= ln(r) 1 (r 1/r), (1 r) 3 Ls 0 (r 1,r ) = Li (1 r 1 )+Li (1 r )+lnr 1 ln r π 6 (1 r 1 r ), Ls 1 (r 1,r ) = Ls 0(r 1,r )+L0(r 1 )+L0(r ) (1 r 1 r ), Ls (r 1,r ) = Ls 1(r 1,r )+(L1(r 1 )+L1(r )) / (1 r 1 r ). Once the full set of qqggg helicity amplitudes are available (roughly speaking, six expressions of the above type are required), numerical programs can be constructed for NLO three-jet production at hadron colliders. There are various general formalisms available [14, 15] for combining (n + 1)-parton tree contributions and n-parton loop contributions into a NLO correction; the one of Giele, Glover, and Kosower is convenient because it is in a colorordered framework which meshes well with a color-ordered decomposition of the amplitudes. 4 FUTURE PROSPECTS Projecting into the future, it seems that recently developed tools especially the combination of unitarity, collinear singularities and recursive techniques will make the calculation of one-loop six-parton and perhaps even seven-parton amplitudes quite practical within the next couple of years. Indeed, we expect that the bottleneck in getting NLO results out will shift from the analytical to the numerical end of the process. On the analytical side, the emphasis should shift (perhaps fairly soon) to two-loop multi-parton calculations, which are needed for next-to-next-to-leading (NNLO) results, such as the NNLO correction to 7

9 e + e annihilation to 3 jets, a result which could significantly reduce the theoretical error in determining α s at the Z pole. References [1] F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Phys. Lett. B103:14 (1981); P. De Causmaeker, R. Gastmans, W. Troost and T.T. Wu, Nucl. Phys. B06:53 (198); R. Kleiss and W.J. Stirling, Nucl. Phys. B6:35 (1985); J.F. Gunion and Z. Kunszt, Phys. Lett. B161:333 (1985); R. Gastmans and T.T. Wu, The Ubiquitous Photon: Helicity Method for QED and QCD (Clarendon Press, 1990); Z. Xu, D.-H. Zhang and L. Chang, Nucl. Phys. B91:39 (1987). [] J.E. Paton and H.M. Chan, Nucl. Phys. B10:516 (1969); F.A. Berends and W.T. Giele, Nucl. Phys. B94:700 (1987); M. Mangano, Nucl. Phys. B309:461 (1988). [3] Z. Bern, L. Dixon and D.A. Kosower, Phys. Rev. Lett. 70:677 (1993). [4] Z. Kunszt, A. Signer and Z. Trócsányi, preprint ETH-TH/94-14, hep-ph/ [5] L.D. Landau, Nucl. Phys. 13:181 (1959); S. Mandelstam, Phys. Rev. 11:1344 (1958), 115:1741 (1959); R.E. Cutkosky, J. Math. Phys. 1:49 (1960). [6] Z. Bern, D.C. Dunbar, L. Dixon and D.A. Kosower, preprint SLAC-PUB-6415, hepph/94036, to appear in Nucl. Phys. B. [7] Z. Bern, D.C. Dunbar, L. Dixon and D.A. Kosower, preprint SLAC-PUB [8] G. t Hooft, in Functional and Probabilistic Methods in Quantum Field Theory, Vol. 1 (1975); B.S. DeWitt, in Quantum gravity II, eds. C. Isham, R. Penrose and D. Sciama 8

10 (Oxford, 1981); L.F. Abbott, Nucl. Phys. B185:189 (1981); L.F. Abbott, M.T. Grisaru and R.K. Schaefer, Nucl. Phys. B9:37 (1983). [9] Z. Bern and D.A. Kosower, Phys. Rev. Lett. 66:1669 (1991); Nucl. Phys. B379:451 (199); Z. Bern and D.C. Dunbar, Nucl. Phys. B379:56 (199). [10] F.A. Berends and W.T. Giele, Nucl. Phys. B306:759 (1988). [11] D.A. Kosower, Nucl. Phys. B335:3 (1990). [1] G.D. Mahlon, Phys. Rev. D49:4438 (1994). [13] Z. Bern, L. Dixon and D.A. Kosower, in preparation. [14] Z. Kunszt and D. Soper, Phys. Rev. D46:19 (199); Z. Kunszt, A. Signer and Z. Trócsányi, Nucl. Phys. B40:550 (1994). [15] W.T. Giele and E.W.N. Glover, Phys. Rev. D46:1980 (199); W.T. Giele, E.W.N. Glover and D.A. Kosower, Nucl. Phys. B403:633 (1993). 9

One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits

One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits SLAC PUB 6409 UCLA/TEP/93/51 hep-ph/9312333 December, 1993 (T) One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits Zvi Bern and Gordon Chalmers Department of Physics University

More information

arxiv:hep-ph/ v1 26 May 1994

arxiv:hep-ph/ v1 26 May 1994 ETH-TH/94-4 KLTE-DTP/94-3 May 5, 994 arxiv:hep-ph/9405386v 6 May 994 One-loop radiative corrections to the helicity amplitudes of QCD processes involving four quarks and one gluon Zoltan Kunszt a, Adrian

More information

Beyond Feynman Diagrams Lecture 2. Lance Dixon Academic Training Lectures CERN April 24-26, 2013

Beyond Feynman Diagrams Lecture 2. Lance Dixon Academic Training Lectures CERN April 24-26, 2013 Beyond Feynman Diagrams Lecture 2 Lance Dixon Academic Training Lectures CERN April 24-26, 2013 Modern methods for trees 1. Color organization (briefly) 2. Spinor variables 3. Simple examples 4. Factorization

More information

Coefficients of one-loop integral

Coefficients of one-loop integral functions by recursion International Workshop: From Twistors to Amplitudes 1 Niels Emil Jannik Bjerrum-Bohr together with Zvi Bern, David Dunbar and Harald Ita Motivation The LHC collider at CERN is approaching

More information

Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations

Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations 2005 International Linear Collider Workshop - Stanford, U.S.A. Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations Lance J. Dixon SLAC, Stanford, CA 94025, USA I briefly review how on-shell

More information

Loop Amplitudes from MHV Diagrams

Loop Amplitudes from MHV Diagrams Loop Amplitudes from MHV Diagrams Gabriele Travaglini Queen Mary, University of London Brandhuber, Spence, GT hep-th/0407214 Bedford, Brandhuber, Spence, GT hep-th/0410280, 0412108 Andreas talk: hep-th/0510253

More information

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

N = 4 SYM and new insights into

N = 4 SYM and new insights into N = 4 SYM and new insights into QCD tree-level amplitudes N = 4 SUSY and QCD workshop LPTHE, Jussieu, Paris Dec 12, 2008 Henrik Johansson, UCLA Bern, Carrasco, HJ, Kosower arxiv:0705.1864 [hep-th] Bern,

More information

Higher Order QCD Lecture 1

Higher Order QCD Lecture 1 Higher Order QCD Lecture 1 Lance Dixon, SLAC SLAC Summer Institute The Next Frontier: Exploring with the LHC July 20, 2006 Lecture 1 Outline 1. Levels of approximation 2. Modern color and helicity organization

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1 e + e 3j at NNLO: Results for all QED-type Colour Factors Thomas Gehrmann Universität ürich UNIVERSITAS TURICENSIS MDCCC XXXIII in collaboration with A. Gehrmann De Ridder, E.W.N. Glover, G. Heinrich Loopfest

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

arxiv:hep-th/ v2 20 Dec 1995

arxiv:hep-th/ v2 20 Dec 1995 hep-th/9512084 SWAT-95-59 November 1995 arxiv:hep-th/9512084v2 20 Dec 1995 Infinities within Graviton Scattering Amplitudes David C. Dunbar and Paul S. Norridge Department of Physics University of Wales,

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Scattering amplitudes and AdS/CFT

Scattering amplitudes and AdS/CFT Scattering amplitudes and AdS/CFT Cristian Vergu Brown University BOX 1843 Providence, RI 02912 1 Introduction and notation Scattering amplitudes in the maximally supersymmetric N = 4 gauge theory are

More information

Towards One-Loop MHV Techniques

Towards One-Loop MHV Techniques Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005 Carola F. Berger, SLAC Snowmass - August 22, 2005 Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Analytic 2-loop Form factor in N=4 SYM

Analytic 2-loop Form factor in N=4 SYM Analytic 2-loop Form factor in N=4 SYM Gang Yang University of Hamburg Nordic String Theory Meeting Feb 20-21, 2012, NBI Based on the work Brandhuber, Travaglini, GY 1201.4170 [hep-th] Brandhuber, Gurdogan,

More information

Helicity conservation in Born-Infeld theory

Helicity conservation in Born-Infeld theory Helicity conservation in Born-Infeld theory A.A.Rosly and K.G.Selivanov ITEP, Moscow, 117218, B.Cheryomushkinskaya 25 Abstract We prove that the helicity is preserved in the scattering of photons in the

More information

arxiv:hep-ph/ v1 9 Jun 1997

arxiv:hep-ph/ v1 9 Jun 1997 DTP/97/44 RAL TR 97-027 hep-ph/9706297 arxiv:hep-ph/9706297v1 9 Jun 1997 The One-loop QCD Corrections for γ q qgg J. M. Campbell, E. W. N. Glover Physics Department, University of Durham, Durham DH1 3LE,

More information

A New Identity for Gauge Theory Amplitudes

A New Identity for Gauge Theory Amplitudes A New Identity for Gauge Theory Amplitudes Hidden Structures workshop, NBI Sept 10, 2008 Henrik Johansson, UCLA Z. Bern, J.J. Carrasco, HJ arxive:0805 :0805.3993 [hep-ph[ hep-ph] Z. Bern, J.J. Carrasco,

More information

Vector boson + jets at NLO vs. LHC data

Vector boson + jets at NLO vs. LHC data Vector boson + jets at NLO vs. LHC data Lance Dixon (SLAC) for the BlackHat collaboration Z. Bern, LD, G. Diana, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maître, K. Ozeren LHC Theory Workshop

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

Progress on Color-Dual Loop Amplitudes

Progress on Color-Dual Loop Amplitudes Progress on Color-Dual Loop Amplitudes Henrik Johansson IPhT Saclay Sept 28, 2011 INT: Frontiers in QCD U. of Washington 1106.4711 [hep-th], 1107.1935 [hep-th], (and ongoing work) Zvi Bern, Camille Boucher-Veronneau,

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity

Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity University of North Carolina at Chapel Hill Niels Emil Jannik Bjerrum-Bohr Includes work in collaboration with Z. Bern, D.C. Dunbar, H. Ita,

More information

Precision Phenomenology and Collider Physics p.1

Precision Phenomenology and Collider Physics p.1 Precision Phenomenology and Collider Physics Nigel Glover IPPP, University of Durham Computer algebra and particle physics, DESY Zeuthen, April 4, 2005 Precision Phenomenology and Collider Physics p.1

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

Twistors and Unitarity

Twistors and Unitarity Twistors and Unitarity NLO six-gluon Amplitude in QCD Pierpaolo Mastrolia Institute for Theoretical Physics, University of Zürich IFAE 2006, April 19, 2006 in collaboration with: Ruth Britto and Bo Feng

More information

One-Loop Calculations with BlackHat

One-Loop Calculations with BlackHat July 2008 MIT-CTP 3963 Saclay-IPhT-T08/117 SLAC-PUB-13295 UCLA/08/TEP/21 One-Loop Calculations with BlackHat C. F. Berger a, Z. Bern b, L. J. Dixon c, F. Febres Cordero b, D. Forde c, H. Ita b, D. A. Kosower

More information

Non-Planar N =4 SYM at Four Loops and Supersum Structures

Non-Planar N =4 SYM at Four Loops and Supersum Structures Non-Planar N =4 SYM at Four Loops and Supersum Structures NBIA workshop Aug 12, 2009 Henrik Johansson UCLA & IPhT Saclay 0903.5348[hep-th]: Z.Bern, J.J.Carrasco, H.Ita, HJ, R.Roiban to appear: Z.Bern,

More information

Is N=8 Supergravity Finite?

Is N=8 Supergravity Finite? Is N=8 Supergravity Finite? Z. Bern, L.D., R. Roiban, hep-th/0611086 Z. Bern, J.J. Carrasco, L.D., H. Johansson, D. Kosower, R. Roiban, hep-th/0702112 U.C.S.B. High Energy and Gravity Seminar April 26,

More information

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops Physics Amplitudes Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops Josh Nohle [Bern, Davies, Dennen, Huang, JN - arxiv: 1303.6605] [JN - arxiv:1309.7416] [Bern, Davies, JN

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Antenna Subtraction at NNLO

Antenna Subtraction at NNLO Antenna Subtraction at NNLO Aude Gehrmann-De Ridder ETH Zürich in collaboration with T. Gehrmann, E.W.N. Glover Loopfest IV Snowmass 2005 Antenna Subtraction at NNLO p.1 Outline Jet observables Jets in

More information

TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* ABSTRACT

TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* ABSTRACT SLAC-PUB-5022 May, 1989 T TREE LEVEL CONSTRAINTS ON CONFORMAL FIELD THEORIES AND STRING MODELS* DAVID C. LEWELLEN Stanford Linear Accelerator Center Stanford University, Stanford, California 94309 ABSTRACT.*

More information

On-shell Recursion Relations of Scattering Amplitudes at Tree-level

On-shell Recursion Relations of Scattering Amplitudes at Tree-level On-shell Recursion Relations of Scattering Amplitudes at Tree-level Notes for Journal Club by Yikun Wang June 9, 206 We will introduce the on-shell recursion relations of scattering amplitudes at tree-level

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract CERN-PH-TH-2015-192 TTP15-030 Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD Fabrizio Caola, 1, Kirill Melnikov, 2, and Markus Schulze

More information

arxiv:gr-qc/ v2 20 Jul 2002

arxiv:gr-qc/ v2 20 Jul 2002 Perturbative Quantum Gravity and its Relation to Gauge Theory arxiv:gr-qc/0206071v2 20 Jul 2002 Zvi Bern Department of Physics and Astronomy University of California at Los Angeles Los Angeles, CA 90095

More information

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York

Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Introduction to High Energy Nuclear Collisions I (QCD at high gluon density) Jamal Jalilian-Marian Baruch College, City University of New York Many thanks to my colleagues, A. Deshpande, F. Gelis, B. Surrow

More information

A new look at the nonlinear sigma model 1

A new look at the nonlinear sigma model 1 1 Project in collaboration with Jiří Novotný (Prague) and Jaroslav Trnka (Caltech). Main results in [1212.5224] and [1304.3048] K. Kampf Non-linear sigma model 1/20 A new look at the nonlinear sigma model

More information

Automated Computation of Born Matrix Elements in QCD

Automated Computation of Born Matrix Elements in QCD Automated Computation of Born Matrix Elements in QCD Christopher Schwan and Daniel Götz November 4, 2011 Outline Motivation Color(-Flow) Decomposition Berends-Giele-Type Recursion Relations (Daniel Götz)

More information

Vector Boson + Jets with BlackHat and Sherpa

Vector Boson + Jets with BlackHat and Sherpa SLAC-PUB-405 UCLA/0/TEP/04 MIT-CTP 450 SB/F/380-0 IPPP/0/34 Saclay IPhT T0/??? NIKHEF-200-??? CERN-PH-TH/200-??? ector Boson + Jets with BlackHat and Sherpa C. F. Berger a, Z. Bern b, L. J. Dixon c, F.

More information

Understanding Parton Showers

Understanding Parton Showers Understanding Parton Showers Zoltán Nagy DESY in collaboration with Dave Soper Introduction Pile-up events 7 vertices 2009 single vertex reconstructed! 2011 2010 4 vertices 25 vertices 2012 Introduction

More information

! s. and QCD tests at hadron colliders. world summary of! s newest results (selection)! s from hadron colliders remarks

! s. and QCD tests at hadron colliders. world summary of! s newest results (selection)! s from hadron colliders remarks ! s and QCD tests at hadron colliders world summary of! s newest results (selection)! s from hadron colliders remarks S. Bethke MPI für Physik, Munich S. Bethke: a s and QCD tests at hadron colliders Collider

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes Andrew Hodges Wadham College, University of Oxford London Mathematical Society Durham Symposium on Twistors, Strings and Scattering Amplitudes, 20

More information

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

arxiv:hep-th/ v2 30 Jan 2007

arxiv:hep-th/ v2 30 Jan 2007 hep-th/0701187 QMUL-PH-07-02 Recursion Relations for One-Loop Gravity Amplitudes arxiv:hep-th/0701187v2 30 Jan 2007 Andreas Brandhuber, Simon McNamara, Bill Spence and Gabriele Travaglini 1 Centre for

More information

Modern Approaches to Scattering Amplitudes

Modern Approaches to Scattering Amplitudes Ph.D. Workshop, 10 October 2017 Outline Scattering Amplitudes 1 Scattering Amplitudes Introduction The Standard Method 2 On-Shell vs Off-Shell On-Shell building blocks BCFW Recursion Relations 3 Amplitudes

More information

Generalized Background-Field Method

Generalized Background-Field Method Generalized Background-Field Method Y.J. Feng and C.S. Lam Department of Physics, McGill University, 600 University St., Montreal, P.Q., Canada HA 2T8 arxiv:hep-ph/970628v Jun 997 Abstract The graphical

More information

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c Complete electroweak corrections to e + e 3 jets C.M. Carloni Calame INFN & University of Southampton Workshop LC08: e + e Physics at TeV scale September 22-25, 2008 in collaboration with S. Moretti, F.

More information

A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity. Continuous Advances in QCD 2006 Zvi Bern, UCLA

A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity. Continuous Advances in QCD 2006 Zvi Bern, UCLA A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity Continuous Advances in QCD 2006 Zvi Bern, UCLA 1 1 Outline A method is more important that a discovery, since the right method can lead to

More information

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program

An Introduction to. Michael E. Peskin. Stanford Linear Accelerator Center. Daniel V. Schroeder. Weber State University. Advanced Book Program An Introduction to Quantum Field Theory Michael E. Peskin Stanford Linear Accelerator Center Daniel V. Schroeder Weber State University 4B Advanced Book Program TT Addison-Wesley Publishing Company Reading,

More information

Higher Order QCD Lecture 2

Higher Order QCD Lecture 2 Higher Order QCD Lecture 2 Lance Dixon, SLAC SLAC Summer Institute The Next Frontier: Exploring with the LHC July 21, 2006 Lecture 2 Outline NLO NNLO L. Dixon, 7/21/06 Higher Order QCD: Lect. 2 2 What

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Scattering Amplitudes

Scattering Amplitudes Scattering Amplitudes LECTURE 1 Jaroslav Trnka Center for Quantum Mathematics and Physics (QMAP), UC Davis ICTP Summer School, June 2017 Particle experiments: our probe to fundamental laws of Nature Theorist

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Introduction and motivation: QCD and modern high-energy physics

More information

Progress on Color-Dual Loop Amplitudes

Progress on Color-Dual Loop Amplitudes Progress on Color-Dual Loop Amplitudes Henrik Johansson IPhT Saclay Nov 11, 2011 Amplitudes 2011 U. of Michigan 1004.0476, 1106.4711 [hep-th] (and ongoing work) Zvi Bern, John Joseph Carrasco, HJ Outline

More information

Recent developments on Perturbative QCD (Part I)

Recent developments on Perturbative QCD (Part I) Recent developments on Perturbative QCD (Part I) Jianwei Qiu Iowa State University/Argonne National Laboratory 威海高能物理前沿暑期论坛 (Weihai Summer Topic Seminar On the Frontiers of High Energy Physics) 山东大学 -

More information

arxiv:hep-th/ v1 21 May 1996

arxiv:hep-th/ v1 21 May 1996 ITP-SB-96-24 BRX-TH-395 USITP-96-07 hep-th/xxyyzzz arxiv:hep-th/960549v 2 May 996 Effective Kähler Potentials M.T. Grisaru Physics Department Brandeis University Waltham, MA 02254, USA M. Roče and R. von

More information

arxiv:hep-ph/ v1 25 Sep 2002

arxiv:hep-ph/ v1 25 Sep 2002 hep-ph/0209302 Direct Higgs production at hadron colliders arxiv:hep-ph/0209302v1 25 Sep 2002 Massimiliano Grazzini (a,b) (a) Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence,

More information

Quantising Gravitational Instantons

Quantising Gravitational Instantons Quantising Gravitational Instantons Kirill Krasnov (Nottingham) GARYFEST: Gravitation, Solitons and Symmetries MARCH 22, 2017 - MARCH 24, 2017 Laboratoire de Mathématiques et Physique Théorique Tours This

More information

Color-Kinematics Duality for QCD Amplitudes

Color-Kinematics Duality for QCD Amplitudes Color-Kinematics Duality for QCD Amplitudes 3 4 5 6 2 1 Henrik Johansson Uppsala U. & Nordita Nov. 26, 2015 DESY Zeuthen work with Alexander Ochirov arxiv: 1407.4772, 1507.00332 ! Motivation & review:

More information

Recursive Calculation of One-Loop QCD Integral Coefficients

Recursive Calculation of One-Loop QCD Integral Coefficients Preprint typeset in JHEP style - HYPER VERSION hep-ph/0507019 UCLA-TEP-/05/19 SWAT-05-434 Recursive Calculation of One-Loop QCD Integral Coefficients arxiv:hep-ph/0507019v3 19 Feb 2006 Zvi Bern Department

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

from D0 collaboration, hep-ex/

from D0 collaboration, hep-ex/ At present at the Tevatron is extracted from the transverse-mass distribution Events / GeV/c 2 2000 1500 1000 500 Fit region 0 50 60 70 80 90 100 110 120 from D0 collaboration, hep-ex/0007044 Transverse

More information

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy Jets in pp at NNLO João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova HP.5-5 September 014 Florence, Italy based on: Second order QCD corrections to gluonic jet production

More information

Measurement of photon production cross sections also in association with jets with the ATLAS detector

Measurement of photon production cross sections also in association with jets with the ATLAS detector Nuclear and Particle Physics Proceedings 00 (07) 6 Nuclear and Particle Physics Proceedings Measurement of photon production cross sections also in association with jets with the detector Sebastien Prince

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

In this paper the uncertainties in the NLO QCD inclusive jet calculations are explored using two available programs: Jetrad [4] a complete O( S3 ) eve

In this paper the uncertainties in the NLO QCD inclusive jet calculations are explored using two available programs: Jetrad [4] a complete O( S3 ) eve An Investigation of Uncertainties in the QCD NLO Predictions of the Inclusive Jet Cross Section in pp Collisions at p s =.8 TeV and 630 GeV B. Abbott, 5 I.A. Bertram, 6 M. Bhattacharjee, 7 G. Di Loreto,

More information

PoS(Confinement X)133

PoS(Confinement X)133 Endpoint Logarithms in e + e J/ψ + η c Geoffrey T. Bodwin HEP Division, Argonne National Laboratory E-mail: gtb@hep.anl.gov Department of Physics, Korea University E-mail: neville@korea.ac.kr Jungil Lee

More information

Automation of NLO computations using the FKS subtraction method

Automation of NLO computations using the FKS subtraction method Automation of NLO computations using the FKS subtraction method Institute for Theoretical Physics, Universität Zürich E-mail: frederix@physik.uzh.ch In this talk the FKS subtraction method for next-to-leading

More information

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua John Kehayias Department of Physics University of California, Santa Cruz SUSY 10 August 23, 2010 Bonn, Germany [1] Generalized

More information

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3

Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W W W 3 Derivation of Electro Weak Unification and Final Form of Standard Model with QCD and Gluons 1 W 1 + 2 W 2 + 3 W 3 Substitute B = cos W A + sin W Z 0 Sum over first generation particles. up down Left handed

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

The Standard Model and Beyond

The Standard Model and Beyond Paul Langacker The Standard Model and Beyond CRC PRESS Boca Raton Ann Arbor London Tokyo Contents Preface xi 1 Notation and Conventions 1 1.1 Problems............................. 5 2 Review of Perturbative

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen)

SCET for Colliders. Matthias Neubert. Cornell University. Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen) SCET for Colliders Matthias Neubert Cornell University LoopFest V, SLAC June 21, 2006 Based on work with Thomas Becher (FNAL) and Ben Pecjak (Siegen) 1 2 SCET for Colliders Introduction Overview of SCET

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

THREE-JET CALCULATION AT NLO LEVEL FOR HADRON COLLIDERS

THREE-JET CALCULATION AT NLO LEVEL FOR HADRON COLLIDERS THREE-JET CALCULATION AT NLO LEVEL FOR HADRON COLLIDERS CDF/D0/Theory Jet Workshop Fermilab, December 16, 2002 Zoltán Nagy ITS, University of Oregon Contents: Introduction, Method Results in hadron hadron

More information

Precision Jet Physics At the LHC

Precision Jet Physics At the LHC Precision Jet Physics At the LHC Matthew Schwartz Harvard University JETS AT THE LHC An (almost) universal feature of SUSY is and Source: Atlas TDR SIGNAL VS. BACKGROUND Source: Atlas TDR Can we trust

More information

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach) IPM school and workshop on recent developments in Particle Physics (IPP11) 2011, Tehran, Iran Sedigheh Deldar, University

More information

SLAC-PUB-8184 SU-ITP-99/32 hep-th/ June 30, 1999 One-loop corrections to the D3 brane action. Marina Shmakova Stanford Linear Accelerator Cente

SLAC-PUB-8184 SU-ITP-99/32 hep-th/ June 30, 1999 One-loop corrections to the D3 brane action. Marina Shmakova Stanford Linear Accelerator Cente SLA-PU-88 SU-ITP-99/3 hep-th/99639 June 3, 999 One-loop corrections to the D3 brane action. Marina Shmakova Stanford Linear Accelerator enter, Stanford University, Stanford, A 939; University of Tennessee,

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders

Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders 1 Bound-State Effects on Kinematical Distributions of Top-Quarks at Hadron Colliders Hiroshi YOKOYA (CERN-Japan Fellow) based on arxiv:1007.0075 in collaboration with Y. Sumino (Tohoku univ.) 2 Outline

More information

A shower algorithm based on the dipole formalism. Stefan Weinzierl

A shower algorithm based on the dipole formalism. Stefan Weinzierl A shower algorithm based on the dipole formalism Stefan Weinzierl Universität Mainz in collaboration with M. Dinsdale and M. Ternick Introduction: I.: II: III: Event generators and perturbative calculations

More information

Oddelek za fiziko. Top quark physics. Seminar. Author: Tina Šfiligoj. Mentor: prof. dr. Svjetlana Fajfer. Ljubljana, february 2012

Oddelek za fiziko. Top quark physics. Seminar. Author: Tina Šfiligoj. Mentor: prof. dr. Svjetlana Fajfer. Ljubljana, february 2012 Oddelek za fiziko Top quark physics Seminar Author: Tina Šfiligoj Mentor: prof. dr. Svjetlana Fajfer Ljubljana, february 2012 Abstract Top quark physics is a very active area in particle physics as it

More information

arxiv:hep-ph/ v1 25 Jun 1999

arxiv:hep-ph/ v1 25 Jun 1999 DESY 99 077 TTP99 29 June 1999 arxiv:hep-ph/9906503v1 25 Jun 1999 Azimuthal Asymmetries in Hadronic Final States at HERA M. Ahmed a,b and T. Gehrmann c a II. Institut für Theoretische Physik, Universität

More information

Diphoton production at LHC

Diphoton production at LHC 1 Diphoton production at LHC 120 GeV < M γγ < 140 GeV Leandro Cieri Universidad de Buenos Aires - Argentina & INFN Sezione di Firenze Rencontres de Moriond March 11, 2012 Outline Introduction Available

More information