Renormalization in the Unitarity Method

Size: px
Start display at page:

Download "Renormalization in the Unitarity Method"

Transcription

1 CEA Saclay NBI Summer Institute: Strings, Gauge Theory and the LHC August 23, 2011

2 One-loop amplitudes Events / 10 GeV tth(120) ttjj ttbb (QCD) ttbb (EW) m bb (GeV) Higgs Signal With Background (top quark associated production) NLO (Next-to-Leading-Order) Calculations provide some essential precision reduce scale dependence

3 Prioritized Wish List, Next-to-Leading Order [Les Houches Physics at TeV colliders 2007, NLO multileg working group: Summary report; updated 2009] Done [a] p p t t b b background for t th Done [b] p p t t + 2 jets relevant for t th p p V V b b relevant for benchmark processes Done [c] p p V V + 2 jets VBF H VV Done [d] p p V + 3 jets new physics Done [e] p p b b b b Higgs and new physics p p t t t t new physics p p W b b j new physics [a]: Bredenstein, Denner, Dittmaier, Pozzorini; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek [b]: Bevilacqua, Czakon, Papadopoulos, Worek [c]: Jager, Melia, Melnikov, Nason, Rontsch, Zanderighi [d]: Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maître; Ellis, Melnikov, Zanderighi [e]: Greiner, Guffanti, Reiter, Reuter

4 2001 Experimenter s Wish List [Knuteson, Campbell] single boson diboson triboson heavy flavor W + 5j WW + 5j WWW + 3j t t + 3j Wb b + 3j WWb b + 3j WWWb b + 3j t tγ + 2j Wc c + 3j WWc c + 3j WWW γγ + 3j t tw + 2j Z + 5j ZZ + 5j Zγγ + 3j t tz + 2j Zb b + 3j ZZb b + 3j WZZ + 3j t th + 2j Zc c + 3j ZZc c + 3j ZZZ + 3j t b + 2j γ + 5j γγ + 5j b b + 3j γb b + 3j γγb b + 3j b bt t γc c + 3j γγc c + 3j WZ + 5j WZb b + 3j WZc c + 3j W γ + 3j Zγ + 3j

5 Numerical Programs for Virtual Corrections BlackHat [ Berger, Bern, Diana, Dixon, Febres Cordero, Forde, Gleisberg, Höche, Ita, Kosower, Maître, Ozeren ] CutTools/HELAC-NLO [Ossola, Papadopoulos, Pittau; Actis, Bevilacqua, Czakon, Draggiotis, Garzelli, van Hameren, Worek,...] GOLEM [ Binoth, Guillet, Heinrich, Pilon, Reiter, Schubert ] MadLoop [Hirschi, Frederix, Frixione, Garzelli, Maltonin, Pittau] NGluon [Badger, Biedermann, Uwer] Rocket [Ellis, Giele, Kunszt, Melnikov, Zanderighi] SAMURAI [Mastrolia, Ossola, Reiter, Tramontano]

6 Analytic one-loop amplitudes Completed recently: pp Higgs + 2 jets. [Badger, Berger, Campbell, Del Duca, Dixon, Ellis, Giele, Glover, Mastrolia, Risager, Sofianatos, Williams, Zanderighi] pp t t [Badger, Sattler, Yudin] 0 dūq Q ll, W -mediated. [Badger, Campbell, Ellis] gg WW νllν including SM Higgs [Campbell, Ellis, Williams] Analytic techniques may have advantages in stability and speed, extend readily to larger numbers of external particles, and have numerical counterparts.

7 Outline 1. Structure of one-loop amplitudes, and the unitarity method 2. When cuts diverge: a prescription for treating the wavefunction renormalization of external massive fermions [work with E. Mirabella, to appear soon]

8 One-Loop Amplitudes In 4-dimensional massless theories, reduction of Feynman integrals brings the one-loop amplitude to the form A = i d i (box) + i c i (triangle) + i b i (bubble) + rational where the master integrals have scalar structure and are known explicitly. [in dim. reg.: Bern, Dixon, Kosower] K2 K3 K1 K4 box triangle bubble 1 loop A c + c + c

9 One-Loop Amplitudes In D = 4 2ɛ dimensions, and allowing for internal masses, the result of reduction is A = i e i (pentagon) + i d i (box) + i c i (triangle) + i b i (bubble) + i a i (tadpole) K 3 K2 K 3 K2 K 2 K 4 K 1 K 5 K1 K4 K 1 K 3 K K 0 m 2

10 Singularities in One-Loop Amplitudes As kinematic functions, one-loop amplitudes have poles, branch cuts, and divergences. These singularities constrain the amplitude enough to bypass a Feynman diagram expansion. This is the principle of the unitarity method and its numerical cousins.

11 Amplitudes from unitarity cuts Tree level input. A 1 loop = c i I i c + c + c Matching 4-dimensional cuts can suffice to determine reduction coefficients! Logarithms with unique arguments. Cut-constructibility [Bern, Dixon, Dunbar, Kosower] But: we get several coefficients together in the same equation. How do we evaluate a unitarity cut?

12 Unitarity Cuts: Loops from Trees A 1 loop = dµ A tree Left Atree Right where dµ = d 4 l 1 d 4 l 2 δ (4) (l 1 + l 2 K) δ(l 2 1) δ(l 2 2) l l 1 By unitarity, this is the discontinuity of the amplitude across a branch cut. [Cutkosky] K

13 Cut integrals The cut integrand is a rational function of the loop momentum. A 1 loop = dµ A Left (l) A Right (l) dµ = d 4 l δ + (l 2 ) δ + ((l K) 2 ) Change to homogeneous (CP 1 ) spinor variables with Integration measure: d 4 l δ + (l 2 ) ( ) = [Cachazo, Svrček, Witten] l aȧ = t λ a λȧ. 0 dt t λ= λ λ dλ [ λ d λ] ( )

14 Spinor variables From Lorentz 4-vector to spinor indices with Pauli matrices: p aȧ = σ µ aȧ p µ a, ȧ = 1, 2 For a null vector (massless particle): 0 = p 2 = det(p aȧ ) = p aȧ = λ a λȧ. Lorentz-invariant spinor products: λ λ ɛ ab λ a λ b [ λ λ ] ɛȧḃ λȧ λ ḃ

15 Spinor integration [Anastasiou, RB, Buchbinder, Cachazo, Feng, Kunszt, Mastrolia] Change variables, l = tλ λ, and use the spinor measure, d 4 l δ(l 2 )δ((l K) 2 ) = dt t λ dλ [ λ d λ]δ((tλ λ K) 2 ) Use 2nd delta function to perform t-integral. Each term of integrand takes the form: (K 2 ) n+1 λ K λ] n+2 Evaluate with residue theorem. n+k i=1 λ R i λ] k j=1 λ Q j λ] Identify cuts of basis integrals and read off coefficients. We have given formulas for the resulting coefficients.

16 Cuts of Master Integrals I 2 = K 2 λ dλ [ λ d λ] λ K λ] 2 I 3 = λ dλ [ λ d λ] 1 λ K λ] λ Q 1 λ] I 4 = λ dλ [ λ d λ] 1 K 2 1 λ Q 1 λ] λ Q 2 λ] Q j K j + K j 2 K 2 K

17 Formulas for coefficients From a general cut integrand T (N) (l). N is the degree. Original integral: i(4π) D 2 d D l (2π) D δ(+) (l 2 ) δ (+) ((K l) 2 )T (N) (l), To define the target master integrals: D i (l) = (l K 2 i )

18 Box coefficients C[K r, K s, K] = 1 2 ( ) T (N) (l)d r (l)d s (l) + {P sr,1 P sr,2 } λ Psr,1, λ Psr,2 ( Qs Q r + sr P sr,1 = Q s + Q 2 r ( Qs Q r sr P sr,2 = Q s + Q 2 r sr = (Q s Q r ) 2 Q 2 s Q 2 r. ) Q r, ) Q r,

19 Triangle coefficients C[K s, K] = 1 2(N + 1)! s N+1 Ps,1 P s,2 N+1 d N+1 dτ N+1 +{P s,1 P s,2 } ( T (N) (l)d s (l) λ K λ] N+1 λ Qs λ,λ P s,1 τp s,2 ) τ 0 ( Qs K + s P s,1 = Q s + K 2 ( Qs K s P s,2 = Q s + K 2 s = (Q s K) 2 Q 2 s K 2. ) K, ) K,

20 Bubble coefficient B (0) N,m (s) C[K] = K 2 d N dτ N N X q=0 ( 1) q q! d q ds q B (0) N,N q (s) + kx NX r=1 a=q B (r;a q;1) N,N a (2η K) m+1 λ K λ] N N![η η K η] N (m + 1)(K 2 ) m+1 λ η N+1 T (N) (l) (s) B (r;a q;2) N,N a (s)!, s=0 λ (K+sη) λ λ (K τη ) η 1 A, τ 0 (r;b;1) n,m (s) (r;b;2) n,m (s) ( 1) b+1 b!(m + 1) r b+1 Pr,1 P r,2 b d b λ η P r,1 ] m+1 λ Q r η λ b λ K λ] N+1 dτ b λ K P r,1 ] m+1 λ ηk λ n+1 ( 1) b+1 b!(m + 1) r b+1 Pr,1 P r,2 b d b λ η P r,2 ] m+1 λ Q r η λ b λ K λ] N+1 dτ b λ K P r,2 ] m+1 λ ηk λ n+1 T (N) (l)d r (l)! λ (K+sη)λ, λ P r,1 τp r,2 τ=0 T (N) (l)d r (l)! λ (K+sη)λ, λ P r,2 τp r,1 τ=0

21 Unitarity in D = 4 2ɛ dimensions Orthogonal decomposition, keeping external momenta in 4 dimensions. [Bern, Chalmers, Mahlon, Morgan] where l 2 2ɛ = K 2 4 u. d 4 2ɛ l 4 2ɛ = (4π)ɛ Γ( ɛ) 1 0 du u 1 ɛ d 4 l 4. The integral over u will remain. The u-dependence is controlled: A = 1 0 du u 1 ɛ d 4 l δ(l 2 ) δ( 1 u K 2 2K l) Recognize and perform the 4-d integral as before. (Cf. methods by Ossola, Papadopoulos, Pittau; Forde; Ellis, Giele, Kunszt; Kilgore; Giele, Kunszt, Melnikov; Badger)

22 Massive particles Cut amplitude: 1 ( ) du u 1 ɛ λ dλ [ λ d λ] [K 2, M1 2, M2 2 ] (K 2 ) n+1 n+k j=1 λ R j λ] 0 K 2 λ K λ] n+2 k i=1 λ Q i λ] The formalism/formulas for integral coefficients have the same form.. Integral coefficients are polynomials in u. New master integrals.

23 The special massive master integrals m 2 m m m 2 m 2 These integrals have cuts only in the m 2 channel. 2 2ɛ Γ(1 + ɛ) I 1 = m ɛ(ɛ 1) I 2 (0; m 2, m 2 2ɛ Γ(1 + ɛ) ) = m ɛ I 2 (m 2 ; 0, m 2 2ɛ Γ(1 + ɛ) ) = m ɛ(1 2ɛ)

24 Tadpole approaches 1. Universal divergent behavior Examples: 4-gluon amplitude with a massive fermion loop [Bern, Morgan]. t tgg, using Mitov-Moch small-mass factorization result [Badger]. 2. Add an auxiliary propagator [RB, Feng] 3. Generalized unitarity: single cuts [RB, Mirabella] Other single cut studies: [Catani, Gleisberg, Krauss, Rodrigo, Winter; Glover, Williams; Caron-Huot]

25 Divergent cuts Try to apply (generalized) unitary cuts to the special massive master integrals Single cut of tadpole, and cut of massless on-shell bubble diverge, due to internal on-shell propagators Single cut can be regularized specially for the tadpole. Double cut of bubble involves adding the counterterms explicitly.

26 Masses, fermions and unitarity [EGKM] [Ellis, Giele, Kunszt, Melnikov (2008)] Isolate and remove the divergent diagrams Implicit use of counterterm Feynman-diagram decomposition is gauge dependent Embedded in a numerical algorithm

27 Our proposal [RB, Mirabella (to appear)] Use an off-shell continuation of the fermion mass. The cut is finite until we take the on-shell limit. Power series expansion in the off-shell parameter In the on-shell limit, divergences are guaranteed to cancel: keep only finite terms Explicit use of counterterms. Gauge dependence enters only in tree level currents. Clean analytic results

28 Off-shell continuation Momentum-conserving shift: k ˆk = k + ξ k, r ˆr = r ξ k. Propagator of interest: k 2 m 2 ξ(2k k) Can choose k = r for some null external momentum r, so it stays on shell: ˆr 2 = r 2 = 0. Cut diverges as 1/ξ.

29 Reduction of the shifted divergent diagram A L = 1 ( ) ˆk 2 m 2 ūˆk l /ε l (m + /ˆk) Jˆ, A 3 = ū k /ε l uˆk l For internal helicity sum, use Feynman gauge as in EGKM: ( εν) λ = gµν λ=± ε λ µ

30 Reduction of the shifted divergent diagram Simple reduction of linear bubble gives A 3 A L 1 ξ(2k k) (4m2 ū k ˆ J + 2ξm ū k /k ˆ J ) B 0 (ˆk 2 ). Also expand off-shell current and scalar bubble to 1st order: Result: 1 4m 2 ū k J B 0 ξ (2k k) ˆ J = J + ξj B 0 (ˆk 2 ) = B 0 (m 2 ) + ξ(2k k)b 0(m 2 ) + 4m2 (2k k) ū k J B 0 + 4m2 ū k J B 0 + 2m ū k /kj B0 (2k k).

31 Reduction: tadpole part Similar, except gluon polarization sum propagator, ig µν /l 2. Result: [( 2 ξ(2k k) 1 ) m 2 ū k J + 1 (2k k)m ūk / k J + ] 2 J (2k k)ūk A 0.

32 Counterterm 1 ξ(2k k)ūk ) (/kδz ψ + ξ/ kδzψ mδz ψ mδz m (/k + ξ/ k + m) Ĵ Renormalization constants in on-shell scheme: δz m = A 0 m 2 + 2B 0, δz ψ = A 0 m 2 4m2 B 0. Verify total cancellation of divergent diagram.

33 Small examples with Feynman Diagrams H b b 3 loop diagrams + 2 counterterm diagrams q q t t 12 loop diagrams + 2 counterterm diagrams 1. Implemented momentum shift 2. Computed bubble and tadpole coefficients from unitarity cut 3. Checked cancellation of divergences against counterterm and agreement of finite result with Passarino-Veltman reduction.

34 The fermion-channel cut in the spinor-helicity formalism The spinor-helicity convention for the polarization vectors requires axial gauge: ε (p) = 2 p [q + q] p, ε + (p) = 2 [qp] p] q + q [p. qp The completeness relation is λ=± ( ) ε λ µ(p) ε λ ν(p) = gµν + p µq ν + q µ p ν p q Cf. Feynman gauge, where the 2nd term is absent. Specific gauge choice = choice of q for each p..

35 Additional counterterm in axial gauge, for spinors The double cut gets an extra O(ξ 0 ) contribution: ( ) ( 1 ū k /l uˆk l ūˆk l /q (m + ˆ/k) ) Jˆ ξ(2k k) dµ 2,k q l ( ) ( ū k /q uˆk l ūˆk l / l (m + ˆ/k) ) Jˆ +. q l Second term vanishes by Ward identity with cut gluon. First term is cancelled by a new (non-divergent) counterterm: M k = 1 [ ] ū k ( /k m) 2k k ˆ/k/q δz k (ˆ/k + m) J ˆ, δz k = B 0 q k

36 Example from t t gg amplitude Full analytic result computed previously by other methods. [Körner, Merabashvili; Badger, Sattler, Yundin] Color decomposition 3-point tree 5-point tree for m 2 on-shell bubbles Checked cancellation of divergence and evaluated on-shell bubble coefficient, for equal-helicity gluons

37 On-shell recursion for off-shell currents Finite parts of the counterterm need off-shell Ĵ explicitly, not the gauge-invariant A L A R. The current Ĵ depends on gauge choices of external gluons these cancel among counterterms. Generate Ĵ by BCFW-type relations, starting purely from 3-point vertices with the polarizations ε (p) = 2 p [q + q] p, ε + (p) = 2 [qp] p] q + q [p. qp BCFW shifts available for any pair of massless quarks/gluons.

38 On-shell recursion for off-shell currents Example: J = ˆ4 [q 4 + q 4 ] ˆ4 [q 4 4] (p 2 p 3 + m) 2p 2 p 3 3 [4 + 4] 3 [ 4ˆ3 ] u 2 = p [q 4 2] + m q 4 ] 43 [42] + (m 2 p ) q 4] 32] 2p 2 p 3 [34] [q 4 4]

39 Summary Unitarity method at one loop constructs amplitudes from branch cuts, using the fact of the expansion in known master integrals. Residue theorem gives analytic formulas for coefficients of most master integrals. Massive particles require an expanded set of master integrals. Challenge for the unitarity method. Tadpole techniques still merit further study; On-shell bubbles via unitarity cuts are available from an off-shell continuation and 1-term Taylor expansion. Must check efficiency.

Discontinuities of Feynman Integrals

Discontinuities of Feynman Integrals CEA Saclay Brown University, Twelfth Workshop on Non-Perturbative Quantum Chromodynamics June 10, 2013 Outline Landau and Cutkosky Classic unitarity cuts I I I Dispersion relations Modern unitarity method,

More information

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

Automation of Multi-leg One-loop virtual Amplitudes

Automation of Multi-leg One-loop virtual Amplitudes Automation of Multi-leg One-loop virtual Amplitudes Institute for Particle Physics Phenomenology University of Durham Science Laboratories South Rd DURHAM DH1 3LE, UK E-mail: daniel.maitre@durham.ac.uk

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

W + W + jet compact analytic results

W + W + jet compact analytic results W + W + jet compact analytic results Tania Robens. based on. J. Campbell, D. Miller, TR (arxiv:1506.xxxxx) IKTP, TU Dresden 2015 Radcor-Loopfest UCLA, Los Angeles, California WW + jet: Motivation from

More information

Recent Advances in NLO QCD for the LHC Seattle, Institute for Nuclear Theory Sept 27, 2011 Zvi Bern, UCLA, on behalf of BlackHat

Recent Advances in NLO QCD for the LHC Seattle, Institute for Nuclear Theory Sept 27, 2011 Zvi Bern, UCLA, on behalf of BlackHat Recent Advances in NLO QCD for the LHC Seattle, Institute for Nuclear Theory Sept 27, 2011 Zvi Bern, UCLA, on behalf of BlackHat BlackHat Collaboration current members: ZB, L. Dixon, F. Febres Cordero,

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

Automatic calculation of one-loop amplitudes

Automatic calculation of one-loop amplitudes The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego, - Krakow, Poland E-mail: hameren@if.edu.pl C.G. Papadopoulos Institute of Nuclear Physics, NCSR Demokritos,

More information

W + W Production with Many Jets at the LHC

W + W Production with Many Jets at the LHC W + W Production with Many Jets at the LHC NLO QCD with BlackHat+Sherpa Fernando Febres Cordero Department of Physics, University of Freiburg Radcor-Loopfest 2015, UCLA June 2015 With Philipp Hofmann and

More information

Automation of One-Loop Calculations with Golem/Samurai

Automation of One-Loop Calculations with Golem/Samurai Automation of One-Loop Calculations with Golem/Samurai Giovanni Ossola New York City College of Technology City University of New York (CUNY) In collaboration with: G. Cullen, N. Greiner, G. Heinrich,

More information

Higher Order Calculations

Higher Order Calculations Higher Order Calculations Zoltan Kunszt, ETH, Zurich QCD at the LHC St Andrews, Scotland, August 23, 2011 C The predictions of the SM for LHC are given in perturbation theory in the QCD improved standard

More information

Twistors and Unitarity

Twistors and Unitarity Twistors and Unitarity NLO six-gluon Amplitude in QCD Pierpaolo Mastrolia Institute for Theoretical Physics, University of Zürich IFAE 2006, April 19, 2006 in collaboration with: Ruth Britto and Bo Feng

More information

Recent developments in automated NLO calculations

Recent developments in automated NLO calculations Recent developments in automated NLO calculations Giuseppe Bevilacqua NCSR Demokritos, Athens Workshop on Standard Model and Beyond and Standard Cosmology Corfu - August 31, 2009 In collaboration with

More information

Vector boson + jets at NLO vs. LHC data

Vector boson + jets at NLO vs. LHC data Vector boson + jets at NLO vs. LHC data Lance Dixon (SLAC) for the BlackHat collaboration Z. Bern, LD, G. Diana, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maître, K. Ozeren LHC Theory Workshop

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

GoSam: automated multi-process scattering amplitudes at one loop

GoSam: automated multi-process scattering amplitudes at one loop GoSam: automated multi-process scattering amplitudes at one loop Gionata Luisoni luisonig@mpp.mpg.de Max Planck Institute for Physics Munich In collaboration with: G.Cullen, N. Greiner, G.Heinrich, P.Mastrolia,

More information

Vector Boson + Jets with BlackHat and Sherpa

Vector Boson + Jets with BlackHat and Sherpa SLAC-PUB-405 UCLA/0/TEP/04 MIT-CTP 450 SB/F/380-0 IPPP/0/34 Saclay IPhT T0/??? NIKHEF-200-??? CERN-PH-TH/200-??? ector Boson + Jets with BlackHat and Sherpa C. F. Berger a, Z. Bern b, L. J. Dixon c, F.

More information

Higher Order QCD for the LHC SLAC Summer Institute SLAC, June 25, 2012 Zvi Bern, UCLA

Higher Order QCD for the LHC SLAC Summer Institute SLAC, June 25, 2012 Zvi Bern, UCLA Higher Order QCD for the LHC SLAC Summer Institute SLAC, June 25, 2012 Zvi Bern, UCLA q g W e º q 0 g g g g ¹q W q 0 1 Outline Some new developments in QCD for understanding LHC physics. Examples of QCD

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Theoretical Predictions For Top Quark Pair Production At NLO QCD Theoretical Predictions For Top Quark Pair Production At NLO QCD Malgorzata Worek Wuppertal Uni. HP2: High Precision for Hard Processes, 4-7 September 2012, MPI, Munich 1 Motivations Successful running

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

A semi-numerical approach to one-loop multi-leg amplitudes p.1

A semi-numerical approach to one-loop multi-leg amplitudes p.1 A semi-numerical approach to one-loop multi-leg amplitudes Gudrun Heinrich Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII LoopFest V, SLAC, 21.06.06 A semi-numerical approach to one-loop multi-leg

More information

The Standar Model of Particle Physics Lecture IV

The Standar Model of Particle Physics Lecture IV The Standar Model of Particle Physics Lecture IV The Standard Model in the LHC hera Laura Reina Maria Laach School, Bautzen, September 2011 Outline of Lecture IV Standard Model processes as background

More information

One-Loop Calculations with BlackHat

One-Loop Calculations with BlackHat July 2008 MIT-CTP 3963 Saclay-IPhT-T08/117 SLAC-PUB-13295 UCLA/08/TEP/21 One-Loop Calculations with BlackHat C. F. Berger a, Z. Bern b, L. J. Dixon c, F. Febres Cordero b, D. Forde c, H. Ita b, D. A. Kosower

More information

Coefficients of one-loop integral

Coefficients of one-loop integral functions by recursion International Workshop: From Twistors to Amplitudes 1 Niels Emil Jannik Bjerrum-Bohr together with Zvi Bern, David Dunbar and Harald Ita Motivation The LHC collider at CERN is approaching

More information

Modern Feynman Diagrammatic One-Loop Calculations

Modern Feynman Diagrammatic One-Loop Calculations Modern Feynman Diagrammatic One-Loop Calculations G. Cullen, a N. Greiner, b A. Guffanti, c J.P. Guillet, d G. Heinrich, e S. Karg, f N. Kauer, g T. Kleinschmidt, e M. Koch-Janusz, h G. Luisoni, e P. Mastrolia,

More information

Automation of NLO computations using the FKS subtraction method

Automation of NLO computations using the FKS subtraction method Automation of NLO computations using the FKS subtraction method Institute for Theoretical Physics, Universität Zürich E-mail: frederix@physik.uzh.ch In this talk the FKS subtraction method for next-to-leading

More information

Reduction at the integrand level beyond NLO

Reduction at the integrand level beyond NLO Reduction at the integrand level beyond NLO Costas G. Papadopoulos NCSR Demokritos, Athens, Greece & CERN, Geneva, Switzerland Corfu 2012, September 15, 2012 Costas G. Papadopoulos (NCSR-D & CERN) NNLO

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

Next-to-leading order multi-leg processes for the Large Hadron Collider

Next-to-leading order multi-leg processes for the Large Hadron Collider Next-to-leading order multi-leg processes for the Large Hadron Collider, Thomas Reiter School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK. E-mail: binoth@ph.ed.ac.uk,thomas.reiter@ed.ac.uk

More information

Developments on SM Higgs-boson cross sections and branching ratios

Developments on SM Higgs-boson cross sections and branching ratios Developments on SM Higgs-boson cross sections and branching ratios Laura Reina Higgs Hunting, Orsay, France Outline Living through the most exciting time for Higgs physics: crucial to have access to the

More information

Automated NLO calculations with GoSam

Automated NLO calculations with GoSam Automated NLO calculations with GoSam Gionata Luisoni gionata.luisoni@durham.ac.uk Institute for Particle Physics Phenomenology University of Durham Max-Planck-Institut für Physik München In collaboration

More information

MHV Vertices and On-Shell Recursion Relations

MHV Vertices and On-Shell Recursion Relations 0-0 MHV Vertices and On-Shell Recursion Relations Peter Svrček Stanford University/SLAC QCD 2006 May 12th 2006 In December 2003, Witten proposed a string theory in twistor space dual to perturbative gauge

More information

Physics at the LHC. Status and Perspectives E.E.Boos SINP MSU

Physics at the LHC. Status and Perspectives E.E.Boos SINP MSU Physics at the LHC. Status and Perspectives E.E.Boos SINP MSU Theorist Experimentalist What did we know before the LHC start? Whether or not the LHC energy scale is an appropriate one? What one can say

More information

Weak boson scattering at the LHC

Weak boson scattering at the LHC Weak boson scattering at the LHC RADCOR 2009 Barbara Jäger University of Würzburg outline weak boson fusion at the LHC: Higgs production at high precision V V jj production @ NLO QCD strongly interacting

More information

Precision Phenomenology and Collider Physics p.1

Precision Phenomenology and Collider Physics p.1 Precision Phenomenology and Collider Physics Nigel Glover IPPP, University of Durham Computer algebra and particle physics, DESY Zeuthen, April 4, 2005 Precision Phenomenology and Collider Physics p.1

More information

Perturbative QCD and NLO Monte Carlo Simulations TASI John Campbell MS 106, PO Box 500 Fermilab, Batavia IL

Perturbative QCD and NLO Monte Carlo Simulations TASI John Campbell MS 106, PO Box 500 Fermilab, Batavia IL Perturbative QCD and NLO Monte Carlo Simulations TASI 2011 John Campbell MS 106, PO Box 500 Fermilab, Batavia IL 60510 June 10, 2011 Abstract This is a set of notes for lectures which I am giving at TASI2011,

More information

Higher Order QCD Lecture 2

Higher Order QCD Lecture 2 Higher Order QCD Lecture 2 Lance Dixon, SLAC SLAC Summer Institute The Next Frontier: Exploring with the LHC July 21, 2006 Lecture 2 Outline NLO NNLO L. Dixon, 7/21/06 Higher Order QCD: Lect. 2 2 What

More information

Higgs boson signal and background in MCFM

Higgs boson signal and background in MCFM Higgs boson signal and background in MCFM Zurich, January 11, 2012 Keith Ellis, Fermilab John Campbell, RKE and Ciaran Williams arxiv:1105.0020, 1107.5569 [hep-ph] MCFM MCFM is a unified approach to NLO

More information

Towards Jet Cross Sections at NNLO

Towards Jet Cross Sections at NNLO Towards Jet Cross Sections at HP.4, September, MPI Munich Expectations at LHC Large production rates for Standard Model processes single jet inclusive and differential di-jet cross section will be measured

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

arxiv: v1 [hep-ph] 26 Nov 2017

arxiv: v1 [hep-ph] 26 Nov 2017 Recent Developments in Higher-Order Calculations: Hard Functions at NLO with GoSam arxiv:1711.09462v1 [hep-ph] 26 Nov 2017 Alessandro Broggio a alessandro.broggio@tum.de Andrea Ferroglia b,c aferroglia@citytech.cuny.edu

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

Interpreting Collider Data

Interpreting Collider Data Interpreting Collider Data Laura Reina (FSU) APS Meeting, Anaheim, April, 30 20 Prologue Progress in Particle Physics has been mainly theory driven for the past few decades. Based on first principles,

More information

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1 e + e 3j at NNLO: Results for all QED-type Colour Factors Thomas Gehrmann Universität ürich UNIVERSITAS TURICENSIS MDCCC XXXIII in collaboration with A. Gehrmann De Ridder, E.W.N. Glover, G. Heinrich Loopfest

More information

Standard Model Theory for collider physics

Standard Model Theory for collider physics Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland E-mail: babis@phys.ethz.ch In this talk we review some of the latest theoretical developments in Standard Model collider physics.

More information

Theory Summary of the SM and NLO Multi-leg WG

Theory Summary of the SM and NLO Multi-leg WG Theory Summary of the SM and NLO Multi-leg WG Departamento de Física Teórica y del Cosmos Universidad de Granada Les Houches June 17th 2009 Theory Summary of the SM and NLO Multi-leg WG Departamento de

More information

Universality in W+Multijet Production

Universality in W+Multijet Production Universality in W+Multijet Production Z. Bern, L. J. Dixon, F. Febres Cordero, S. Hoeche, H. Ita, D. A. Kosower, D. Maitre, K. J. Ozeren o cite this version: Z. Bern, L. J. Dixon, F. Febres Cordero, S.

More information

Towards One-Loop MHV Techniques

Towards One-Loop MHV Techniques Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005 Carola F. Berger, SLAC Snowmass - August 22, 2005 Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005

More information

QCD: from benchmark processes to discovery channels

QCD: from benchmark processes to discovery channels QCD: from benchmark processes to discovery channels Giulia Zanderighi University of Oxford & STFC Goettingen, 27 th February 2012 Deutsche Physikalische Gesellschaft Benchmark vs. discovery The term benchmarking

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Beyond the Standard Model

Beyond the Standard Model KIT, 6-10 February 12 Beyond the Standard Model Guido Altarelli Universita di Roma Tre CERN Plan of the lectures Experimental Status of the SM Problems of the SM (conceptual and empirical) Overview of

More information

Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity

Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity University of North Carolina at Chapel Hill Niels Emil Jannik Bjerrum-Bohr Includes work in collaboration with Z. Bern, D.C. Dunbar, H. Ita,

More information

Modern Approaches to Scattering Amplitudes

Modern Approaches to Scattering Amplitudes Ph.D. Workshop, 10 October 2017 Outline Scattering Amplitudes 1 Scattering Amplitudes Introduction The Standard Method 2 On-Shell vs Off-Shell On-Shell building blocks BCFW Recursion Relations 3 Amplitudes

More information

Status of Monte-Carlo event generators

Status of Monte-Carlo event generators SLAC-PUB 4498 Status of Monte-Carlo event generators Stefan Höche SLAC National Accelerator Laboratory, Menlo Park, CA 9405, USA Abstract. Recent progress on general-purpose Monte-Carlo event generators

More information

Higher Order Tools, part II

Higher Order Tools, part II Higher Order Tools, part II Laura Reina 2011 CTEQ Summer School, UW-Madison Introduction and Outline The reach of the Tevatron and the incredible physics potential of the LHC rely on our ability of providing

More information

QCD in hadron collisions

QCD in hadron collisions QCD in hadron collisions Gavin Salam CERN, Princeton University & LPTHE/CNRS (Paris) XXVI Rencontres de Physiue de la Vallée d Aoste La Thuile, Italy, February 26 March 3 2012 Gavin Salam (CERN/Princeton/CNRS)

More information

GoSam: A program for automated one-loop calculations

GoSam: A program for automated one-loop calculations GoSam: A program for automated one-loop calculations G Cullen 1, N Greiner 2, G Heinrich 2, G Luisoni 3, P Mastrolia 2,4, G Ossola 5, T Reiter 2, F Tramontano 6 1 Deutsches Elektronen-Synchrotron DESY,

More information

A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity. Continuous Advances in QCD 2006 Zvi Bern, UCLA

A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity. Continuous Advances in QCD 2006 Zvi Bern, UCLA A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity Continuous Advances in QCD 2006 Zvi Bern, UCLA 1 1 Outline A method is more important that a discovery, since the right method can lead to

More information

Vector Boson Fusion approaching the (yet) unknown

Vector Boson Fusion approaching the (yet) unknown Vector Boson Fusion approaching the (yet) unknown Barbara Jäger KEK Theory Group Southern Methodist University February 2008 outline Higgs searches at the LHC Higgs production via vector boson fusion (VBF):

More information

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011)

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011) Outline Elise de Doncker 1 Fukuko Yuasa 2 1 Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S. 2 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki

More information

QCD in hadron collisions

QCD in hadron collisions QCD in hadron collisions Gavin Salam CERN, Princeton University & LPTHE/CNRS (Paris) Rencontres de Physiue des Particules Montpellier, 14 16 May 2012 Gavin Salam (CERN/Princeton/CNRS) QCD in hadron collisions

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

QCD and Tools for the LHC

QCD and Tools for the LHC QCD and Tools for the LHC Giulia Zanderighi University of Oxford & STFC 8 th Vienna Central European Seminar, Particle on Particle Physics and Quantum Field Theory Open questions Today, we face many open

More information

H + jet(s) (fixed order)

H + jet(s) (fixed order) Mass effects in gg H + jet(s) (fixed order) Gudrun Heinrich Max Planck Institute for Physics, Munich Higgs+jets workshop, IPPP Durham December 9, 2014 Higgs Effective Theory (HEFT) m t L eff = c 1 G µν,a

More information

Some variations of the reduction of one-loop Feynman tensor integrals

Some variations of the reduction of one-loop Feynman tensor integrals Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Some variations of the reduction of one-loop Feynman tensor integrals Tord Riemann DESY, Zeuthen in

More information

In collaboration with:

In collaboration with: Gionata Luisoni luisonig@mpp.mpg.de Max Planck Institute for Physics Munich In collaboration with: G.Cullen, H. Van Deurzen, N. Greiner, G.Heinrich, P.Mastrolia, E.Mirabella, G.Ossola, T.Peraro, J. Reichel,

More information

NLO QCD corrections to pp W ± Z γ with leptonic decays

NLO QCD corrections to pp W ± Z γ with leptonic decays NLO QCD corrections to pp W ± Z γ in collaboration with F. Campanario, H. Rzehak and D. Zeppenfeld Michael Rauch March 2010 I NSTITUTE FOR T HEORETICAL P HYSICS KIT University of the State of Baden-Wuerttemberg

More information

Applications of Scattering Amplitudes to Particle Physics

Applications of Scattering Amplitudes to Particle Physics Applications of Scattering Amplitudes to Particle Physics Z. Bern UCLA Oxford Twistor Strings Conference January, 2005 Brief overview of particle physics. Outline Particle colliders and scattering amplitudes.

More information

Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations

Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations 2005 International Linear Collider Workshop - Stanford, U.S.A. Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations Lance J. Dixon SLAC, Stanford, CA 94025, USA I briefly review how on-shell

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

Loop Amplitudes from MHV Diagrams

Loop Amplitudes from MHV Diagrams Loop Amplitudes from MHV Diagrams Gabriele Travaglini Queen Mary, University of London Brandhuber, Spence, GT hep-th/0407214 Bedford, Brandhuber, Spence, GT hep-th/0410280, 0412108 Andreas talk: hep-th/0510253

More information

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles

Generalized Prescriptive Unitarity. Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Generalized Prescriptive Unitarity Jacob Bourjaily University of Copenhagen QCD Meets Gravity 2017 University of California, Los Angeles Organization and Outline Overview: Generalized & Prescriptive Unitarity

More information

From multileg loops to trees (by-passing Feynman s Tree Theorem)

From multileg loops to trees (by-passing Feynman s Tree Theorem) SLAC-PUB-4635 From multileg loops to trees (by-passing Feynman s Tree Theorem) Germán Rodrigo a, Stefano Catani b, Tanju Gleisberg c, Frank Krauss d, and Jan-C. Winter e a Instituto de Física Corpuscular,

More information

Tord Riemann. DESY, Zeuthen, Germany

Tord Riemann. DESY, Zeuthen, Germany 1/ v. 2010-08-31 1:2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic tensor Feynman integral reduction Tord Riemann DESY, Zeuthen, Germany Based on work done in collaboration with Jochem Fleischer

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Laura Reina Loops and Legs in Quantum Field Theory Wernigerode, April 2012 Outline Motivations: W +b-jet

More information

Towards LHC Phenomenology beyond Leading Order

Towards LHC Phenomenology beyond Leading Order Towards LHC Phenomenology beyond Leading Order Gudrun Heinrich University of Durham Institute for Particle Physics Phenomenology I 3 P Birmingham, 25.11.09 Towards LHC Phenomenologybeyond Leading Order

More information

arxiv: v1 [hep-ph] 28 Nov 2011

arxiv: v1 [hep-ph] 28 Nov 2011 arxiv:1111.6534v1 [hep-ph] 28 Nov 2011 GoSam: A program for automated one-loop Calculations G. Cullen Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany N. Greiner, G. Heinrich 1, T. Reiter Max-Planck-Institute

More information

Dipole subtraction with random polarisations

Dipole subtraction with random polarisations , Christopher Schwan, Stefan Weinzierl PRISMA Cluster of Excellence, Johannes Gutenberg University, Mainz goetz@uni-mainz.de schwan@uni-mainz.de stefanw@thep.physik.uni-mainz.de In this talk, we discuss

More information

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders including leptonic W decays at hadron colliders Stefan Dittmaier a, b and Peter Uwer c a Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, D-79104 Freiburg, Germany b Paul Scherrer Institut,

More information

Precision Physics at the LHC

Precision Physics at the LHC Precision Physics at the LHC V. Ravindran The Institute of Mathematical Sciences, Chennai, India IMHEP-2019, IOP, Bhubaneswar, 17-22 Jan 2019 Precision Physics Plan Why Precision Calculation (PC) Impact

More information

One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits

One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits SLAC PUB 6409 UCLA/TEP/93/51 hep-ph/9312333 December, 1993 (T) One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits Zvi Bern and Gordon Chalmers Department of Physics University

More information

Precise predictions for Higgs-boson production in association with top quarks

Precise predictions for Higgs-boson production in association with top quarks Precise predictions for Higgs-boson production in association with top quarks Universität Würzburg, Institut für Theoretische Physik und Astrophysik, D-97074 Würzburg, Germany E-mail: denner@physik.uni-wuerzburg.de

More information

NNLO Phenomenology Using Jettiness Subtraction

NNLO Phenomenology Using Jettiness Subtraction NNLO Phenomenology Using Jettiness Subtraction Radja Boughezal Radcor/Loopfest 2015, June 15-19, UCLA 1 Outline Motivation IR subtraction schemes at NNLO (local and non-local subtractions) The N-jettiness

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Analytic 2-loop Form factor in N=4 SYM

Analytic 2-loop Form factor in N=4 SYM Analytic 2-loop Form factor in N=4 SYM Gang Yang University of Hamburg Nordic String Theory Meeting Feb 20-21, 2012, NBI Based on the work Brandhuber, Travaglini, GY 1201.4170 [hep-th] Brandhuber, Gurdogan,

More information

Scattering amplitudes and AdS/CFT

Scattering amplitudes and AdS/CFT Scattering amplitudes and AdS/CFT Cristian Vergu Brown University BOX 1843 Providence, RI 02912 1 Introduction and notation Scattering amplitudes in the maximally supersymmetric N = 4 gauge theory are

More information

arxiv: v2 [hep-ph] 2 Jul 2014

arxiv: v2 [hep-ph] 2 Jul 2014 arxiv:1406.7652v2 [hep-ph] 2 Jul 2014 Color decomposition of multi-quark one-loop QCD amplitudes Institute for Theoretical Physics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany. E-mail:

More information

arxiv: v2 [hep-ph] 9 Sep 2009

arxiv: v2 [hep-ph] 9 Sep 2009 Preprint typeset in JHEP style - HYPER VERSION PITHA 09/18 WUB/09-09 Assault on the NLO Wishlist: pp t tb b arxiv:0907.4723v2 [hep-ph] 9 Sep 2009 G. Bevilacqua a, M. Czakon b, C. G. Papadopoulos a, R.

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

CSW rules from exotic recursive shifts

CSW rules from exotic recursive shifts CSW rules from exotic recursive shifts Kasper Risager Niels Bohr Institute, University of Copenhagen From Twistors to Amplitudes at Queen Mary University of London 5 November, 2005 Outline 1. BCFW and

More information

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy Jets in pp at NNLO João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova HP.5-5 September 014 Florence, Italy based on: Second order QCD corrections to gluonic jet production

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes Andrew Hodges Wadham College, University of Oxford London Mathematical Society Durham Symposium on Twistors, Strings and Scattering Amplitudes, 20

More information

Hard QCD at hadron colliders

Hard QCD at hadron colliders Hard QCD at hadron colliders Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen 1st Johns Hopkins Workshop Physics at the LHC A Challenge for Theory and Experiment, August, 007, Heidelberg Sven-Olaf Moch

More information