A semi-numerical approach to one-loop multi-leg amplitudes p.1

Size: px
Start display at page:

Download "A semi-numerical approach to one-loop multi-leg amplitudes p.1"

Transcription

1 A semi-numerical approach to one-loop multi-leg amplitudes Gudrun Heinrich Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII LoopFest V, SLAC, A semi-numerical approach to one-loop multi-leg amplitudes p.1

2 The start of the LHC is round the corner! extracting the signal and studying properties of the Higgs boson/new particles will be an experimental challenge theoretical predictions should be as precise as possible A semi-numerical approach to one-loop multi-leg amplitudes p.2

3 event rates at the LHC process events per second QCD jets E T > 150 GeV 100 W eν 15 t t 1 Higgs, m H = 130 GeV 0.02 gluinos, m = 1 TeV enormous backgrounds! NLO predictions mandatory for reliable estimates, especially in the presence of kinematic cuts A semi-numerical approach to one-loop multi-leg amplitudes p.3

4 NLO wishlist for LHC (Les Houches workshop 05) process (V {Z, W, γ}) background to 1. pp V V jet t th, new physics 2. pp t t b b t th 3. pp t t + 2 jets t th 4. pp V V b b VBF H V V, t th, new physics 5. pp V V + 2 jets VBF H V V 6. pp V + 3 jets various new physics signatures 7. pp V V V SUSY trilepton A semi-numerical approach to one-loop multi-leg amplitudes p.4

5 NLO predictions for multi-particle processes most of the relevant background processes involve multi-particle final states with several mass scales for a partonic NLO calculation: need one-loop amplitudes with many legs and several mass scales: lengthy calculations A semi-numerical approach to one-loop multi-leg amplitudes p.5

6 NLO predictions for multi-particle processes most of the relevant background processes involve multi-particle final states with several mass scales for a partonic NLO calculation: need one-loop amplitudes with many legs and several mass scales: lengthy calculations main difficulties are numerical instabilities and enormous sizes of expressions ( long CPU times, debugging complex) A semi-numerical approach to one-loop multi-leg amplitudes p.5

7 NLO predictions for multi-particle processes most of the relevant background processes involve multi-particle final states with several mass scales for a partonic NLO calculation: need one-loop amplitudes with many legs and several mass scales: lengthy calculations main difficulties are numerical instabilities and enormous sizes of expressions ( long CPU times, debugging complex) virtual amplitudes are the stumbling block for automatisation A semi-numerical approach to one-loop multi-leg amplitudes p.5

8 NLO predictions for multi-particle processes most of the relevant background processes involve multi-particle final states with several mass scales for a partonic NLO calculation: need one-loop amplitudes with many legs and several mass scales: lengthy calculations main difficulties are numerical instabilities and enormous sizes of expressions ( long CPU times, debugging complex) virtual amplitudes are the stumbling block for automatisation not addressed in this talk: real radiation (general algorithms for arbitrary N well established at NLO) combination with parton shower talks of S. Frixione, Z. Nagy & Tuesday afternoon A semi-numerical approach to one-loop multi-leg amplitudes p.5

9 status NLO scattering processes involving maximally 4 particles (2 1, 2 2, 1 3): "standard" A semi-numerical approach to one-loop multi-leg amplitudes p.6

10 status NLO scattering processes involving maximally 4 particles (2 1, 2 2, 1 3): "standard" 2 3: only a few NLO results for hadronic collisions A semi-numerical approach to one-loop multi-leg amplitudes p.6

11 status NLO scattering processes involving maximally 4 particles (2 1, 2 2, 1 3): "standard" 2 3: only a few NLO results for hadronic collisions pp 3 jets pp V + 2 jets pp γγ jet pp t th, b bh pp t t jet p p W b b Beenakker, Bern, Brandenburg, Campbell, Dawson, De Florian, Del Duca, Dittmaier, Dixon, R.K. Ellis, Febres Cordero, Frixione, Giele, Glover, Kilgore, Kosower, Krämer, Kunszt, Maltoni, Miller, Nagy, Orr, Plümper, Reina, Signer, Spira, Trocsanyi, Uwer, Wackeroth, Weinzierl, Zerwas,... A semi-numerical approach to one-loop multi-leg amplitudes p.6

12 status NLO scattering processes involving maximally 4 particles (2 1, 2 2, 1 3): "standard" 2 3: only a few NLO results for hadronic collisions 2 3 for e + e collisions: e + e 4 jets e + e ν νh e + e e + e H e + e ν νγ e + e t th e + e ZHH, ZZH γ γ t th Bern, Dixon, Kosower, Weinzierl, Signer, Nagy, Trocsanyi, Campbell, Cullen, Glover, Miller, Denner, Dittmaier, Roth, Weber, Bélanger, Boudjema, Fujimoto, Ishikawa, Kaneko, Kato, Kurihara, Shimizu, Yasui, Jegerlehner, Tarasov, Chen, Ren-You, Wen-Gan, Hui, Yan-Bin, Hong-Sheng, Pei-Yun,... A semi-numerical approach to one-loop multi-leg amplitudes p.6

13 status NLO scattering processes involving maximally 4 particles (2 1, 2 2, 1 3): "standard" 2 3: only a few NLO results for hadronic collisions 2 4: e + e 4 fermions (complete EW corrections) Denner, Dittmaier, Roth, Wieders 02/05 e + e HHν ν GRACE group (Boudjema et al.) 10/05 A semi-numerical approach to one-loop multi-leg amplitudes p.6

14 status NLO scattering processes involving maximally 4 particles (2 1, 2 2, 1 3): "standard" 2 3: only a few NLO results for hadronic collisions 2 4: e + e 4 fermions (complete EW corrections) Denner, Dittmaier, Roth, Wieders 02/05 e + e HHν ν GRACE group (Boudjema et al.) 10/05 no complete σ NLO for 2 4 processes at the LHC known! 6-gluon amplitude Berger, Bern, Del Duca, Dixon, Dunbar, Forde, Kosower; Ellis, Giele Zanderighi A semi-numerical approach to one-loop multi-leg amplitudes p.6

15 multi-particle processes at NLO main problem with "conventional" approaches beyond N = 4 external legs: tensor reduction à la Passarino-Veltman leads to severe numerical instabilities (vanishing inverse Gram determinants) analytical representation in terms of a fixed set of Logs, Dilogs not convenient in all phase space regions (e.g. large cancellations between Dilogs) "Polylogarithmic mess" (L. Dixon) sheer complexity of expressions A semi-numerical approach to one-loop multi-leg amplitudes p.7

16 example 4-point integrals (boxes): known analytically invariants s, t, m q 6-point integrals (hexagons): 10 invariants, one non-linear constraint for analytic representation: reduce to integrals with less than 5 legs A semi-numerical approach to one-loop multi-leg amplitudes p.8

17 algebraic reduction integrals with less legs + from reduction of tensor rank and number of legs at the same time non-trivial tensor structure scalar 6-point function = 6 i=1 b i... i reduction until set of basis integrals is reached basis integrals: 2-, 3- and 4-point functions known A = C 4 + C 3 + C 2 A semi-numerical approach to one-loop multi-leg amplitudes p.9

18 new approaches new analytical methods (unitarity cuts, bootstrap,... ) avoid Feynman diagrams! talk of C. Berger A semi-numerical approach to one-loop multi-leg amplitudes p.10

19 new approaches new analytical methods (unitarity cuts, bootstrap,... ) avoid Feynman diagrams! talk of C. Berger semi-numerical methods (tensor reduction and/or integration of loop integrals partly numerically ) see also talks of S. Dittmaier, W. Giele A semi-numerical approach to one-loop multi-leg amplitudes p.10

20 new approaches new analytical methods (unitarity cuts, bootstrap,... ) avoid Feynman diagrams! talk of C. Berger semi-numerical methods (tensor reduction and/or integration of loop integrals partly numerically ) see also talks of S. Dittmaier, W. Giele fully numerical methods talks of A. Daleo, E. de Doncker; see also D. Soper, Z. Nagy A semi-numerical approach to one-loop multi-leg amplitudes p.10

21 Golem our approach: semi-numerical method implemented in program GOLEM (General One-Loop Evaluator for Matrix elements) [Binoth, Guffanti, Guillet, GH, Karg, Kauer, Pilon, Reiter,... ] A semi-numerical approach to one-loop multi-leg amplitudes p.11

22 Golem our approach: semi-numerical method implemented in program GOLEM (General One-Loop Evaluator for Matrix elements) [Binoth, Guffanti, Guillet, GH, Karg, Kauer, Pilon, Reiter,... ] main features: use algebraic reduction until singularities can be easily isolated (dim. reg.) inverse Gram determinants can be completely avoided by choosing a convenient set of (non-scalar) basis integrals ("stop reduction before it generates problems") valid for massless and massive particles and for (in principle) arbitrary number of legs A semi-numerical approach to one-loop multi-leg amplitudes p.11

23 The algorithm diagram generation (QGRAF, FeynArts) A = i Cµ 1...µ r i I µ1...µ r (FORM) reduction to basis integrals semi-numerically algebraically A = Lorentz tensors form factors form factors = i K i Ii master numerical evaluation reduction to analytic functions phase space integration A semi-numerical approach to one-loop multi-leg amplitudes p.12

24 treatment of basis integrals, example N=4 I n+2 4 (1 j 1 j 1, j 2 j 1, j 2, j 3 ), I n+4 4 (1 j 1 ) numerical no B > Λ 2 yes analytic direct evaluation algebraic reduction I n 2 (1), I n 3 (1), I 6 4(1) Numerical value A semi-numerical approach to one-loop multi-leg amplitudes p.13

25 special features manifestly shift invariant formulation basis integrals can contain Feynman parameters in the numerator ("tensor integrals") way to avoid inverse Gram determinants IR poles only in 3-point (and 2-point) functions easily isolated proven that higher dimensional integrals I n+2m N (m > 0) are absent for all N 5 form factors: algebraic simplifications already built in A semi-numerical approach to one-loop multi-leg amplitudes p.14

26 manifest shift invariance I n, µ 1...µ r N (a 1,..., a r ) = d n k q a µ q µ r a r i π n/2 (q1 2 m2 1 + iδ)... (q2 N m2 N + iδ) q i = k + r i, r j r j 1 = p j, N j=1 p j = 0 p 4 q 3 q 2 p 3 p 2 q N q 1 p N 2 p 1 advantages of this representation: combinations q i = k + r i appear naturally (e.g. fermion propagators) manifestly shift invariant formulation by Lorentz tensors defined in terms of difference vectors µ i j = rµ i rµ j and g µν p N 1 p N A semi-numerical approach to one-loop multi-leg amplitudes p.15

27 Lorentz structure and form factors I n, µ 1...µ r N (a 1,..., a r ; S) = [ l1 {µ1 µ r ] l r } {a 1 a r } AN,r l 1...,l r (S) + + l 1 l r S l 1 l r 2 S l 1 l r 4 S [ ] {µ1 µ g l r } 1 l r 2 {a 1 a r } BN,r l 1...,l r 2 (S) [ ] {µ1 µ g g l r } 1 l r 4 {a 1 a r } CN,r l 1...,l r 4 (S) important: more than two metric tensors g µν never occur! in a gauge where rank nb of legs reason: for N 6 : I n,µ 1...µ r N (a 1,..., a r ; S) = j S C µ 1 ja 1 I n,µ 2...µ r N 1 (a 2,..., a r ; S \ {j}) A semi-numerical approach to one-loop multi-leg amplitudes p.16

28 schematic overview I n,µ 1...µ r N N 6 no yes r-1, N-1 Form factors N = 5 A 5,r, B 5,r, C 5,r no N = 4 no A 4,r, B 4,r, C 4,r N = 3 A 3,r, B 3,r no N 2 I n 2 I n 2 (1 j 1 j 1, j 2 ), I n 3 (1 j 1 j 1, j 2 j 1, j 2, j 3 ), I n+2 3 (1 j 1 ) I n+2 4 (1 j 1 j 1, j 2 j 1, j 2, j 3 ), I n+4 4 (1 j 1 ) A semi-numerical approach to one-loop multi-leg amplitudes p.17

29 basis integrals I n 3 (j 1,..., j r ) = Γ 3 n Z I n+2 3 (j 1 ) = Γ 2 n Z I n+2 4 (j 1,..., j r ) = Γ 3 n Z I n+4 4 (j 1 ) = Γ 2 n Z and scalar I3 n, In+2 3, I n+2 4, I n+4 4 3Y i=1 3Y i=1 4Y i=1 4Y i=1 dz i δ(1 dz i δ(1 dz i δ(1 dz i δ(1 important: r max = 3 l=1 3X z j1... z jr z l ) ( 1 2 z S z iδ)3 n/2 l=1 3X z j1 z l ) ( 1 2 z S z iδ)2 n/2 l=1 4X z j1... z jr z l ) ( 1 2 z S z iδ)3 n/2 4X z j1 z l ) ( 1 2 z S z iδ)2 n/2 l=1 alternatives for evaluation: 1. direct numerical evaluation (contour deformation) 2. further algebraic reduction to scalar integrals A semi-numerical approach to one-loop multi-leg amplitudes p.18

30 algebraic reduction: example N=4, r=1 algebraic reduction re-introduces inverse Gram determinants 1/B I n+2 4 (l; S) = 1 B 8 < : b l I n+2 4 (S) X S 1 jl I3 n (S \ {j}) 1 2 j S X j S\{l} 9 = b j I3 n (l; S \ {j}) ; B = Det(G)/Det(S) ( 1) N+1 S ij = (r i r j ) 2 m 2 i m2 j G ij = 2 r i r j A semi-numerical approach to one-loop multi-leg amplitudes p.19

31 algebraic reduction: example N=4, r=1 algebraic reduction re-introduces inverse Gram determinants 1/B I n+2 4 (l; S) = 1 B 8 < : b l I n+2 4 (S) X S 1 jl I3 n (S \ {j}) 1 2 j S X j S\{l} 9 = b j I3 n (l; S \ {j}) ; B = Det(G)/Det(S) ( 1) N+1 S ij = (r i r j ) 2 m 2 i m2 j G ij = 2 r i r j 1/B does not pose a problem in most regions of phase space allows fast evaluation use numerical method only in regions where 1/B becomes small A semi-numerical approach to one-loop multi-leg amplitudes p.19

32 numerical behaviour I 6 4 (z 3z 4 ) and I 6 4 (z 3z 2 4 ) (occur in the reduction of a rank 6 hexagon) exceptional kinematics for x 0 solid line: numerical evaluation, only partial algebraic reduction dashed: numerical behaviour of analytic representation after full algebraic reduction A semi-numerical approach to one-loop multi-leg amplitudes p.20

33 Applications gg W W l ν l ν Binoth, Ciccolini, Kauer, Krämer gg HHH Binoth, Karg A semi-numerical approach to one-loop multi-leg amplitudes p.21

34 Applications q q q q q q A (k 1,..., k 6 ) = g6 1 (4π) n/2 s { A2 ɛ 2 + A } 1 ɛ + A 0 + O(ɛ) A semi-numerical approach to one-loop multi-leg amplitudes p.21

35 Applications q q q q q q A (k 1,..., k 6 ) = sample point g6 1 (4π) n/2 s { A2 ɛ 2 + A } 1 ɛ + A 0 + O(ɛ) k k 0 k x k y k z k k k k k k A semi-numerical approach to one-loop multi-leg amplitudes p.21

36 q q q q q q hexagon: Re(P 2 ) Im(P 2 ) Re(P 1 ) Im(P 1 ) Re(P 0 ) Im(P 0 ) A semi-numerical approach to one-loop multi-leg amplitudes p.22

37 q q q q q q hexagon: Re(P 2 ) Im(P 2 ) Re(P 1 ) Im(P 1 ) Re(P 0 ) Im(P 0 ) CPU time 0.21 sec (rel. accuracy better than 10 4 ) A semi-numerical approach to one-loop multi-leg amplitudes p.22

38 q q q q q q hexagon: Re(P 2 ) Im(P 2 ) Re(P 1 ) Im(P 1 ) Re(P 0 ) Im(P 0 ) CPU time 0.21 sec (rel. accuracy better than 10 4 ) phase space points investigated for various kinematic regions A semi-numerical approach to one-loop multi-leg amplitudes p.22

39 q q q q q q hexagon: Re(P 2 ) Im(P 2 ) Re(P 1 ) Im(P 1 ) Re(P 0 ) Im(P 0 ) CPU time 0.21 sec (rel. accuracy better than 10 4 ) phase space points investigated for various kinematic regions numerical evaluation of basis integrals (B < Λ 2 ) for about 1% of phase space points (Λ GeV) A semi-numerical approach to one-loop multi-leg amplitudes p.22

40 q q q q q q hexagon: Re(P 2 ) Im(P 2 ) Re(P 1 ) Im(P 1 ) Re(P 0 ) Im(P 0 ) CPU time 0.21 sec (rel. accuracy better than 10 4 ) phase space points investigated for various kinematic regions numerical evaluation of basis integrals (B < Λ 2 ) for about 1% of phase space points (Λ GeV) numerical evaluation slower but not a problem for 1% of phase space these regions often excluded by experimental cuts A semi-numerical approach to one-loop multi-leg amplitudes p.22

41 Summary and Outlook NLO calculations are reaching a new level of automatisation important tools for the LHC A semi-numerical approach to one-loop multi-leg amplitudes p.23

42 Summary and Outlook NLO calculations are reaching a new level of automatisation important tools for the LHC GOLEM is one contribution to the toolbox numerically robust valid for massless and massive external/internal particles no principal limitation on number of legs optionally more analytic or more numerical branch A semi-numerical approach to one-loop multi-leg amplitudes p.23

43 Summary and Outlook NLO calculations are reaching a new level of automatisation important tools for the LHC GOLEM is one contribution to the toolbox numerically robust valid for massless and massive external/internal particles no principal limitation on number of legs optionally more analytic or more numerical branch modular if more compact expressions for amplitudes can be achieved without using Feynman diagrams: very welcome! real radiation under construction combination with parton shower planned A semi-numerical approach to one-loop multi-leg amplitudes p.23

44 backup slides A semi-numerical approach to one-loop multi-leg amplitudes p.24

45 phase space effects enhanced by cuts A semi-numerical approach to one-loop multi-leg amplitudes p.25

46 N=5 rank 2 example I n, µ 1µ 2 5 (a 1, a 2 ; S) = g µ 1 µ 2 B 5,2 (S) + B 5,2 (S) = 1 2 A 5,2 l 1 l 2 (S) = j S j S l 1,l 2 S b j I n+2 4 (S \ {j}) ( S 1 j l1 b l2 + S 1 j l 2 b l1 µ 1 l 1 a 1 µ 2 l 2 a 2 A 5,2 l 1 l 2 (S) ) 2 S 1 l 1 l 2 b j + b j S {j} 1 l 1 l 2 I4 n+2 (S \ {j}) + 1 [ S 1 j l 2 2 S {j} 1 k l 1 + j S k S\{j} S 1 j l 1 S {j} 1 k l 2 ] I n 3 (S \ {j, k}) A semi-numerical approach to one-loop multi-leg amplitudes p.26

47 N=6 rank 1 example I n, µ 6 (a; S) = j S C µ j a In 5 (S \ {j}) = j,l S µ la S 1 lj k S b {j} k B {j,k} I n+2 4 (S \ {j, k}) + m S\{j,k} b {j,k} m I3 n (S \ {j, k, m}) A semi-numerical approach to one-loop multi-leg amplitudes p.27

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes

On-Shell Recursion Relations for Multi-Parton One-Loop Amplitudes for Multi-Parton One-Loop Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower SUSY06 June 13th, 2006 [1] Z. Bern, L. J. Dixon, D. A. Kosower,

More information

Bootstrapping One-Loop 2 n Amplitudes

Bootstrapping One-Loop 2 n Amplitudes Bootstrapping One-Loop 2 n Amplitudes Carola F. Berger Stanford Linear Accelerator Center with Zvi Bern, Lance Dixon, Darren Forde, David Kosower Loopfest V June 19th, 2006 [1] Z. Bern, L. J. Dixon, D.

More information

Next-to-leading order multi-leg processes for the Large Hadron Collider

Next-to-leading order multi-leg processes for the Large Hadron Collider Next-to-leading order multi-leg processes for the Large Hadron Collider, Thomas Reiter School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, UK. E-mail: binoth@ph.ed.ac.uk,thomas.reiter@ed.ac.uk

More information

Higher Order QCD Lecture 2

Higher Order QCD Lecture 2 Higher Order QCD Lecture 2 Lance Dixon, SLAC SLAC Summer Institute The Next Frontier: Exploring with the LHC July 21, 2006 Lecture 2 Outline NLO NNLO L. Dixon, 7/21/06 Higher Order QCD: Lect. 2 2 What

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1

e + e 3j at NNLO: Results for all QED-type Colour Factors p.1 e + e 3j at NNLO: Results for all QED-type Colour Factors Thomas Gehrmann Universität ürich UNIVERSITAS TURICENSIS MDCCC XXXIII in collaboration with A. Gehrmann De Ridder, E.W.N. Glover, G. Heinrich Loopfest

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

Twistors and Unitarity

Twistors and Unitarity Twistors and Unitarity NLO six-gluon Amplitude in QCD Pierpaolo Mastrolia Institute for Theoretical Physics, University of Zürich IFAE 2006, April 19, 2006 in collaboration with: Ruth Britto and Bo Feng

More information

Precision Calculations for Collider Physics

Precision Calculations for Collider Physics SFB Arbeitstreffen März 2005 Precision Calculations for Collider Physics Michael Krämer (RWTH Aachen) Radiative corrections to Higgs and gauge boson production Combining NLO calculations with parton showers

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl The forward-backward asymmetry in electron-positron annihilation Stefan Weinzierl Universität Mainz Introduction: I.: II: III: IV.: Electroweak precision physics Higher order corrections Infrared-safe

More information

Automatic calculation of one-loop amplitudes

Automatic calculation of one-loop amplitudes The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego, - Krakow, Poland E-mail: hameren@if.edu.pl C.G. Papadopoulos Institute of Nuclear Physics, NCSR Demokritos,

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

W + W + jet compact analytic results

W + W + jet compact analytic results W + W + jet compact analytic results Tania Robens. based on. J. Campbell, D. Miller, TR (arxiv:1506.xxxxx) IKTP, TU Dresden 2015 Radcor-Loopfest UCLA, Los Angeles, California WW + jet: Motivation from

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

W + W Production with Many Jets at the LHC

W + W Production with Many Jets at the LHC W + W Production with Many Jets at the LHC NLO QCD with BlackHat+Sherpa Fernando Febres Cordero Department of Physics, University of Freiburg Radcor-Loopfest 2015, UCLA June 2015 With Philipp Hofmann and

More information

Some variations of the reduction of one-loop Feynman tensor integrals

Some variations of the reduction of one-loop Feynman tensor integrals Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Some variations of the reduction of one-loop Feynman tensor integrals Tord Riemann DESY, Zeuthen in

More information

Vector boson + jets at NLO vs. LHC data

Vector boson + jets at NLO vs. LHC data Vector boson + jets at NLO vs. LHC data Lance Dixon (SLAC) for the BlackHat collaboration Z. Bern, LD, G. Diana, F. Febres Cordero, S. Höche, H. Ita, D. Kosower, D. Maître, K. Ozeren LHC Theory Workshop

More information

Theory Summary of the SM and NLO Multi-leg WG

Theory Summary of the SM and NLO Multi-leg WG Theory Summary of the SM and NLO Multi-leg WG Departamento de Física Teórica y del Cosmos Universidad de Granada Les Houches June 17th 2009 Theory Summary of the SM and NLO Multi-leg WG Departamento de

More information

Tord Riemann. DESY, Zeuthen, Germany

Tord Riemann. DESY, Zeuthen, Germany 1/ v. 2010-08-31 1:2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic tensor Feynman integral reduction Tord Riemann DESY, Zeuthen, Germany Based on work done in collaboration with Jochem Fleischer

More information

Modern Feynman Diagrammatic One-Loop Calculations

Modern Feynman Diagrammatic One-Loop Calculations Modern Feynman Diagrammatic One-Loop Calculations G. Cullen, a N. Greiner, b A. Guffanti, c J.P. Guillet, d G. Heinrich, e S. Karg, f N. Kauer, g T. Kleinschmidt, e M. Koch-Janusz, h G. Luisoni, e P. Mastrolia,

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Automation of One-Loop Calculations with Golem/Samurai

Automation of One-Loop Calculations with Golem/Samurai Automation of One-Loop Calculations with Golem/Samurai Giovanni Ossola New York City College of Technology City University of New York (CUNY) In collaboration with: G. Cullen, N. Greiner, G. Heinrich,

More information

Towards Jet Cross Sections at NNLO

Towards Jet Cross Sections at NNLO Towards Jet Cross Sections at HP.4, September, MPI Munich Expectations at LHC Large production rates for Standard Model processes single jet inclusive and differential di-jet cross section will be measured

More information

NLO event generator for LHC

NLO event generator for LHC NLO event generator for LHC Y. Kurihara (KEK) GRACE Group Physics Simulation for LHC 05/Apr./2004 @ KEK Motivation LHC Experimental requirement New Particle Search/Precision Measurement LO-QCD Event generator+k-factor

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC

BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC BACKGROUND EXPERIENCE AND THEORY INNOVATION FOR LHC Babis Anastasiou ETH Zurich PADOVA 20-01-2010 A theory revolution Deeper understanding of the structure of gauge theories Sharp theoretical predictions

More information

Towards LHC Phenomenology beyond Leading Order

Towards LHC Phenomenology beyond Leading Order Towards LHC Phenomenology beyond Leading Order Gudrun Heinrich University of Durham Institute for Particle Physics Phenomenology I 3 P Birmingham, 25.11.09 Towards LHC Phenomenologybeyond Leading Order

More information

Hard QCD at hadron colliders

Hard QCD at hadron colliders Hard QCD at hadron colliders Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen 1st Johns Hopkins Workshop Physics at the LHC A Challenge for Theory and Experiment, August, 007, Heidelberg Sven-Olaf Moch

More information

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011)

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011) Outline Elise de Doncker 1 Fukuko Yuasa 2 1 Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S. 2 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki

More information

Renormalization in the Unitarity Method

Renormalization in the Unitarity Method CEA Saclay NBI Summer Institute: Strings, Gauge Theory and the LHC August 23, 2011 One-loop amplitudes Events / 10 GeV 100 80 60 40 tth(120) ttjj ttbb (QCD) ttbb (EW) 20 0 0 50 100 150 200 250 300 350

More information

Recent developments in automated NLO calculations

Recent developments in automated NLO calculations Recent developments in automated NLO calculations Giuseppe Bevilacqua NCSR Demokritos, Athens Workshop on Standard Model and Beyond and Standard Cosmology Corfu - August 31, 2009 In collaboration with

More information

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders

NLO QCD corrections to WW+jet production including leptonic W decays at hadron colliders including leptonic W decays at hadron colliders Stefan Dittmaier a, b and Peter Uwer c a Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, D-79104 Freiburg, Germany b Paul Scherrer Institut,

More information

Fully exclusive NNLO QCD computations

Fully exclusive NNLO QCD computations Fully exclusive NNLO QCD computations Kirill Melnikov University of Hawaii Loopfest V, SLAC, June 2006 Fully exclusive NNLO QCD computations p. 1/20 Outline Introduction Technology Higgs boson production

More information

A shower algorithm based on the dipole formalism. Stefan Weinzierl

A shower algorithm based on the dipole formalism. Stefan Weinzierl A shower algorithm based on the dipole formalism Stefan Weinzierl Universität Mainz in collaboration with M. Dinsdale and M. Ternick Introduction: I.: II: III: Event generators and perturbative calculations

More information

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September Four-fermion production near the W-pair production threshold Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September 12-14 2007 International Linear Collider we all believe that no matter

More information

Higgs boson signal and background in MCFM

Higgs boson signal and background in MCFM Higgs boson signal and background in MCFM Zurich, January 11, 2012 Keith Ellis, Fermilab John Campbell, RKE and Ciaran Williams arxiv:1105.0020, 1107.5569 [hep-ph] MCFM MCFM is a unified approach to NLO

More information

One-Loop Calculations with BlackHat

One-Loop Calculations with BlackHat July 2008 MIT-CTP 3963 Saclay-IPhT-T08/117 SLAC-PUB-13295 UCLA/08/TEP/21 One-Loop Calculations with BlackHat C. F. Berger a, Z. Bern b, L. J. Dixon c, F. Febres Cordero b, D. Forde c, H. Ita b, D. A. Kosower

More information

W/Z production with 2b at NLO

W/Z production with 2b at NLO W/Z production with b at NLO Laura Reina Eugene, September 9 Motivations: main background to W H/ZH associated production; single-top production; H/A + b b and other signals of new physics; t t production;

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Laura Reina Loops and Legs in Quantum Field Theory Wernigerode, April 2012 Outline Motivations: W +b-jet

More information

arxiv:hep-ph/ v1 3 Jul 2006

arxiv:hep-ph/ v1 3 Jul 2006 PRAMANA c Indian Academy of Sciences journal of physics pp. 1 12 QCD at hadron colliders Vittorio Del Duca Istituto Nazionale di Fisica Nucleare, Sez. di Torino via P. Giuria, 1-10125 Torino, Italy arxiv:hep-ph/0607025v1

More information

Automation of Multi-leg One-loop virtual Amplitudes

Automation of Multi-leg One-loop virtual Amplitudes Automation of Multi-leg One-loop virtual Amplitudes Institute for Particle Physics Phenomenology University of Durham Science Laboratories South Rd DURHAM DH1 3LE, UK E-mail: daniel.maitre@durham.ac.uk

More information

Associated Higgs Production with Bottom Quarks at Hadron Colliders

Associated Higgs Production with Bottom Quarks at Hadron Colliders Associated Higgs Production with Bottom Quarks at Hadron Colliders Michael Krämer (RWTH Aachen) Kickoff Meeting of the working group on Higgs and heavy quarks Wuppertal 1.-2.3. 2010 1 /25 Higgs production

More information

Status of Higgs plus one jet at NNLO

Status of Higgs plus one jet at NNLO Status of Higgs plus one jet at NNLO Matthieu Jaquier Physics Institute University of Zürich Radcor-Loopfest UCLA 7 th June 205 Based on work with X. Chen, T. Gehrmann and E.W.N. Glover Matthieu Jaquier

More information

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy

João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova. HP September 2014 Florence, Italy Jets in pp at NNLO João Pires Universita di Milano-Bicocca and Universita di Genova, INFN sezione di Genova HP.5-5 September 014 Florence, Italy based on: Second order QCD corrections to gluonic jet production

More information

Numerical evaluation of multi-scale integrals with SecDec 3

Numerical evaluation of multi-scale integrals with SecDec 3 Numerical evaluation of multi-scale integrals with SecDec 3 Sophia Borowka University of Zurich Project in collaboration with G. Heinrich, S. Jones, M. Kerner, J. Schlenk, T. Zirke 152.6595 [hep-ph] (CPC,

More information

Precise predictions for Higgs-boson production in association with top quarks

Precise predictions for Higgs-boson production in association with top quarks Precise predictions for Higgs-boson production in association with top quarks Universität Würzburg, Institut für Theoretische Physik und Astrophysik, D-97074 Würzburg, Germany E-mail: denner@physik.uni-wuerzburg.de

More information

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV NLO-QCD calculation in GRACE - GRACE status - Y. Kurihara (KEK) GRACE Group 19/Aug./2005 @ LoopFest IV GRACE Author list J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, Y.

More information

Introduction: from W W -scattering to the Higgs boson

Introduction: from W W -scattering to the Higgs boson Introduction: from W W -scattering to the Higgs boson Michael Krämer Page 2 Universität Bielefeld, Mai 2005 Introduction: from W W -scattering to the Higgs boson Fermi: weak interactions described by effective

More information

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006

Summary and Outlook. Davison E. Soper University of Oregon. LoopFest V, June 2006 Summary and Outlook Davison E. Soper University of Oregon LoopFest V, June 2006 Parton Showers & jet matching R. Erbacher emphasized how important this issue is for CDF analyses. CDF has been using a somewhat

More information

Weak boson scattering at the LHC

Weak boson scattering at the LHC Weak boson scattering at the LHC RADCOR 2009 Barbara Jäger University of Würzburg outline weak boson fusion at the LHC: Higgs production at high precision V V jj production @ NLO QCD strongly interacting

More information

Coefficients of one-loop integral

Coefficients of one-loop integral functions by recursion International Workshop: From Twistors to Amplitudes 1 Niels Emil Jannik Bjerrum-Bohr together with Zvi Bern, David Dunbar and Harald Ita Motivation The LHC collider at CERN is approaching

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity. Continuous Advances in QCD 2006 Zvi Bern, UCLA

A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity. Continuous Advances in QCD 2006 Zvi Bern, UCLA A Tour of the S-Matrix: QCD, Super-Yang-Mills and Supergravity Continuous Advances in QCD 2006 Zvi Bern, UCLA 1 1 Outline A method is more important that a discovery, since the right method can lead to

More information

GoSam: automated multi-process scattering amplitudes at one loop

GoSam: automated multi-process scattering amplitudes at one loop GoSam: automated multi-process scattering amplitudes at one loop Gionata Luisoni luisonig@mpp.mpg.de Max Planck Institute for Physics Munich In collaboration with: G.Cullen, N. Greiner, G.Heinrich, P.Mastrolia,

More information

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c

Outline Motivations for ILC: e + e γ/z q qg LHC: pp l + l + jet (q q l + l g + qg l + l q + qg l + l q) Existing literature The complete EW one-loop c Complete electroweak corrections to e + e 3 jets C.M. Carloni Calame INFN & University of Southampton Workshop LC08: e + e Physics at TeV scale September 22-25, 2008 in collaboration with S. Moretti, F.

More information

Higher Order Calculations

Higher Order Calculations Higher Order Calculations Zoltan Kunszt, ETH, Zurich QCD at the LHC St Andrews, Scotland, August 23, 2011 C The predictions of the SM for LHC are given in perturbation theory in the QCD improved standard

More information

Higgs Production at LHC

Higgs Production at LHC Higgs Production at LHC Vittorio Del Duca INFN Torino Havana 3 April 2006 1 In proton collisions at 14 TeV, and for the Higgs is produced mostly via M H > 100 GeV gluon fusion gg H largest rate for all

More information

arxiv:hep-ph/ v1 9 Jun 1997

arxiv:hep-ph/ v1 9 Jun 1997 DTP/97/44 RAL TR 97-027 hep-ph/9706297 arxiv:hep-ph/9706297v1 9 Jun 1997 The One-loop QCD Corrections for γ q qgg J. M. Campbell, E. W. N. Glover Physics Department, University of Durham, Durham DH1 3LE,

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

MadGolem: Automated NLO predictions for SUSY and beyond

MadGolem: Automated NLO predictions for SUSY and beyond David López-Val D. Gonçalves Netto (MPI, Munich), T. Plehn (Heidelberg U.), I. Wigmore (Edinburgh U.), K. Mawatari (Vrije U.) together with ITP - Universität Heidelberg SUSY 2013, Trieste (Italy) - August

More information

MonteCarlo s for Top Physics

MonteCarlo s for Top Physics MonteCarlo s for Top Physics Fabio Maltoni Center for Particle Physics and Phenomenology Université Catholique de Louvain European Physical Society, HEP 2007, Manchester 19th July Outline From top physics

More information

Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations

Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations 2005 International Linear Collider Workshop - Stanford, U.S.A. Practical Twistor Spinoffs: On-Shell Tree and Loop Recursion Relations Lance J. Dixon SLAC, Stanford, CA 94025, USA I briefly review how on-shell

More information

Higgs + Multi-jets in Gluon Fusion

Higgs + Multi-jets in Gluon Fusion Higgs + Multi-jets in Gluon Fusion Nicolas Greiner DESY In collaboration with S.Hoeche, G.Luisoni, M.Schoenherr, J.Winter, V. Yundin arxiv:1506.01016 Higher order corrections in Higgs physics > Higher

More information

NLO supersymmetric QCD corrections to t th 0 associated production at hadron colliders

NLO supersymmetric QCD corrections to t th 0 associated production at hadron colliders Physics Letters B 618 2005) 209 220 www.elsevier.com/locate/physletb NLO supersymmetric QCD corrections to t th 0 associated production at hadron colliders Peng Wu b, Wen-Gan Ma a,b, Hong-Sheng Hou b,

More information

Applications of Scattering Amplitudes to Particle Physics

Applications of Scattering Amplitudes to Particle Physics Applications of Scattering Amplitudes to Particle Physics Z. Bern UCLA Oxford Twistor Strings Conference January, 2005 Brief overview of particle physics. Outline Particle colliders and scattering amplitudes.

More information

δm W = 15 MeV δm top = 1 GeV

δm W = 15 MeV δm top = 1 GeV Precision SM physics at the LHC... what we hope to see (Bentvelsen, Grünewald) Repeat the electroweak fit changing the uncertainties δm W = 15 MeV δm top = 1 GeV same central values Michael Krämer Page

More information

Recent Advances in NLO QCD for the LHC Seattle, Institute for Nuclear Theory Sept 27, 2011 Zvi Bern, UCLA, on behalf of BlackHat

Recent Advances in NLO QCD for the LHC Seattle, Institute for Nuclear Theory Sept 27, 2011 Zvi Bern, UCLA, on behalf of BlackHat Recent Advances in NLO QCD for the LHC Seattle, Institute for Nuclear Theory Sept 27, 2011 Zvi Bern, UCLA, on behalf of BlackHat BlackHat Collaboration current members: ZB, L. Dixon, F. Febres Cordero,

More information

HIGGS BOSONS AT THE LHC

HIGGS BOSONS AT THE LHC IGGS BOSONS AT TE LC Dieter Zeppenfeld Universität Karlsruhe, Germany SUSY06 UC Irvine, June 12-17, 2006 Goals of iggs Physics SM Channels MSSM: /A and ± Coupling measurements QCD Corrections VV vertex

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

HIGGS BOSON PHYSICS AT THE LHC

HIGGS BOSON PHYSICS AT THE LHC HIGGS BOSON PHYSICS AT THE LHC Dieter Zeppenfeld Karlsruhe Institute of Technology (KIT) Les Houches 2009, Physics at TeV Colliders Introduction Search channels at the LHC Higgs coupling measurements QCD

More information

Vector Boson Fusion approaching the (yet) unknown

Vector Boson Fusion approaching the (yet) unknown Vector Boson Fusion approaching the (yet) unknown Barbara Jäger KEK Theory Group Southern Methodist University February 2008 outline Higgs searches at the LHC Higgs production via vector boson fusion (VBF):

More information

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity Lance Dixon (SLAC) S. Abreu, LD, E. Herrmann, B. Page and M. Zeng 1812.08941, 1901.nnnnn DESY Zeuthen, 24 January 2019

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

GoSam: Automated One Loop Calculations within and beyond the SM

GoSam: Automated One Loop Calculations within and beyond the SM GoSam: Automated One Loop Calculations within and beyond the SM Nicolas Greiner Max-Planck Institute for Physics in collaboration with G.Cullen,H.vanDeurzen,G.Heinrich,G.Luisoni,P.Mastrolia,E.Mirabella,G.Ossola,T.Peraro,J.Schlenk,

More information

The Standar Model of Particle Physics Lecture IV

The Standar Model of Particle Physics Lecture IV The Standar Model of Particle Physics Lecture IV The Standard Model in the LHC hera Laura Reina Maria Laach School, Bautzen, September 2011 Outline of Lecture IV Standard Model processes as background

More information

arxiv: v1 [hep-ph] 22 Jan 2008

arxiv: v1 [hep-ph] 22 Jan 2008 January 2008 NIKHEF/2007-025, WUB/07-12 Gluon-Induced Weak Boson Fusion Robert V. Harlander (1), Jens Vollinga (2) and Marcus M. Weber (3) arxiv:0801.3355v1 [hep-ph] 22 Jan 2008 (1) Fachbereich C, Bergische

More information

Vector Boson + Jets with BlackHat and Sherpa

Vector Boson + Jets with BlackHat and Sherpa SLAC-PUB-405 UCLA/0/TEP/04 MIT-CTP 450 SB/F/380-0 IPPP/0/34 Saclay IPhT T0/??? NIKHEF-200-??? CERN-PH-TH/200-??? ector Boson + Jets with BlackHat and Sherpa C. F. Berger a, Z. Bern b, L. J. Dixon c, F.

More information

Precision Phenomenology and Collider Physics p.1

Precision Phenomenology and Collider Physics p.1 Precision Phenomenology and Collider Physics Nigel Glover IPPP, University of Durham Computer algebra and particle physics, DESY Zeuthen, April 4, 2005 Precision Phenomenology and Collider Physics p.1

More information

Theory introduction to Standard Model processes at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen

Theory introduction to Standard Model processes at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen Theory introduction to Standard Model processes at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden DESY Academic Training, June 4, 2007, Zeuthen

More information

Z+jet production at the LHC: Electroweak radiative corrections

Z+jet production at the LHC: Electroweak radiative corrections Z+jet production at the LHC: Electroweak radiative corrections Ansgar Denner Universität Würzburg, Institut für Theoretische Physik und Astrophysik Am Hubland, 9774 Würzburg, Germany E-mail: denner@physik.uni-wuerzburg.de

More information

NLO QCD corrections to pp W ± Z γ with leptonic decays

NLO QCD corrections to pp W ± Z γ with leptonic decays NLO QCD corrections to pp W ± Z γ in collaboration with F. Campanario, H. Rzehak and D. Zeppenfeld Michael Rauch March 2010 I NSTITUTE FOR T HEORETICAL P HYSICS KIT University of the State of Baden-Wuerttemberg

More information

Automation of NLO computations using the FKS subtraction method

Automation of NLO computations using the FKS subtraction method Automation of NLO computations using the FKS subtraction method Institute for Theoretical Physics, Universität Zürich E-mail: frederix@physik.uzh.ch In this talk the FKS subtraction method for next-to-leading

More information

AN INTRODUCTION TO QCD

AN INTRODUCTION TO QCD AN INTRODUCTION TO QCD Frank Petriello Northwestern U. & ANL TASI 2013: The Higgs Boson and Beyond June 3-7, 2013 1 Outline We ll begin with motivation for the continued study of QCD, especially in the

More information

Higher Order QCD for the LHC SLAC Summer Institute SLAC, June 25, 2012 Zvi Bern, UCLA

Higher Order QCD for the LHC SLAC Summer Institute SLAC, June 25, 2012 Zvi Bern, UCLA Higher Order QCD for the LHC SLAC Summer Institute SLAC, June 25, 2012 Zvi Bern, UCLA q g W e º q 0 g g g g ¹q W q 0 1 Outline Some new developments in QCD for understanding LHC physics. Examples of QCD

More information

Antenna Subtraction at NNLO

Antenna Subtraction at NNLO Antenna Subtraction at NNLO Aude Gehrmann-De Ridder ETH Zürich in collaboration with T. Gehrmann, E.W.N. Glover Loopfest IV Snowmass 2005 Antenna Subtraction at NNLO p.1 Outline Jet observables Jets in

More information

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum PhD Seminar 2015, PSI Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum Agnieszka Ilnicka in collaboration with: M. Grazzini M. Spira M. Wiesemann Motivation

More information

THREE-JET CALCULATION AT NLO LEVEL FOR HADRON COLLIDERS

THREE-JET CALCULATION AT NLO LEVEL FOR HADRON COLLIDERS THREE-JET CALCULATION AT NLO LEVEL FOR HADRON COLLIDERS CDF/D0/Theory Jet Workshop Fermilab, December 16, 2002 Zoltán Nagy ITS, University of Oregon Contents: Introduction, Method Results in hadron hadron

More information

Physics at the LHC. Status and Perspectives E.E.Boos SINP MSU

Physics at the LHC. Status and Perspectives E.E.Boos SINP MSU Physics at the LHC. Status and Perspectives E.E.Boos SINP MSU Theorist Experimentalist What did we know before the LHC start? Whether or not the LHC energy scale is an appropriate one? What one can say

More information

Recent Progress in One-Loop Multi-Parton Calculations

Recent Progress in One-Loop Multi-Parton Calculations SLAC-PUB-6658 hep-ph/940914 September, 1994 (M) Recent Progress in One-Loop Multi-Parton Calculations Zvi Bern Department of Physics University of California, Los Angeles Los Angeles, CA 9004 Lance Dixon

More information

Regularization of supersymmetric theories. New results on dimensional reduction

Regularization of supersymmetric theories. New results on dimensional reduction Regularization of supersymmetric teories New results on dimensional reduction IPPP Duram Loopfest, June 2006 Outline Introduction 1 Introduction 2 Consistency of DRED 3 Factorization in DRED 4 Supersymmetry

More information

Perturbative QCD and NLO Monte Carlo Simulations TASI John Campbell MS 106, PO Box 500 Fermilab, Batavia IL

Perturbative QCD and NLO Monte Carlo Simulations TASI John Campbell MS 106, PO Box 500 Fermilab, Batavia IL Perturbative QCD and NLO Monte Carlo Simulations TASI 2011 John Campbell MS 106, PO Box 500 Fermilab, Batavia IL 60510 June 10, 2011 Abstract This is a set of notes for lectures which I am giving at TASI2011,

More information

arxiv: v1 [hep-ph] 26 Nov 2017

arxiv: v1 [hep-ph] 26 Nov 2017 Recent Developments in Higher-Order Calculations: Hard Functions at NLO with GoSam arxiv:1711.09462v1 [hep-ph] 26 Nov 2017 Alessandro Broggio a alessandro.broggio@tum.de Andrea Ferroglia b,c aferroglia@citytech.cuny.edu

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

Higher Order QCD Lecture 1

Higher Order QCD Lecture 1 Higher Order QCD Lecture 1 Lance Dixon, SLAC SLAC Summer Institute The Next Frontier: Exploring with the LHC July 20, 2006 Lecture 1 Outline 1. Levels of approximation 2. Modern color and helicity organization

More information