FEYNHELPERS: CONNECTING FEYNCALC TO FIRE AND PACKAGE-X

Size: px
Start display at page:

Download "FEYNHELPERS: CONNECTING FEYNCALC TO FIRE AND PACKAGE-X"

Transcription

1 FEYNHELPERS: CONNECTING FEYNCALC TO FIRE AND PACKAGE-X Vladyslav Shtabovenko Technische Universität München Instituto de Física Corpuscular, Valencia Physik-Department T30f Physik-Department T30f (TUM) FeynHelpers 1 / 27

2 OUTLINE 1 FEYNCALC: WHAT IS IT AND WHAT IS IT GOOD FOR? 2 FEYNCALC AND (MULTI-)LOOP INTEGRALS: STRENGTHS AND WEAKNESSES 3 FEYNHELPERS: GOING BEYOND BOUNDARIES 4 SUMMARY AND OUTLOOK: WHERE WE ARE NOW AND WHERE WE ARE GOING Physik-Department T30f (TUM) FeynHelpers 2 / 27

3 A generic perturbative QFT calculation may involve many different steps Feynman diagrams Feynman rules from L Diagram generation Amplitudes... Dirac algebra Simplification of γ-matrix chains Dirac traces SPVAT form Fierz identities... Loop integrals Tensor reduction Partial fractioning Mapping of topologies IBP-Reduction Numerics We can automatize each step separately using standalone packages (e. g. FEYNARTS, LOOP- TOOLS [Hahn & Perez-Victoria, 1999], FEYNRULES [Christensen & Duhr, 2008], QGRAF [Nogueira, 1993], TRACER [Jamin & Lautenbacher, 1993], FORMTRACER [Cyrol et al., 2016], FORCER [Ruijl et al., 2017], PY- SECDEC [Borowka et al., ],... ) and self-written codes. Or we can employ all-in-one packages that handle most of these steps in one framework. Physik-Department T30f (TUM) FeynHelpers 3 / 27

4 Two big categories of all-in-one packages Fully-automatic (FORMCALC [Hahn & Perez-Victoria, 1999], GOSAM [Cullen et al., 2014], GRACE [Belanger et al., 2006], DIANA [Tentyukov & Fleischer, 2000], FDC [Wang, 2004],... ) Semi-automatic (FEYNCALC [Mertig et al., 1991, Shtabovenko et al., 2016], HEPMATH [Wiebusch, 2014], PACKAGE-X [Patel, 2015],... ) Fully-automatic tools Blackbox: Require only minimal user input and provide a small set of options. The code takes care of the rest. Semi-automatic tools Toolbox: Combine different tools with many options to get the computation done in your way. Easy to use Foolproof Constantly good performance Saves your time Limited number of templated calculations Difficult to extend/modify for your needs Not easy to obtain intermediate results You must know what you are doing Easy to make mistakes The performance depends on your skills Writing codes may take quite some time Very broad range of applications Extendable with user-defined objectsb Intermediate results at each step Physik-Department T30f (TUM) FeynHelpers 4 / 27

5 FEYNCALC Open source (GPLv3) MATHEMATICA package for symbolic semi-automatic evaluation of Feynman diagrams and algebraic expressions in QFT. Features Suitable for evaluating both single expressions and full Feynman diagrams. The calculation can be organized in many different ways (flexibility) Extensive typesetting for better readability Lorentz index contractions, SU(N) algebra, Dirac algebra, etc. Passarino-Veltman reduction of one-loop amplitudes to standard scalar integrals Basic support for manipulating multi-loop integrals General tools for non-commutative algebra BUT: Essentially only algebraic manipulations, everything else requires extra tools. Physik-Department T30f (TUM) FeynHelpers 5 / 27

6 FEYNCALC developer team Rolf Mertig (GluonVision GmbH): original author of the package, first release 1991 Frederik Orellana (Technical University of Denmark): joined 1997 VS (TUM, soon Zhejiang University): joined 2014 Recent developments (since 2014) Large parts of the code improved or rewritten from scratch. Public source code repository on GITHUB: Online documentation Ships with many sample calculations Extensive unit testing framework New and improved functions for loop calculations. Big emphasis on using FEYNCALC for Effective Field Theory (EFT) calculations. Original motivation for FEYNHELPERS: Matching calculations in relativistic EFTs Upcoming FEYNCALC 9.3 and FEYNONIUM: Matching calculations in nonrelativistic EFTs (in particular NRQED/NRQCD [Caswell & Lepage, 1986, Bodwin et al., 1995], pnrqed/pnrqcd [Pineda & Soto, 1998b, Pineda & Soto, 1998a, Brambilla et al., 2000] ) Physik-Department T30f (TUM) FeynHelpers 6 / 27

7 When is FEYNCALC useful? Small or medium-sized calculations, too specific for fully automatic packages FEYNCALC as a calculator for QFT expressions Cross-check results from other people Extensive manipulations on the level of the amplitudes Limitations of FEYNCALC? Written entirely in WOLFRAM language, cannot be used without MATHEMATICA Inherits MATHEMATICA s performance problems with large number of terms Not really suited for large and complex calculations Much slower than FORM Why not combine FEYNCALC/MATHEMATICA with FORM? Thomas Hahn already had a similar idea many years ago. FORMCALC is much faster than FEYNCALC, but also less flexible Performance-wise it is not so clever to constantly pass very large expressions between MATHEMATICA and FORM However, that would be necessary(?) to preserve the flexibility of FEYNCALC FEYNCALCFORMLINK employs FORM for index contractions and Dirac traces. FORMTRACER is a recent package that provides access to FORM from MATHEMATICA Physik-Department T30f (TUM) FeynHelpers 7 / 27

8 Most used functions for loop calculations ApartFF: Partial fractioning for 1-loop and multi-loop integrals FDS: Shifts in loop momenta for 1-loop and multi-loop integrals TID: Tensor reduction for 1-loop integrals ToPaVe: Converts scalar 1-loop integrals to Passarino Veltman scalar functions PaVeReduce: Reduction of Passarino Veltman coefficient functions to scalar functions FCMultiLoopTID: Tensor reduction for multi-loop integrals Less known functions FCLoopBasisIncompleteQ FCLoopBasisOverDeterminedQ FCLoopBasisFindCompletion FCLoopIBPReducableQ Physik-Department T30f (TUM) FeynHelpers 8 / 27

9 Partial fractioning Scalar loop integrals can be often simplified even further by using partial fractioning. Well known identities (implemented in SPC and Apart2) are q p = 1 2 [(q + p)2 + m 2 2 (q 2 + m 2 1) p 2 m m 2 1], 1 (q 2 m 2 1 )(q2 m 2 2 ) = 1 ( 1 m 2 1 m2 2 q 2 m 2 1 But: Many decompositions, e.g. d D 1 q q 2 (q p) 2 (q + p) = 1 2 p 2 ( d D q 1 q 2 m 2 2 ). 1 q 2 (q p) 1 2 (q p) 2 (q + p) 2 require more sophisticated algorithms. New in FEYNCALC 9: ApartFF introduces partial fractioning algorithm from [Feng, 2012] Compared to the reference MATHEMATICA implementation ( it is fully integrated into FEYNCALC ), In [1]:= ApartFF[FAD[{q}, {q p}, {q + p }], {q}] Out[2]:= 1 p 2 q 2.(q p) 1 2 p 2 q 2.(q 2p) 2 Physik-Department T30f (TUM) FeynHelpers 9 / 27

10 Tensor reduction 1-loop tensor reduction is done via Passarino-Veltman technique: TID TID has received many improvements in FEYNCALC 9 and above Default mode: Reduce each tensor integral to PaVe scalar functions (A 0, B 0, C 0, D 0 ) In [1]:= FCI[GAD[µ].(m + GSD[q]).GAD[µ] FAD[{q, m}]] Out[1]:= γµ.(m + γ q).γ µ (q 2 m 2 ).(q p) 2 In [2]:= TID[%, p + q], q ]// ToPaVe[#, q]& iπ 2 (D 2)A 0 (m 2) γ p Out[2]= 2p 2 iπ 2 B 0 (p 2, 0, m 2) ( ) Dm 2 γ p 2Dmp 2 + Dp 2 γ p 2m 2 γ p 2p 2 γ p 2p 2 Physik-Department T30f (TUM) FeynHelpers 10 / 27

11 Tensor reduction Zero Gram determinants? Detected automatically, reductions switches to Passarino Veltman coefficient functions (e.g. B 1, B 00, C 222 etc.) d D q γ µ (m + /q)γ µ Consider (2π) D (q 2 m 2 )(q p) with 2 p2 = 0 In [1]:= SPD[p, p] = 0; TID[GAD[µ].(m + GSD[q]).GAD[µ] FAD[{q, m}, p + q], q]; Out[2]:= iπ 2 B 0 ( 0, 0, m 2) (Dm Dγ p + 2γ p) iπ 2 (D 2)γ pb 1 ( 0, 0, m 2) Useful options: UsePaVeBasis: Enforces reduction into coefficient functions for any kinematics. GenPaVe: Allows define PaVe functions in a different way (standard is the LOOPTOOLS convention) Isolate: Kinematic coefficients in front of the loop inetgrals will be abbreviated. Use FRH to recover the original form. Physik-Department T30f (TUM) FeynHelpers 11 / 27

12 TENSOR REDUCTION How about multi-loop tensor reduction? In general, not very useful above 1-loop, many scalar products in the denominators can t be cancelled against propagators in the numerators. Still practical for loop momenta contracted with Dirac matrices and Levi-Civita tensors. FEYNCALC 9 features FCMultiLoopTID: uses the same PaVe algorithm as for 1-loop. currently no proper way to handle zero Gram determinants. In [1]:= FCI[FVD[q1, µ] FVD[q2, ν] FAD[q1, q2, {q1 p1}, {q2 p1}, {q1 q2}]] q1 µ q2 ν Out[1]:= q1 2.q2 2.(q1 p1) 2.(q2 p1) 2.(q1 q2) 2 In [2]:= FCMultiLoopTID[%, {q1, q2}] Out[2]:= Dp1 µ p1 ν p1 2 g µν 4(D 1)q2 2.q1 2.(q2 p1) 2.(q1 q2) 2.(q1 p1) 2 p1 2 g µν p1 µ p1 ν 2(D 1)p1 2 q2 2.q1 2.(q2 p1) 2.(q1 p1) + p1 2 g µν p1 µ p1 ν 2 (D 1)p1 2 q2 2.q1 2.(q1 q2) 2.(q1 p1) 2 Dp1 µ p1 ν p1 2 g µν 2(D 1)p1 4 q1 2.(q2 p1) 2.(q1 q2) 2 Physik-Department T30f (TUM) FeynHelpers 12 / 27

13 EXTRACTION OF LOOP INTEGRALS To evaluate the loop integrals outside of FEYNCALC, we need to extract all the unique integrals from the given expression New in FeynCalc 9: FCLoopIsolate In [1]:= gse = FCI[FAD[q, p + q] MTD[Lor3, Lor4] (FVD[ p q, Lor5] MTD[Lor1, Lor3] + FVD[2 p q, Lor3] MTD[Lor1, Lor5] + FVD[ p + 2 q, Lor1] MTD[Lor3, Lor5]) (FVD[p + q, Lor6] MTD[Lor2, Lor4] + FVD[ 2 p + q, Lor4] MTD[Lor2, Lor6] + FVD[p 2 q, Lor2] MTD[Lor4, Lor6]) MTD[Lor5, Lor6]] ( g Lor3Lor4 g Lor5Lor6 g Lor3Lor5 (2q p) Lor1 + g Lor1Lor5 (2p q) Lor3 + g Lor1Lor3 ( p q) Lor5) Out[1]:= q 2.(q p) (g 2 Lor4Lor6 (p 2q) Lor2 + g Lor2Lor6 (q 2p) Lor4 + g Lor2Lor4 (p + q) Lor6) In [2]:= FCLoopIsolate[Contract[gse], { {q}, Head > loop] // Cases2[#, loop] & ( ) ( ) ( ) 1 q Lor1 q Lor2 Out[2]:= loop, loop, loop, q 2.(q p) 2 q 2.(q p) 2 q 2.(q p) 2 ( ) q Lor1 q Lor2 ( ) ( )} pq q 2 loop, loop, loop q 2.(q p) 2 q 2.(q p) 2 q 2.(q p) 2 Furthermore: FCLoopSplit to separate different types of loop integrals (free of loops, scalar integrals with and without scalar products in the numerators, tensor integrals) FCLoopExtract for combined application of FCLoopIsolate and FCLoopSplit Physik-Department T30f (TUM) FeynHelpers 13 / 27

14 TOOLS FOR IBP-REDUCTION Reduction of scalar loop integrals using integration-by-parts (IBP) identities [Chetyrkin & Tkachov, 1981] is a standard technique in modern loop calculations. Many publicly available IBP-packages on the market: FIRE [Smirnov & Smirnov, 2013], LITERED [Lee, 2012], REDUZE [Studerus, 2009], AIR [Anastasiou & Lazopoulos, 2004],... Expected input: loop integrals with propagators that form a basis. What about integrals with an incomplete or overdetermined basis? FCLoopBasisIncompleteQ detects integrals that require a basis completion FCLoopBasisFindCompletion gives a list of propagators (with zero exponents) required to complete the basis FCLoopBasisOverdeterminedQ checks if the propagators are linearly dependent. Such integrals can be decomposed further using ApartFF. In [1]:= FCI[FAD[{q1, m, 2}, {q1 + q3, m}, {q2 q3}, q2]] Out[1]:= 1 ( q1 2 m 2). ( q1 2 m 2). ((q1 + q3) 2 m 2 ).(q2 q3) 2.q2 2 In [2]:= FCLoopBasisIncompleteQ[%, {q1, q2, q3}] Out[2]:= True In [3]:= FCLoopBasisFindCompletion[%%, {q1, q2, q3}][[2]] Out[3]:= {(q1 q2), (q1 q3)} Physik-Department T30f (TUM) FeynHelpers 14 / 27

15 Motivation The field of automatic calculations appears to be a very competitive environment. Some groups do not share their codes at all Others make them available to collaborators only. People behind similar software regarded as competitors. It is more efficient to combine useful tools together than to compete. Useful tools to be used with FEYNCALC for the evaluation of 1-loop integrals: FIRE [Smirnov, 2015] PACKAGE X [Patel, 2015] Challenges: Need to convert between the conventions used in each package and avoid variable shadowing. Solution: FEYNHELPERS [Shtabovenko, 2016] seamlessly integrates both tools into FeynCalc. FORM FeynArts FormLink FeynHelpers FeynCalc FeynHelpers FIRE Package-X Physik-Department T30f (TUM) FeynHelpers 15 / 27

16 Tensor reduction a la Passarino Veltman Very old technique for dealing with tensor 1-loop integrals [Passarino & Veltman, 1979] Still widely used in many loop calculations. Main idea: convert all the tensor integrals into scalar ones (Passarino Veltman coefficient functions) Evaluation of any 1-loop integral can be reduced to the evaluation of the resulting coefficient functions A lot of tools for numerical evaluation: FF [van Oldenborgh, 1991], LOOPTOOLS [Hahn & Perez-Victoria, 1999], QCDLOOP [Carrazza et al., 2016], ONELOOP [van Hameren, 2011], GOLEM95C [Cullen et al., 2011], PJFRY [Fleischer & Riemann, 2011], COLLIER [Denner et al., 2017],... Where to get analytic results for singular kinematics or zero Gram determinants? Often needed for renormalization, EFTs,... Most of the results can be found somewhere in the literature. PACKAGE-X Recent [Patel, 2015] MATHEMATICA package for semi-automatic 1-loop calculations (closed-source freeware) Unique feature: Library of analytic expressions for Passarino Veltman functions with up to 4 legs and almost arbitrary kinematics. Can also extract UV- and IR-parts and expand coefficient functions in their arguments. Someone indeed has collected all those results from the literature! Physik-Department T30f (TUM) FeynHelpers 16 / 27

17 Interface to PACKAGE-X Main function: PaXEvaluate Works: on scalar 1-loop integrals (unit numerators) and Passarino Veltman coefficient functions A, B, C and D Takes two arguments (plus options): input expression, loop momentum. Use PaXEvaluateUV(PaXEvaluateIR) to get the UV(IR)-divergent part of the result PaXEvaluateUVIRSplit returns the full result with the explicit distinction between ɛ UV and ɛ IR. All four functions share the same set of options Physik-Department T30f (TUM) FeynHelpers 17 / 27

18 Let us compute In[1]:= Out[1]= d D q (2π) D 1 q 2 m 2 int=paxevaluate[fad[{q,m}],q,paximplicitprefactor 1/(2Pi)^D] im 2 2 im ( log ( µ 2 ) ) +γ 1 log(4π) 16π 2 ε m 2 16 π 2 Make the result look more compact ( 1/ɛ γ E + log(4π)) using FCHideEpsilon In[2]:= Out[2]= int//fchideepsilon i m2 im 16π ( log ( µ 2 m 2 ) +1 ) 16π 2 Evaluation of Passarino Veltman functions: In[3]:= PaXEvaluate[B0[SPD[p,p],0,m^2]] 1 ( µ 2 ) m 2 log ( m 2 ) ( Out[3]= ε +log m 2 p 2 m 2 ) +log γ+2 πm 2 p 2 m 2 p 2 Physik-Department T30f (TUM) FeynHelpers 18 / 27

19 We can also expand coefficient functions in their parameters (masses or external momenta). To expand B 0 (p 2, 0, m 2 ) around p 2 = m 2 up to first order with PaXEvaluate we first need to assign an arbitrary symbolic value to the scalar product p 2, e.g. pp In[4]:= SPD[p,p]=pp; Then use the option PaXSeries to specify the expansion parameters and activate the option PaXAnalytic In[5]:= PaXEvaluate[B0[SPD[p,p],0,m^2],PaXSeries {{pp,m^2,1}},paxanalytic True] Out[5]= 3 m2 pp (3 m 2 pp) ( log ( µ 2 ) ) +γ 2+log(π) m 2 2m 2 2εm 2 Get only in the UV-part of this series: PaXEvaluate with PaXEvaluateUV In[6]:= PaXEvaluateUV[B0[SPD[p,p],0,m^2],PaXSeries {{pp,m^2,1}},paxanalytic True] 1 Out[6]= ε UV The IR-part is equally easy In[7]:= PaXEvaluateIR[B0[SPD[p,p],0,m^2],PaXSeries {{pp,m^2,1}},paxanalytic True] Out[7]= m2 pp 2m 2 ε IR Full result with the explicit distinction between UV and IR singularities In[8]:= PaXEvaluateUVIRSplit[B0[SPD[p,p],0,m^2],PaXSeries {{pp,m^2,1}},paxanalytic True] Out[8]= m2 pp (3 m 2 pp) ( log ( µ 2 ) ) +γ 2+log(π) m m 2 ε IR 2 m 2 ε UV Physik-Department T30f (TUM) FeynHelpers 19 / 27

20 Interface to FIRE Main function: FIREBurn Reduces scalar multi-loop integrals to simpler ones using IBP-techniques. Takes three arguments (plus options): input expression, list of loop momenta and the list of external momenta. Automatically adds propagators to integrals with incomplete bases of propagators Automatically detects integrals with linearly dependent propagators Current limitations No recognition of integral families Each loop integral is evaluated separately Hence, rather inefficient... Physik-Department T30f (TUM) FeynHelpers 20 / 27

21 IBP-reduce the 1-loop integral In[9]:= Out[9]= d D l [l 2 ] 2 [(l p) 2 m 2 ] 2 FIREBurn[FAD[{l,0,2},{l p,m,2}],{l},{p}] (D 2)(2 D m 2 9 m 2 pp) 2m 2 (m 2 pp) 3 ((l p) 2 m 2 ) (D 3)(D m2 +D pp 4m 2 6 pp) (m 2 pp) 3 l 2.((l p) 2 m 2 ) No dependence on external momenta supply an empty list for the third argument. For d D q 1 d D q 2 d D q 3 example, for [q 2 1 m2 ] 2 [(q 1 + q 3 ) 2 m 2 ][(q 2 q 3 ) 2 ][q 2 2 ]2 In[10]:= Out[10]= FIREBurn[FAD[{q1,m,2},{q1+q3,m},{q2 q3},{q2,0,2}],{q1,q2,q3},{}] (D 3)(3 D 10)(3 D 8) 16(2 D 7)m 4 (q1 2 m 2 ).q2 2.(q2 q3) 2.((q1+q3) 2 m 2 ) Physik-Department T30f (TUM) FeynHelpers 21 / 27

22 My favourite example: Calculation of the QCD on-shell vertex for QCD/NRQCD matching [Manohar, 1997] Physik-Department T30f (TUM) FeynHelpers 22 / 27

23 Reproducing results of Manohar QCD side of the matching: The on-shell vertex function is evaluated using background field formalism [Abbott, 1981, Abbott, 1982] and expanded up to the first order in the relative momentum squared. The abelian and non-abelian diagrams can be parametrized as µ ( ) = igt a ū(p 2) F (V) 1 (q 2 )γ µ + if (V) 2 (q 2 ) σµν q ν u(p 1), (1) 2m µ ( ) = igt a ū(p 2) F (g) 1 (q 2 )γ µ + if (g) 2 (q 2 ) σµν q ν u(p 1), (2) 2m where q p 2 = p 1. Our goal is to compute the form-factors F (V) 1/2 (q2 ) and F (g) 1/2 (q2 ) expanded up to O(q 2 /m 2 ). Physik-Department T30f (TUM) FeynHelpers 23 / 27

24 Not so simple to do with software It is not a total cross-section/decay rate, so fully automatic tools are not useful. Need to expand Passarino Veltman integrals in the relative momentum. Distinguish between UV and IR singularities in DR using different regulators ɛ UV and ɛ IR. Since this is a matching, we want analytic results. With FEYNHELPERS this computation is straight-forward. We use the abbreviation 1/ɛ γ E + log(4π) and use D = 4 2ɛ To compare to the literature we need to switch to D = 4 ɛ via 1/ɛ 2/ɛ and eliminate γ E and log(4π) by substituting µ 2 with µ 2 e γ E (following the conventions 4π of Manohar). Physik-Department T30f (TUM) FeynHelpers 24 / 27

25 Physik-Department T30f (TUM) FeynHelpers 25 / 27

26 Another example: photon and electron self-energies (with full gauge dependence) in massless QED at 2-loops. Requires evaluation of six 2-loop diagrams + + i/pσ 2V (p 2 ), µ ν + µ ν + µ ν i(p 2 g µν p µ p ν )Π 2 (p 2 ), Final results contain only two master integrals Need to use FCMultiLoopTID instead of TID As expected, the vacuum polarization amplitude is gauge invariant, while the electron self-energy depends on the gauge parameter ξ. These results precisely agree with the literature, e.g. Eq and Eq from [Grozin, 2005]. Physik-Department T30f (TUM) FeynHelpers 26 / 27

27 With FeynHelpers many types of calculations that were difficult or hardly feasible with FeynCalc previously become very simple. Goals for future development: improve the integration with Package-X and FIRE but also to add new interfaces to interesting and useful HEP tools. FeynHelpers comes with many examples. Highlight: 1-loop QED renormalization in MS, MS and on-shell schemes with full gauge dependence (also useful for teaching). Physik-Department T30f (TUM) FeynHelpers 27 / 27

28 Backup Abbott, L. (1981). The background field method beyond one loop. Nucl. Phys. B, 185, Abbott, L. (1982). Introduction to the Background Field Method. Acta Phys. Polon., B13, 33. Anastasiou, C. & Lazopoulos, A. (2004). Automatic Integral Reduction for Higher Order Perturbative Calculations. JHEP, 0407, 046. Belanger, G., Boudjema, F., Fujimoto, J., Ishikawa, T., Kaneko, T., Kato, K., & Shimizu, Y. (2006). GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks. Phys. Rept., 430, Bodwin, G. T., Braaten, E., & Lepage, G. P. (1995). Rigorous QCD Analysis of Inclusive Annihilation and Production of Heavy Quarkonium. Phys. Rev. D, 51, Physik-Department T30f (TUM) FeynHelpers 27 / 27

29 Backup Borowka, S., Heinrich, G., Jahn, S., Jones, S. P., Kerner, M., Schlenk, J., & Zirke, T. pysecdec: a toolbox for the numerical evaluation of multi-scale integrals. Brambilla, N., Pineda, A., Soto, J., & Vairo, A. (2000). Potential NRQCD: an effective theory for heavy quarkonium. Nucl. Phys. B, 566, 275. Carrazza, S., Ellis, R. K., & Zanderighi, G. (2016). QCDLoop: a comprehensive framework for one-loop scalar integrals. Comput. Phys. Commun., 209, Caswell, W. & Lepage, G. (1986). Effective lagrangians for bound state problems in QED, QCD, and other field theories. Phys. Lett. B, 167(4), Chetyrkin, K. & Tkachov, F. (1981). Integration by parts: The algorithm to calculate β-functions in 4 loops. Nucl. Phys. B, 192(1), Christensen, N. D. & Duhr, C. (2008). FeynRules - Feynman rules made easy. Comput. Phys. Commun., 180, Physik-Department T30f (TUM) FeynHelpers 27 / 27

30 Backup Cullen, G., Guillet, J. P., Heinrich, G., Kleinschmidt, T., Pilon, E., Reiter, T., & Rodgers, M. (2011). Golem95C: A library for one-loop integrals with complex masses. Comput. Phys. Commun., 182, Cullen, G., van Deurzen, H., Greiner, N., Heinrich, G., Luisoni, G., Mastrolia, P., Mirabella, E., Ossola, G., Peraro, T., Schlenk, J., von Soden-Fraunhofen, J. F., & Tramontano, F. (2014). GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond. Eur. Phys. J. C, 74, 8, Cyrol, A. K., Mitter, M., & Strodthoff, N. (2016). FormTracer - A Mathematica Tracing Package Using FORM. Denner, A., Dittmaier, S., & Hofer, L. (2017). Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations. Comput. Phys. Commun., 212, Feng, F. (2012). $Apart: A Generalized Mathematica Apart Function. Comput. Phys. Commun., 183, Physik-Department T30f (TUM) FeynHelpers 27 / 27

31 Backup Fleischer, J. & Riemann, T. (2011). A complete algebraic reduction of one-loop tensor Feynman integrals. Phys. Rev. D, 83, Grozin, A. (2005). Lectures on QED and QCD. In 3rd Dubna International Advanced School of Theoretical Physics Dubna, Russia, January 29-February 6, 2005 (pp ). Hahn, T. & Perez-Victoria, M. (1999). Automatized One-Loop Calculations in 4 and D dimensions. Comput. Phys. Commun., 118, Jamin, M. & Lautenbacher, M. E. (1993). TRACER version 1.1. Comput. Phys. Commun., 74(2), Lee, R. N. (2012). Presenting LiteRed: a tool for the Loop InTEgrals REDuction. Manohar, A. (1997). The HQET/NRQCD Lagrangian to order α/m 3. Physik-Department T30f (TUM) FeynHelpers 27 / 27

32 Backup Phys. Rev. D, 56, Mertig, R., Böhm, M., & Denner, A. (1991). Feyn Calc - Computer-algebraic calculation of Feynman amplitudes. Comput. Phys. Commun., 64(3), Nogueira, P. (1993). Automatic Feynman graph generation. J. Comput. Phys., 105, Passarino, G. & Veltman, M. (1979). One Loop Corrections for e + e Annihilation Into µ + µ in the Weinberg Model. Nucl. Phys., B160, 151. Patel, H. H. (2015). Package-X: A Mathematica package for the analytic calculation of one-loop integrals. Comput. Phys. Commun., 197, Pineda, A. & Soto, J. (1998a). Effective Field Theory for Ultrasoft Momenta in NRQCD and NRQED. Nucl.Phys.Proc.Suppl., 64, Pineda, A. & Soto, J. (1998b). Physik-Department T30f (TUM) FeynHelpers 27 / 27

33 Backup The Lamb Shift in Dimensional Regularization. Phys. Lett. B, 420, Ruijl, B., Ueda, T., & Vermaseren, J. A. M. (2017). Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams. Shtabovenko, V. (2016). FeynHelpers: Connecting FeynCalc to FIRE and Package-X. Shtabovenko, V., Mertig, R., & Orellana, F. (2016). New Developments in FeynCalc 9.0. Comput. Phys. Commun., 207, Smirnov, A. V. (2015). FIRE5: a C++ implementation of Feynman Integral REduction. Comput. Phys. Commun., 189, Smirnov, A. V. & Smirnov, V. A. (2013). FIRE4, LiteRed and accompanying tools to solve integration by parts relations. Comput. Phys. Commun., 184(12), Studerus, C. (2009). Physik-Department T30f (TUM) FeynHelpers 27 / 27

34 Backup Reduze - Feynman Integral Reduction in C++. Comput. Phys. Commun., 181, Tentyukov, M. & Fleischer, J. (2000). A Feynman Diagram Analyser DIANA. Comput. Phys. Commun., 132, van Hameren, A. (2011). OneLOop: for the evaluation of one-loop scalar functions. Comput. Phys. Commun., 182, van Oldenborgh, G. (1991). FF - a package to evaluate one-loop Feynman diagrams. Comput. Phys. Commun., 66(1), Wang, J.-X. (2004). Progress in FDC project. Nucl. Instrum. Meth. A, 534(1-2), Wiebusch, M. (2014). HEPMath: A Mathematica Package for Semi-Automatic Computations in High Energy Physics. Comput. Phys. Commun., 195, Physik-Department T30f (TUM) FeynHelpers 27 / 27

Numerical multi-loop calculations: tools and applications

Numerical multi-loop calculations: tools and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical multi-loop calculations: tools and applications To cite this article: S. Borowka et al 2016 J. Phys.: Conf. Ser. 762 012073 Related content

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

Automation of One-Loop Calculations with Golem/Samurai

Automation of One-Loop Calculations with Golem/Samurai Automation of One-Loop Calculations with Golem/Samurai Giovanni Ossola New York City College of Technology City University of New York (CUNY) In collaboration with: G. Cullen, N. Greiner, G. Heinrich,

More information

Automating Feynman-diagrammatic calculations

Automating Feynman-diagrammatic calculations Automating Feynman-diagrammatic calculations Thomas Hahn Max-Planck-Institut für Physik T. Hahn, Automating Feynman-diagrammatic calculations p.1/28 What those Loop Calculations are all about Theorists

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

arxiv: v1 [hep-ph] 26 Nov 2017

arxiv: v1 [hep-ph] 26 Nov 2017 Recent Developments in Higher-Order Calculations: Hard Functions at NLO with GoSam arxiv:1711.09462v1 [hep-ph] 26 Nov 2017 Alessandro Broggio a alessandro.broggio@tum.de Andrea Ferroglia b,c aferroglia@citytech.cuny.edu

More information

NLO QCD calculations with the OPP method

NLO QCD calculations with the OPP method A. van Hameren The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego 15, 31-3 Krakow, Poland E-mail: hameren@if.edu.pl Institute of Nuclear Physics, NCSR Demokritos,

More information

arxiv:hep-ph/ v1 30 Oct 2002

arxiv:hep-ph/ v1 30 Oct 2002 DESY 02-179 hep-ph/0210426 Calculating two- and three-body decays with FeynArts and FormCalc Michael Klasen arxiv:hep-ph/0210426v1 30 Oct 2002 II. Institut für Theoretische Physik, Universität Hamburg,

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

Calculating four-loop massless propagators with Forcer

Calculating four-loop massless propagators with Forcer Calculating four-loop massless propagators with Forcer Takahiro Ueda Nikhef, The Netherlands Collaboration with: Ben Ruijl and Jos Vermaseren 18 Jan. 2016 ACAT2016, UTFSM, Valparaíso 1 / 30 Contents Introduction

More information

Automatic calculation of one-loop amplitudes

Automatic calculation of one-loop amplitudes The H. Niewodniczański Institute of Nuclear Physics Polisch Academy of Sciences Radzikowskiego, - Krakow, Poland E-mail: hameren@if.edu.pl C.G. Papadopoulos Institute of Nuclear Physics, NCSR Demokritos,

More information

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS

SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS SPLITTING FUNCTIONS AND FEYNMAN INTEGRALS Germán F. R. Sborlini Departamento de Física, FCEyN, UBA (Argentina) 10/12/2012 - IFIC CONTENT Introduction Collinear limits Splitting functions Computing splitting

More information

Recent Results in NRQCD

Recent Results in NRQCD Max-Planck-Institute für Physik (Werner-Heisenberg-Institut) Recent Results in NRQCD Pedro D. Ruiz-Femenía Continuous Advances in QCD 2006 Continuous Advances in QCD 2006 May 11-14, University of Minnesota

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Some variations of the reduction of one-loop Feynman tensor integrals

Some variations of the reduction of one-loop Feynman tensor integrals Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Some variations of the reduction of one-loop Feynman tensor integrals Tord Riemann DESY, Zeuthen in

More information

Reducing full one-loop amplitudes at the integrand level

Reducing full one-loop amplitudes at the integrand level Reducing full one-loop amplitudes at the integrand level Costas Papadopoulos, Les Houches 2007 In collaboration with G. Ossola and R. Pittau 27/06/2007 HEP-NCSR DEMOKRITOS 1 The History Passarino-Veltman

More information

SM/BSM physics with GoSam

SM/BSM physics with GoSam Physik-Institut SM/BSM physics with GoSam Nicolas Greiner On behalf of the GoSam collaboration Monte Carlo Tools for Physics Beyond the Standard Model -- 20-24.7.2016 Beijing Outline q Very brief introduction

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

PoS(Confinement X)133

PoS(Confinement X)133 Endpoint Logarithms in e + e J/ψ + η c Geoffrey T. Bodwin HEP Division, Argonne National Laboratory E-mail: gtb@hep.anl.gov Department of Physics, Korea University E-mail: neville@korea.ac.kr Jungil Lee

More information

Automated one-loop calculations with GoSam 2.0

Automated one-loop calculations with GoSam 2.0 H. van Deurzen, N. Greiner,, G. Luisoni, E. Mirabella, T. Peraro, J. Schlenk, J. F. von Soden-Fraunhofen Max Planck Institute for Physics, Munich {hdeurzen, greiner, gudrun, luisonig, mirabell, peraro,

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

Forcer: a FORM program for 4-loop massless propagators

Forcer: a FORM program for 4-loop massless propagators Forcer: a FORM program for 4-loop massless propagators, a B. Ruijl ab and J.A.M. Vermaseren a a Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands b Leiden Centre of Data Science,

More information

GoSam: Automated One Loop Calculations within and beyond the SM

GoSam: Automated One Loop Calculations within and beyond the SM GoSam: Automated One Loop Calculations within and beyond the SM Nicolas Greiner Max-Planck Institute for Physics in collaboration with G.Cullen,H.vanDeurzen,G.Heinrich,G.Luisoni,P.Mastrolia,E.Mirabella,G.Ossola,T.Peraro,J.Schlenk,

More information

Tord Riemann. DESY, Zeuthen, Germany

Tord Riemann. DESY, Zeuthen, Germany 1/ v. 2010-08-31 1:2 T. Riemann Tensor reduction Corfu 2010, Greece Algebraic tensor Feynman integral reduction Tord Riemann DESY, Zeuthen, Germany Based on work done in collaboration with Jochem Fleischer

More information

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011)

Parallel adaptive methods for Feynman loop integrals. Conference on Computational Physics (CCP 2011) Outline Elise de Doncker 1 Fukuko Yuasa 2 1 Department of Computer Science, Western Michigan University, Kalamazoo MI 49008, U. S. 2 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki

More information

Numerical evaluation of multi-loop integrals

Numerical evaluation of multi-loop integrals Max-Planck-Institut für Physik, München, Germany E-mail: sjahn@mpp.mpg.de We present updates on the development of pyse CDE C, a toolbox to numerically evaluate parameter integrals in the context of dimensional

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

In collaboration with:

In collaboration with: Gionata Luisoni luisonig@mpp.mpg.de Max Planck Institute for Physics Munich In collaboration with: G.Cullen, H. Van Deurzen, N. Greiner, G.Heinrich, P.Mastrolia, E.Mirabella, G.Ossola, T.Peraro, J. Reichel,

More information

Numerical evaluation of multi-scale integrals with SecDec 3

Numerical evaluation of multi-scale integrals with SecDec 3 Numerical evaluation of multi-scale integrals with SecDec 3 Sophia Borowka University of Zurich Project in collaboration with G. Heinrich, S. Jones, M. Kerner, J. Schlenk, T. Zirke 152.6595 [hep-ph] (CPC,

More information

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D

LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D LOOP-TREE DUALITY AND QUANTUM FIELD THEORY IN 4D Germán F. R. Sborlini in collaboration with R. Hernández-Pinto and G. Rodrigo Institut de Física Corpuscular, UV- CSIC (Spain) and Departamento de Física,

More information

7 Veltman-Passarino Reduction

7 Veltman-Passarino Reduction 7 Veltman-Passarino Reduction This is a method of expressing an n-point loop integral with r powers of the loop momentum l in the numerator, in terms of scalar s-point functions with s = n r, n. scalar

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations

Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Reduction of one-loop amplitudes at the integrand level-nlo QCD calculations Costas G. Papadopoulos NCSR Demokritos, Athens Epiphany 2008, Krakow, 3-6 January 2008 Costas G. Papadopoulos (Athens) OPP Reduction

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

GoSam: automated multi-process scattering amplitudes at one loop

GoSam: automated multi-process scattering amplitudes at one loop GoSam: automated multi-process scattering amplitudes at one loop Gionata Luisoni luisonig@mpp.mpg.de Max Planck Institute for Physics Munich In collaboration with: G.Cullen, N. Greiner, G.Heinrich, P.Mastrolia,

More information

A semi-numerical approach to one-loop multi-leg amplitudes p.1

A semi-numerical approach to one-loop multi-leg amplitudes p.1 A semi-numerical approach to one-loop multi-leg amplitudes Gudrun Heinrich Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII LoopFest V, SLAC, 21.06.06 A semi-numerical approach to one-loop multi-leg

More information

One-loop computations in QFT: a modern perspective

One-loop computations in QFT: a modern perspective One-loop computations in QFT: a modern perspective Kirill Melnikov Johns Hopkins University December 2012 Lectures based on R.K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, ``One-loop computations in

More information

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich

Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich Precision calculations for collider processes Gudrun Heinrich Max Planck Institute for Physics, Munich Scientific Board Meeting July 27, 2016 Overview tools FeynArts/FormCalc, Cuba GoSam SecDec NLO phenomenology

More information

Automatic One-Loop Calculations

Automatic One-Loop Calculations Automatic One-Loop Calculations with FeynArts and FormCalc Thomas Hahn Max-Planck-Institut für Physik München T. Hahn, Automatic One-Loop Calculations with FeynArts and FormCalc p.1 What are Feynman Diagrams

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

arxiv: v1 [hep-ph] 21 Sep 2007

arxiv: v1 [hep-ph] 21 Sep 2007 The QCD potential Antonio Vairo arxiv:0709.3341v1 [hep-ph] 1 Sep 007 Dipartimento di Fisica dell Università di Milano and INFN, via Celoria 16, 0133 Milano, Italy IFIC, Universitat de València-CSIC, Apt.

More information

Automated NLO calculations with GoSam

Automated NLO calculations with GoSam Automated NLO calculations with GoSam Gionata Luisoni gionata.luisoni@durham.ac.uk Institute for Particle Physics Phenomenology University of Durham Max-Planck-Institut für Physik München In collaboration

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

FeynCalc Tutorial 1 (Dated: September 8, 2015)

FeynCalc Tutorial 1 (Dated: September 8, 2015) FeynCalc Tutorial 1 (Dated: Septemer 8, 2015) In this tutorial, we will learn to use Mathematica and FeynCalc to contract Lorentz indices. After some practice to get familiar with FeynCalc, we will do

More information

FIRE4, LiteRed and accompanying tools to solve integration by parts relations

FIRE4, LiteRed and accompanying tools to solve integration by parts relations Prepared for submission to JHEP HU-EP-13/04 HU-Mathematik:05-2013 FIRE4, LiteRed and accompanying tools to solve integration by parts relations Alexander V. Smirnov a Vladimir A. Smirnov b,c a Scientific

More information

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations

Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Towards a more accurate prediction of W +b jets with an automatized approach to one-loop calculations Laura Reina Loops and Legs in Quantum Field Theory Wernigerode, April 2012 Outline Motivations: W +b-jet

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

Integrand-Reduction Techniques for NLO Calculations and Beyond

Integrand-Reduction Techniques for NLO Calculations and Beyond Integrand-Reduction Techniques for NLO Calculations and Beyond Giovanni Ossola New York City College of Technology City University of New York (CUNY) RadCor-LoopFest 2015 @ UCLA, June 15-19, 2015 Based

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

Multi-loop calculations: numerical methods and applications

Multi-loop calculations: numerical methods and applications Journal of Physics: Conference Series PAPER OPEN ACCESS Multi-loop calculations: numerical methods and applications To cite this article: S. Borowka et al 217 J. Phys.: Conf. Ser. 92 123 View the article

More information

Loop-Tree Duality Method

Loop-Tree Duality Method Numerical Implementation of the Loop-Tree Duality Method IFIC Sebastian Buchta in collaboration with G. Rodrigo,! P. Draggiotis, G. Chachamis and I. Malamos 24. July 2015 Outline 1.Introduction! 2.A new

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

Precision Calculations for the LHC

Precision Calculations for the LHC Precision Calculations for the LHC LHC Olympics 2006 Zvi Bern, UCLA with Carola Berger, Lance Dixon, Darren Forde and David Kosower hep-ph/0501240 hep-ph/0505055 hep-ph/0507005 hep-ph/0604195 hep-ph/0607014

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

Modern Feynman Diagrammatic One-Loop Calculations

Modern Feynman Diagrammatic One-Loop Calculations Modern Feynman Diagrammatic One-Loop Calculations G. Cullen, a N. Greiner, b A. Guffanti, c J.P. Guillet, d G. Heinrich, e S. Karg, f N. Kauer, g T. Kleinschmidt, e M. Koch-Janusz, h G. Luisoni, e P. Mastrolia,

More information

GoSam: A program for automated one-loop calculations

GoSam: A program for automated one-loop calculations GoSam: A program for automated one-loop calculations G Cullen 1, N Greiner 2, G Heinrich 2, G Luisoni 3, P Mastrolia 2,4, G Ossola 5, T Reiter 2, F Tramontano 6 1 Deutsches Elektronen-Synchrotron DESY,

More information

High order corrections in theory of heavy quarkonium

High order corrections in theory of heavy quarkonium High order corrections in theory of heavy quarkonium Alexander Penin TTP Karlsruhe & INR Moscow ECT Workshop in Heavy Quarkonium Trento, Italy, August 17-31, 2006 A. Penin, TTP Karlsruhe & INR Moscow ECT

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

Numerical multi-loop calculations with SecDec

Numerical multi-loop calculations with SecDec Journal of Physics: Conference Series OPEN ACCESS Numerical multi-loop calculations with SecDec To cite this article: Sophia Borowka and Gudrun Heinrich 214 J. Phys.: Conf. Ser. 523 1248 View the article

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD. Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016 PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD Taushif Ahmed Institute of Mathematical Sciences, India March, 016 PROLOGUE: SM & MSSM SM Complex scalar doublet (4 DOF) 3 DOF transform into longitudinal modes

More information

Feynman Diagram calculations with FeynArts and FormCalc

Feynman Diagram calculations with FeynArts and FormCalc Feynman Diagram calculations with FeynArts and FormCalc Thomas Hahn Max-Planck-Institut für Physik München T. Hahn, FeynArts and FormCalc p.1 Automated Diagram Evaluation FeynArts Amplitudes FormCalc Fortran

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

Simplified differential equations approach for NNLO calculations

Simplified differential equations approach for NNLO calculations Simplified differential equations approach for NNLO calculations Costas. G. Papadopoulos INPP, NCSR Demokritos, Athens UCLA, June 19, 2015 Costas. G. Papadopoulos NNLO Radcor-Loopfest, LA, 2015 1 / 39

More information

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta

A complete NLO calculation of the J/ψ production at Tevatron and LHC In collaboration with Wang Kai and Chao Kuang-Ta A complete NLO calculation of the J/ψ production at Tevatron and LHC Ma Yan-Qing ( 马滟青 ) Department of physics, Peking University yqma.cn@gmail.com In collaboration with Wang Kai and Chao Kuang-Ta p.1

More information

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV

NLO-QCD calculation in GRACE. - GRACE status - Y. Kurihara (KEK) GRACE Group LoopFest IV NLO-QCD calculation in GRACE - GRACE status - Y. Kurihara (KEK) GRACE Group 19/Aug./2005 @ LoopFest IV GRACE Author list J. Fujimoto, T. Ishikawa, M. Jimbo, T. Kaneko, K. Kato, S. Kawabata, T. Kon, Y.

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

Maximal Unitarity at Two Loops

Maximal Unitarity at Two Loops Maximal Unitarity at Two Loops David A. Kosower Institut de Physique Théorique, CEA Saclay work with Kasper Larsen & Henrik Johansson; & work of Simon Caron- Huot & Kasper Larsen 1108.1180, 1205.0801,

More information

Recent developments in automated NLO calculations

Recent developments in automated NLO calculations Recent developments in automated NLO calculations Giuseppe Bevilacqua NCSR Demokritos, Athens Workshop on Standard Model and Beyond and Standard Cosmology Corfu - August 31, 2009 In collaboration with

More information

The rare decay H Zγ in perturbative QCD

The rare decay H Zγ in perturbative QCD The rare decay H Zγ in perturbative QCD [arxiv: hep-ph/1505.00561] Thomas Gehrmann, Sam Guns & Dominik Kara June 15, 2015 RADCOR 2015 AND LOOPFEST XIV - UNIVERSITY OF CALIFORNIA, LOS ANGELES Z Z H g q

More information

The Pentabox Master Integrals with the Simplified Differential Equations approach

The Pentabox Master Integrals with the Simplified Differential Equations approach The Pentabox Master Integrals with the Simplified Differential Equations approach Costas G. Papadopoulos INPP, NCSR Demokritos Zurich, August 25, 2016 C.G.Papadopoulos (INPP) 5box QCD@LHC 2016 1 / 36 Introduction

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

Electroweak accuracy in V-pair production at the LHC

Electroweak accuracy in V-pair production at the LHC Electroweak accuracy in V-pair production at the LHC Anastasiya Bierweiler Karlsruhe Institute of Technology (KIT), Institut für Theoretische Teilchenphysik, D-7628 Karlsruhe, Germany E-mail: nastya@particle.uni-karlsruhe.de

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

arxiv: v1 [hep-ph] 4 Jul 2016

arxiv: v1 [hep-ph] 4 Jul 2016 Attacking One-loop Multi-leg Feynman Integrals with the Loop-Tree Duality arxiv:1607.00875v1 [hep-ph] 4 Jul 2016 Instituto de Física Teórica UAM/CSIC, Nicolás Cabrera 15 & Universidad Autónoma de Madrid,

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

TVID: Three-loop Vacuum Integrals from Dispersion relations

TVID: Three-loop Vacuum Integrals from Dispersion relations TVID: Three-loop Vacuum Integrals from Dispersion relations Stefan Bauberger, Ayres Freitas Hochschule für Philosophie, Philosophische Fakultät S.J., Kaulbachstr. 3, 80539 München, Germany Pittsburgh Particle-physics

More information

arxiv: v1 [hep-ph] 28 Oct 2013

arxiv: v1 [hep-ph] 28 Oct 2013 IFJPAN-IV-2013-18 SMU-HEP-13-24 Virtual Corrections to the NLO Splitting Functions for Monte Carlo: the non-singlet case O. Gituliar a, S. Jadach a, A. Kusina b, M. Skrzypek a a Institute of Nuclear Physics,

More information

A pnrqcd approach to t t near threshold

A pnrqcd approach to t t near threshold LoopFest V, SLAC, 20. June 2006 A pnrqcd approach to t t near threshold Adrian Signer IPPP, Durham University BASED ON WORK DONE IN COLLABORATION WITH A. PINEDA AND M. BENEKE, V. SMIRNOV LoopFest V p.

More information

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops Physics Amplitudes Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops Josh Nohle [Bern, Davies, Dennen, Huang, JN - arxiv: 1303.6605] [JN - arxiv:1309.7416] [Bern, Davies, JN

More information

RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW. FINN RAVNDAL a. Institute of Physics, University of Oslo, N-0316 Oslo, Norway

RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW. FINN RAVNDAL a. Institute of Physics, University of Oslo, N-0316 Oslo, Norway RADIATIVE CORRECTIONS TO THE STEFAN-BOLTZMANN LAW FINN RAVNDAL a Institute of Physics, University of Oslo, N-0316 Oslo, Norway Abstract Photons in blackbody radiation have non-zero interactions due to

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

arxiv: v1 [hep-ph] 20 Jan 2012

arxiv: v1 [hep-ph] 20 Jan 2012 ZU-TH 01/12 MZ-TH/12-03 BI-TP 2012/02 Reduze 2 Distributed Feynman Integral Reduction arxiv:1201.4330v1 [hep-ph] 20 Jan 2012 A. von Manteuffel, a,b C. Studerus c a Institut für Theoretische Physik, Universität

More information

Charged Lepton Flavor Violation in Electron-Positron Collisions

Charged Lepton Flavor Violation in Electron-Positron Collisions Charged Lepton Flavor iolation in Electron-Positron Collisions Wayne State University Summer 2016 Physics REU Final Report Advisor: Prof. Alexey Petrov Ching Li Abstract In the Standard Model, on-flavor

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

arxiv: v1 [hep-ph] 28 Nov 2011

arxiv: v1 [hep-ph] 28 Nov 2011 arxiv:1111.6534v1 [hep-ph] 28 Nov 2011 GoSam: A program for automated one-loop Calculations G. Cullen Deutsches Elektronen-Synchrotron DESY, Zeuthen, Germany N. Greiner, G. Heinrich 1, T. Reiter Max-Planck-Institute

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

N = 4 SYM and new insights into

N = 4 SYM and new insights into N = 4 SYM and new insights into QCD tree-level amplitudes N = 4 SUSY and QCD workshop LPTHE, Jussieu, Paris Dec 12, 2008 Henrik Johansson, UCLA Bern, Carrasco, HJ, Kosower arxiv:0705.1864 [hep-th] Bern,

More information