1) Yes 2) No 3) The energy principle does not apply in this situation. Would this be a violation of the energy principle?

Size: px
Start display at page:

Download "1) Yes 2) No 3) The energy principle does not apply in this situation. Would this be a violation of the energy principle?"

Transcription

1 Q12.1.a You put an ice cube into a styrofoam cup containing hot coffee. You would probably be surprised if the ice cube got colder and the coffee got hotter. 1) Yes 2) No 3) The energy principle does not apply in this situation Would this be a violation of the energy principle?

2 Q12.2.a Consider 3 quantized oscillators (a model for 1 atom). They share 4 "quanta" of energy. One way to arrange the energy among these oscillators can be written as "400" (4 in the first oscillator, none in the others). Another is "103" (1 in the first oscillator, none in the second, 3 in the third). List all the ways you can arrange these 4 quanta of energy among the 3 oscillators; how many arrangements are there? 1) 3 ways 2) 9 ways 3) 12 ways 4) 15 ways 5) 18 ways 6) 21 ways

3 Q12.2.b Consider 4 quantized oscillators (a model for 1 and 1/3 atoms!). They share 2 "quanta" of energy. List all the ways you can arrange these 2 quanta of energy among the 4 oscillators (such as "2000"); how many arrangements are there? 1) 4 2) 7 3) 10 4) 15 5) 20

4 Q12.2.b1 If q = 300 and N = 100 what is the value of = (q + N 1)! / (q!(n-1)!)? 1) e 81 2) e 95 3) e 96 4) e 96 5) 0

5 Q12.2.c Two objects share a total energy E = E1+E2. There are 10 ways to arrange an amount of energy E1 in the first object and 15 ways to arrange an amount of energy E2 in the second object. How many different ways are there to arrange the total energy E = E1+E2 so that there is E1 in the first object and E2 in the other? 1) 10 2) 15 3) 25 4) 150 5) 1E15

6 Q12.2.d A system of 300 oscillators contains 100 quanta of energy. What is the physical meaning of this model? 1) one atom oscillating in 300 dimensions 2) 300 atoms, each in the 100th energy level 3) 300 atoms with 100 joules of energy distributed among them 4) 100 atoms with 300 joules of energy distributed among them 5) 100 atoms with 100 * hbar*sqrt(ks/m) joules of energy among them 6) something else

7

8 Q12.2.e: Which arrangement is most probable? 1) A 2) B 3) C 4) D 5) They re equally probable

9 Q12.5.a Inside an insulated container two aluminum blocks, 1 kg and 2 kg, have been in contact for a long time. What physical property is the same for the two blocks? 1) the mass 2) the temperature 3) the volume 4) the thermal energy 5) the weight

10 Q12.5.b The slope of a graph of entropy vs. energy (ds/de) in a metal block is related to the temperature of the block. From the graph of entropy for two blocks in contact, we see that the block with the larger slope tends to gain energy from the block with the smaller slope. Therefore, which of these statements is true? 1) Big ds/de means high temperature 2) Small ds/de means high temperature

11 Q12.5.c There is thermal transfer of energy of 5000 J into a system. The entropy of the system increases by 50 J/K. What is the approximate temperature of the system? 1) 5000 K 2) 100 K 3) 50 K 4) 0.01 K 5) K

12 Q12.5.d Initially the entropy of object A is 100 J/K, and the entropy of object B is also 100 J/K. Then both objects are immersed in large vats of hot water. When the thermal energy of A has increased by 1000 joules, its entropy is 200 J/K. When the thermal energy of B has increased by 2000 joules, its entropy is 300 J/K. Which object is at a higher temperature? 1) A is at a higher temperature than B 2) B is at a higher temperature than A 3) Their temperatures are the same.

13 Q12.5.e Consider a 3 kg block of aluminum. One mole of aluminum has a mass of 27 grams (0.027 kg). From Young's modulus we determined that the stiffness of the interatomic bond is 16 N/m, but in the Einstein model the x, y, and z oscillations each involve 2 half-length springs, so the effective stiffness is 64 N/m J s; 1 mol = 6 10 atoms What is the energy in joules of one quantum of energy? 1) 1.62e-34 J 2) 4.85e-34 J 3) 5.11e-33 J 4) 1.25e-22 J 5) 3.96e-21 J

14 Q12.5.f Here is a table of the number of ways to arrange energy in a certain microscopic object, as a function of the energy in the object: E, J 4E-21 6E-21 8E-21 10E-21 12E-21 14E-21 16E-21 #ways When the energy is 12E-21 J, what is the temperature? k = 1.38E-23 J/K. 1) K 2) K 3) K 4) K 5) K

15 Q12.6.a: We have two blocks, one aluminum (Al) and one lead (Pb), each containing 6e23 atoms (one mole). The aluminum block has a mass of 27 grams, and the lead block has a mass of 207 grams. Which of the following pictures shows the blocks in the correct relative sizes? 1) 2) 3)

16 Initially the two blocks are at a temperature very near absolute zero (0 K). We will add 1 J of energy to the aluminum block, and 1 J of energy to the lead block, and see which block has the larger increase in temperature. We will step through a chain of reasoning using statistical mechanics to answer this question, which will let us determine whether aluminum or lead has the higher heat capacity at low temperatures.

17 Q12.6.b: From Young s modulus we found that the effective stiffness of the interatomic bond for Al is about 16 N/m and for Pb is about 5 N/m. A mole of Al is 27 grams, and a mole of Pb is 207 grams. Here are energy level diagrams for the quantized harmonic oscillators used in the Einstein solid. Which diagram represents Al and which represents Pb? 1) (A) is Al and (B) is Pb 2) (A) is Pb and (B) is Al 3) (B) is both Al and Pb (they are the same) A B

18 Q12.6.c: We add 1 J of energy to each block. Given the fact that Al has the greater energy-level spacing, which block now has the larger number of quanta of energy, q? 1) The number of quanta q is greater in the Al 2) The number of quanta q is greater in the Pb 3) The number of quanta q is the same for Al and Pb

19 Q12.6.d: What about the number N of quantized oscillators in the two blocks? 1) N is greater in the Al 2) N is greater in the Pb 3) N is the same for Pb and Al

20 Q12.6.e: The Pb block has more quanta corresponding to the 1J of thermal energy. Therefore, in which block is there a larger number of ways of arranging the thermal energy? 1) The number of ways is greater in the Al 2) The number of ways is greater in the Pb 3) The number of ways is the same in the Pb and the Al

21 Q12.6.f: The Pb block has the larger number of ways to arrange the energy. So which block now has the larger entropy S? 1) The entropy S is now greater in the Al 2) The entropy S is now greater in the Pb 3) The entropy S is the same in the Al and the Pb

22 Q12.6.g: Originally the temperature of the blocks was near absolute zero, with almost no thermal energy in the blocks. How many ways are there to arrange zero energy in a block? Just 1. So what was the original entropy in a block? 1) 0 J/K 2) 1 J/K 3) infinite

23 Q12.6.h: We found that after adding 1 J to each block, the entropy S is now greater in the Pb block. Both blocks started with zero entropy. Therefore which block experienced a larger change in entropy S? 1) The entropy change S was greater in the Al 2) The entropy change S was greater in the Pb 3) The entropy change S was the same in the Pb and the Al

24 Q12.6.i: We added the same amount of energy E = 1 J to each block, and the entropy change S was greater in the Pb block. Which block now has the higher temperature? 1) The temperature of the Al is now higher 2) The temperature of the Pb is now higher 3) The temperature of the Al and Pb are the same

25 Q12.6.j: The original temperature was 0 K, and the final temperature of the Al block is higher than that of the Pb block, so the Al block has the larger change in temperature, T. At low temperatures, which block has the greater heat capacity per atom, C = ( E/ T)/6e23? 1) The low-temperature heat capacity per atom of Al is greater 2) The low-temperature heat capacity per atom of Pb is greater 3) The low-temperature heat capacity per atom is the same for Pb and Al

26 Here are actual heat capacity data for Al and Pb (see textbook):

27 Q12.7.a The Sun s surface temperature is about 6000 K. Approximately what is the probability of finding a hydrogen atom in its first excited state (10.2 ev above the ground state)? k = 1.38e-23 J/K 1) 1e-10 2) 3e-10 3) 1e-9 4) 3e-9 5) 1e-8

28 Q12.7.b At approximately what temperature would the probability of finding a hydrogen atom in its first excited state (10.2 ev above the ground state) be about 1%? k = 1.38e-23 J/K 1) K 2) K 3) K 4) K 5) K

29 Q12.7.c The energy spacing for quantized oscillations in aluminum is 4k s 4e-21 J or ev. At m approximately what temperature is there a 10% probability of finding one quantum of energy in one of these oscillators? 1) 60 K 2) 120 K 3) 240 K 4) 360 K 5) 420 K k = 1.38e-23 J/K

30 Q12.7.d Approximately what fraction of the sea-level air density is found at the top of Mount Everest, a height of 8848 meters above sea level? k = 1.38e-23 J/K 1) ) 0.1 3) 0.3 4) 0.5 5) 0.7

31 Q12.7.e Calculate the rms speed of a nitrogen molecule in this room. 1) 50 m/s 2) 100 m/s 3) 300 m/s 4) 500 m/s 5) 700 m/s

32 Q12.7.f In a vacuum, how high would an object go if thrown upward with initial speed 500 m/s? 1) 100 m 2) 1200 m 3) 2600 m 4) m 5) m

Q4.2.a Approximately what is the radius of a copper atom? 1) 1 e -15 m 2) 1 e -12 m 3) 1 e -10 m 4) 1 e-8 m 5) 1 e-6 m

Q4.2.a Approximately what is the radius of a copper atom? 1) 1 e -15 m 2) 1 e -12 m 3) 1 e -10 m 4) 1 e-8 m 5) 1 e-6 m Q4.2.a Approximately what is the radius of a copper atom? 1) 1 e -15 m 2) 1 e -12 m 3) 1 e -10 m 4) 1 e-8 m 5) 1 e-6 m Q4.4.a How does the diameter of one atom in a solid compare to the length of an interatomic

More information

PHYS 172: Modern Mechanics Fall 2009

PHYS 172: Modern Mechanics Fall 2009 PHYS 172: Modern Mechanics Fall 2009 Lecture 14 Energy Quantization Read 7.1 7.9 Reading Question: Ch. 7, Secs 1-5 A simple model for the hydrogen atom treats the electron as a particle in circular orbit

More information

1) +x 2) x 3) +y 4) y 5) +z 6) z 7) zero magnitude

1) +x 2) x 3) +y 4) y 5) +z 6) z 7) zero magnitude Q11.1.a: What is the direction of < 0, 0, 3> x < 0, 4, 0>? 1) +x ) x 3) +y 4) y 5) +z 6) z 7) zero magnitude Q11.1.b: What is the direction of < 0, 4, 0> x < 0, 0, 3>? 1) +x ) x 3) +y 4) y 5) +z 6) z 7)

More information

1) < 0, 6, 8 > J 2) < 0, 3, 4 > J 3) 2 J 4) 10 J 5) 25 J

1) < 0, 6, 8 > J 2) < 0, 3, 4 > J 3) 2 J 4) 10 J 5) 25 J Q6.2.a: A ball whose mass is 2 kg travels at a velocity of < 0, 3, 4> m/s. What is the kinetic energy of the ball? 1) < 0, 6, 8 > J 2) < 0, 3, 4 > J 3) 2 J 4) 10 J 5) 25 J Q6.2.aa: A ball whose mass is

More information

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation:

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation: The next two questions pertain to the following situation: Consider the following two systems: A: three interacting harmonic oscillators with total energy 6ε. B: two interacting harmonic oscillators, with

More information

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position?

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position? PHYS 213 Exams Database Midterm (A) A block slides across a rough surface, eventually coming to a stop. 1) What happens to the block's internal thermal energy and entropy? a. and both stay the same b.

More information

Thermochemistry. Questions to ponder. Because 4/20/14. an ice-cube? an ice-cube? Part 2: Calorimetry. But I KNOW. Q=mc T, but T=0

Thermochemistry. Questions to ponder. Because 4/20/14. an ice-cube? an ice-cube? Part 2: Calorimetry. But I KNOW. Q=mc T, but T=0 Thermochemistry Part 2: Calorimetry p p If you leave your keys and your chemistry book sitting in the sun on a hot summer day, which one is hotter? Why is there a difference in temperature between the

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Tells us the average translational kinetic energy of the particles

Tells us the average translational kinetic energy of the particles Temperature and Heat What is temperature? Kinetic Energy What is heat? Thermal Expansion Specific Heat Latent Heat and phase changes Unit 03, Slide 1 Temperature Tells us the average translational kinetic

More information

Phys 172 Modern Mechanics Summer 2010

Phys 172 Modern Mechanics Summer 2010 Phys 172 Modern Mechanics Summer 2010 r r Δ p = F Δt sys net Δ E = W + Q sys sys net surr r r Δ L = τ Δt Lecture 14 Energy Quantization Read:Ch 8 Reading Quiz 1 An electron volt (ev) is a measure of: A)

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: S. T. Cummins Photo: S. T. Cummins Announcements Today is our final class! We will first discuss more on Chapters 14-15 and then conduct a short

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Chemistry Chapter 16. Reaction Energy

Chemistry Chapter 16. Reaction Energy Chemistry Reaction Energy Section 16.1.I Thermochemistry Objectives Define temperature and state the units in which it is measured. Define heat and state its units. Perform specific-heat calculations.

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Chapter 3: Matter and Energy

Chapter 3: Matter and Energy Chapter 3: Matter and Energy Convert between Fahrenheit, Celsius, and Kelvin temperature scales. Relate energy, temperature change, and heat capacity. The atoms and molecules that compose matter are in

More information

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg Temperature and Heat 1. Two systems of temperature 1. Temperature conversions 2. Real science (one scale to rule them all) 3. Temperature scales 2. Effects of temperature on materials 1. Linear Thermal

More information

The Direction of Spontaneous Change: Entropy and Free Energy

The Direction of Spontaneous Change: Entropy and Free Energy The Direction of Spontaneous Change: Entropy and Free Energy Reading: from Petrucci, Harwood and Herring (8th edition): Required for Part 1: Sections 20-1 through 20-4. Recommended for Part 1: Sections

More information

Physics 172H Modern Mechanics

Physics 172H Modern Mechanics Physics 172H Modern Mechanics Instructor: Dr. Mark Haugan Office: PHYS 282 haugan@purdue.edu TAs: Alex Kryzwda John Lorenz akryzwda@purdue.edu jdlorenz@purdue.edu Lecture 22: Matter & Interactions, Ch.

More information

THERMAL EXPANSION PRACTICE PROBLEMS

THERMAL EXPANSION PRACTICE PROBLEMS THERMAL EXPANSION PRACTICE PROBLEMS Thermal Expansion: A copper sphere has a diameter of 2.000 cm and is at room temperature (20 C). An aluminum plate has a circular cut-out with a diameter of 1.995 cm

More information

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury?

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury? Q15 Is it possible for a solid metal ball to float in mercury? A). Yes. B). No. The upward force is the weight of liquid displaced and the downward force is the weight of the ball. If the density of the

More information

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 5: Rise and Fall of the Clockwork Universe You should be able to demonstrate and show your understanding of: 5.2: Matter Particle model: A gas consists of many very small, rapidly

More information

11/22/11. If you add some heat to a substance, is it possible for the temperature of the substance to remain unchanged?

11/22/11. If you add some heat to a substance, is it possible for the temperature of the substance to remain unchanged? Physics 101 Tuesday 11/22/11 Class 26" Chapter 17.2, 17.5, 17.6, 18.1, 18.2" Kinetic Theory" Latent Heat" Phase changes" 1 st law of thermodynamics" " Which one is not the assumption in kinetic theory

More information

Spontaneity: Second law of thermodynamics CH102 General Chemistry, Spring 2012, Boston University

Spontaneity: Second law of thermodynamics CH102 General Chemistry, Spring 2012, Boston University Spontaneity: Second law of thermodynamics CH102 General Chemistry, Spring 2012, Boston University three or four forces and, as capstone, a minimalist cosmic constitution to legislate their use: Article

More information

kinetic molecular theory thermal energy.

kinetic molecular theory thermal energy. Thermal Physics 1 Thermal Energy The kinetic molecular theory is based on the assumption that matter is made up of tiny particles that are always in motion. In a hot object the particles are moving faster

More information

Chapter 21: Temperature, Heat and Expansion

Chapter 21: Temperature, Heat and Expansion Chapter 21: Temperature, Heat and Expansion All matter solid, liquid and gas is made of atoms or molecules, which are continually jiggling. As this jiggling is a movement, all these particles must have

More information

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy

Thermochemistry. Energy (and Thermochemistry) World of Chemistry Chapter 10. Energy. Energy Thermochemistry Thermodynamics is the science of the relationship between heat and other forms of energy. (and Thermochemistry) World of Chemistry Chapter 10 is defined as the ability to do work or produce

More information

Chemistry 456A (10:30AM Bagley 154)

Chemistry 456A (10:30AM Bagley 154) Winter 0 Chemistry 456A (0:0AM Bagley 54) Problem Set B (due 9PM Friday, /0/) Q) In the previous homework we compared isothermal one-step, irreversible work with reversible isothermal work. We also compared

More information

RE 4.a EP 3, HW3: Ch 3 Pr s 42, 46, 58, 65, 72 & CP* RE 4.b Atomic nature of matter / springs. Mon. Tues

RE 4.a EP 3, HW3: Ch 3 Pr s 42, 46, 58, 65, 72 & CP* RE 4.b Atomic nature of matter / springs. Mon. Tues Mon. Tues 4.-.5 Atomic nature of matter / springs Wed. 4.6-.7,.9-.0 Stress, Strain, Young s Modulus, Compression, Sound InStove: here noon; Science Poster Session: Hedco7pm~9pm Lab L4: Young s Modulus

More information

Chapter 2 Heat, Temperature and the First Law of Thermodynamics

Chapter 2 Heat, Temperature and the First Law of Thermodynamics Chapter 2 Heat, Temperature and the First Law of Thermodynamics 2.1. Temperature and the Zeroth Law of Thermodynamics 2.2. Thermal Expansion 2.3. Heat and the Absorption of Heat by Solids and Liquids 2.4.

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Temperature and Its Measurement

Temperature and Its Measurement Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

More information

Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual

Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual 1. n 5 = 0 n 5 = 1 n 5 = 2 n 5 = 3 n 5 = 4 n 5 = 5 d n 5,0,0,0,0 4 0 0 0 0 1 5 4,1,0,0,0 12 4 0 0 4 0 20 3,2,0,0,0 12 0 4 4 0

More information

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular

More information

Heat. Heat is energy transferred between a system and its surroundings because of a temperature difference between them.

Heat. Heat is energy transferred between a system and its surroundings because of a temperature difference between them. What is heat? Heat Heat Heat is energy transferred between a system and its surroundings because of a temperature difference between them. Specific heat The specific heat of a material is the amount of

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

CP CHEMISTRY STUDY GUIDE The Kinetic Theory of Matter (Chapters 10 and 14)

CP CHEMISTRY STUDY GUIDE The Kinetic Theory of Matter (Chapters 10 and 14) Unit 9 CP CHEMISTRY STUDY GUIDE The Kinetic Theory of Matter (Chapters 10 and 14) Unit Goals ( During this unit I will ) 1. Explain the behavior of matter in terms of the relationships between temperature,

More information

Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian

Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian Chapter 10-11 Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian 1) Temperature 2) Expansion of Matter 3) Ideal Gas Law 4) Kinetic Theory of Gases 5) Energy, Heat transfer and

More information

Q1. A) 53.3 cm/s B) 59.8 cm/s C) 77.5 cm/s D) 35.1 cm/s E) 44.7 cm/s. Ans: 1.6 Q2.

Q1. A) 53.3 cm/s B) 59.8 cm/s C) 77.5 cm/s D) 35.1 cm/s E) 44.7 cm/s. Ans: 1.6 Q2. Coordinator: Dr. W. Al-Basheer Wednesday, July 11, 2018 Page: 1 Q1. A string of 80.0 cm length is fixed at both ends. The string oscillates in the fundamental mode with a frequency of 60.0 Hz and a maximum

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION SPECIFIC HEAT CAPACITY AND HEAT OF FUSION Apparatus on each table: Thermometer, metal cube, complete calorimeter, outer calorimeter can (aluminum only), balance, 4 styrofoam cups, graduated container,

More information

4.2 A Scientific View of Energy Kinetic Energy

4.2 A Scientific View of Energy Kinetic Energy 4. A Universe of Matter and Energy 4.1 Matter and Energy in Everyday Life The eternal mystery of the world is its comprehensibility. The fact that it is comprehensible is a miracle. Albert Einstein (1879

More information

CPO Science Foundations of Physics. Unit 8, Chapter 26

CPO Science Foundations of Physics. Unit 8, Chapter 26 CPO Science Foundations of Physics Unit 8, Chapter 26 Unit 8: Matter and Energy Chapter 26 Heat Transfer 26.1 Heat Conduction 26.2 Convection 26.3 Radiation Chapter 26 Objectives 1. Explain the relationship

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

The First Law of Thermodynamics

The First Law of Thermodynamics Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat Pumps The Carnot

More information

SPH3U1 Lesson 03 Energy

SPH3U1 Lesson 03 Energy THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

More information

Macroscopic and Microscopic Springs

Macroscopic and Microscopic Springs Macroscopic and Microscopic Springs PY205m 1 Purpose In this lab you will: investigate the spring-like properties of a straight wire, discover the stretchiness of a material, independent of the size and

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

School of Physics and Astronomy. Junior Honours Thermodynamics GJA Some properties of materials. Soultions to Tutorial 1

School of Physics and Astronomy. Junior Honours Thermodynamics GJA Some properties of materials. Soultions to Tutorial 1 School of Physics and Astronomy Junior Honours Thermodynamics GJA 2018-2019 Soultions to Tutorial 1 1 Some properties of materials 1. The magnitude of things Rearranging the things cited, we find that.

More information

HEAT AND THERMODYNAMICS

HEAT AND THERMODYNAMICS HEAT AND THERMODYNAMICS 1. THE ABSOLUTE TEMPERATURE SCALE In the textbook you have been introduced to the concept of temperature, and to the fact that there is a natural zero of temperature, the temperature

More information

Figure 1: A 3-D ball-and-spring model of the tin wire. Figure 2: The top view and side view of a simple cubic lattice.

Figure 1: A 3-D ball-and-spring model of the tin wire. Figure 2: The top view and side view of a simple cubic lattice. Question (5) Bond stiffness of solid tin. A certain tin wire (white tin, as opposed to gray tin) has a length of.5 m and a square rectangular cross section that is ( mm x mm). With a tension of 200 N applied

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Thermodynamics Test Clio Invitational January 26, 2013

Thermodynamics Test Clio Invitational January 26, 2013 Thermodynamics Test Clio Invitational January 26, 2013 School Name: Team Number: Variables specified: s = specific heat C = heat capacity H f = heat of fusion H v = heat of vaporization Given information:

More information

CHEMISTRY - TRO 4E CH.6 - THERMOCHEMISTRY.

CHEMISTRY - TRO 4E CH.6 - THERMOCHEMISTRY. !! www.clutchprep.com CONCEPT: ENERGY CHANGES AND ENERGY CONSERVATION is the branch of physical science concerned with heat and its transformations to and from other forms of energy. is the branch of chemistry

More information

Preliminary Examination - Day 2 August 16, 2013

Preliminary Examination - Day 2 August 16, 2013 UNL - Department of Physics and Astronomy Preliminary Examination - Day August 16, 13 This test covers the topics of Quantum Mechanics (Topic 1) and Thermodynamics and Statistical Mechanics (Topic ). Each

More information

Lecture 10. What is energy? Professor Hicks Inorganic Chemistry (CHE151) Ability to do work. Work means moving something against a force

Lecture 10. What is energy? Professor Hicks Inorganic Chemistry (CHE151) Ability to do work. Work means moving something against a force Lecture 10 Professor Hicks Inorganic Chemistry (CHE151) Ability to do work What is energy? Work means moving something against a force Energy thought of as an imaginary liquid that gets moved from one

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 12-1A: INTERACTIONS OF MATTER WITH RADIATION Questions From Reading Activity? Essential Idea: The microscopic quantum world offers a range of phenomena,

More information

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions System Definitions Heat Physical Science 20 Ms. Hayduk Heat Terminology System: the part of the universe being studied (big Earth, or small one atom) Surroundings: the part of the universe outside the

More information

FIRST PUBLIC EXAMINATION. Trinity Term Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY. Time allowed: 2 ½ hours

FIRST PUBLIC EXAMINATION. Trinity Term Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY. Time allowed: 2 ½ hours FIRST PUBLIC EXAMINATION Trinity Term 004 Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY Wednesday, June 9 th 004, 9.30 a.m. to 1 noon Time allowed: ½ hours Candidates should answer

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

Problem 1: Which statement is correct?

Problem 1: Which statement is correct? Problems 1-2 A water molecule contains one oxygen (O) and two hydrogen (H) atoms. There is a positive charge of +0.335e on each H and negative charge of -0.670e on the O atom. Problem 1: Which statement

More information

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1 Chapter 6 Quantum Theory and the Electronic Structure of Atoms Part 1 The nature of light Quantum theory Topics Bohr s theory of the hydrogen atom Wave properties of matter Quantum mechanics Quantum numbers

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Physics 1501 Lecture 35

Physics 1501 Lecture 35 Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

More information

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation

Chapter 5 THERMO. THERMO chemistry. 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chapter 5 THERMO THERMO chemistry 5.4 Enthalpy of Reactions 5.5 Calorimetry 5.6 Hess s Law 5.7 Enthalpies of Formation Chemical Equations 1 st WRITE the Chemical Equation 2 nd BALANCE the Chemical Equation

More information

Thermodynamics Test Wednesday 12/20

Thermodynamics Test Wednesday 12/20 Thermodynamics Test Wednesday 12/20 HEAT AND TEMPERATURE 1 Temperature Temperature: A measure of how hot (or cold) something is Specifically, a measure of the average kinetic energy of the particles in

More information

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key Supplemental Activities Module: Thermodynamics Section: Second Law of Thermodynamics Key Spontaneity ACTIVITY 1 The purpose of this activity is to practice your understanding of the concept of spontaneous

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

Physics 101: Lecture 25 Heat

Physics 101: Lecture 25 Heat Final Physics 101: Lecture 25 Heat Today s lecture will cover Textbook Chapter 14.1-14.5 Physics 101: Lecture 25, Pg 1 Internal Energy Energy of all molecules including Random motion of individual molecules»

More information

Specific Heat of a Metal

Specific Heat of a Metal Specific Heat of a Metal Purpose The objective of this experiment is to determine the specific heat of zinc sample using coffeecup calorimeter. Theory In a chemical reaction, the quantity of heat that

More information

PHYSICS. Chapter 20 Lecture 4/E FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 20 Lecture 4/E FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 20 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc. Chapter 20 The Micro/Macro Connection IN THIS CHAPTER, you will see how macroscopic

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information

Physics 220 Final Exam

Physics 220 Final Exam Version 12 Summer 2012 Page 1 of 12 Physics 220 Final Exam Name: (Last) (First) (Middle) 1. Please fill out your name and your Purdue student ID on the scantron from. 2. Record 12 as your two-digit exam

More information

1 kg = 10 3 g [here g means gram of course]

1 kg = 10 3 g [here g means gram of course] Physics 201, Final Exam Name (printed) On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. The fill-in-the-blank and multiple-choice problems

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

IT IS THEREFORE A SCIENTIFIC LAW.

IT IS THEREFORE A SCIENTIFIC LAW. Now we talk about heat: Zeroth Law of Thermodynamics: (inserted after the 3 Laws, and often not mentioned) If two objects are in thermal equilibrium with a third object, they are in thermal equilibrium

More information

Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck!

Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck! 1 Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck! For all problems, show your reasoning clearly. In general, there will be little or no

More information

AAST/AEDT AP PHYSICS B: HEAT

AAST/AEDT AP PHYSICS B: HEAT 1 AAST/AEDT AP PHYSICS B: HEAT If we contact two objects with the different temperatures, the hotter one starts to cool and the colder one starts to increase its temperature. The effect can be easily explained.

More information

Chapter 5. Thermochemistry

Chapter 5. Thermochemistry Chapter 5 Thermochemistry Energy Thermodynamics Study of the relationship between heat, work, and other forms of energy Thermochemistry A branch of thermodynamics Focuses on the study of heat given off

More information

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics. Notes Nov 16, 20 Heat. Persans 1 Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

More information

Engineering Mathematics

Engineering Mathematics F.Y. Diploma : Sem. II [AE/CD/CE/CH/CM/CO/CR/CS/CV/CW/DE/ED/EE/EI/EJ/EN/ EP/ET/EV/EX/FE/IC/IE/IF/IS/IU/ME/MH/MI/MU/PG/PS/PT] Engineering Mathematics Time: Hrs.] Pre Question Paper Solution [Marks : 00

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

PHYSICS 220. Lecture 24. Textbook Sections Lecture 25 Purdue University, Physics 220 1

PHYSICS 220. Lecture 24. Textbook Sections Lecture 25 Purdue University, Physics 220 1 PHYSICS 220 Lecture 24 Heat Textbook Sections 14.4 14.5 Lecture 25 Purdue University, Physics 220 1 Exam 2 Average: 96.7 out of 150 Std Dev: 30.5 Lecture 25 Purdue University, Physics 220 2 Overview Last

More information

Quantum Theory of Light

Quantum Theory of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences Quantum Theory of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Definition

More information

Ch. 7: Thermochemistry

Ch. 7: Thermochemistry Thermodynamics and Thermochemistry Thermodynamics concerns itself with energy and its relationship to the large scale bulk properties of a system that are measurable: Volume, Temperature, Pressure, Heat

More information

Chapter 25. Modern Optics and Matter Waves

Chapter 25. Modern Optics and Matter Waves Chapter 25. Modern Optics and Matter Waves This image of the individual atoms in a silicon crystal was made by exploiting the wave properties of electrons. Matter and light behave like particle and waves.

More information

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy

Energy Ability to produce change or do work. First Law of Thermodynamics. Heat (q) Quantity of thermal energy THERMOCHEMISTRY Thermodynamics Study of energy and its interconversions Energy is TRANSFORMED in a chemical reaction (POTENTIAL to KINETIC) HEAT (energy transfer) is also usually produced or absorbed -SYSTEM:

More information

Molecular Motion and Gas Laws

Molecular Motion and Gas Laws Molecular Motion and Gas Laws What is the connection between the motion of molecules (F = ma and K = mv 2 /2) and the thermodynamics of gases (pv = nrt and U = 3nRT/2)? In this lab, you will discover how

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

Chapter 2: Atomic Structure

Chapter 2: Atomic Structure Chapter 2: Atomic Structure Atom: Nucleus: protons and neutrons (neutral in charge) Electrons Electrons and protons are charged: e=1.6x10-19 Mass of protons and neutrons = 1.67x10-27 kg Mass of electron

More information

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated. Heat Energy Temperature and Thermometers Temperature is a measure of how hot or cold something is. Most materials expand when heated. Thermometers are instruments designed to measure temperature. In order

More information

QuickCheck. Collisions between molecules. Collisions between molecules

QuickCheck. Collisions between molecules. Collisions between molecules Collisions between molecules We model molecules as rigid spheres of radius r as shown at the right. The mean free path of a molecule is the average distance it travels between collisions. The average time

More information

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1 Chapter 19 Entropy Slide 20-1 Ch 19 & 20 material What to focus on? Just put out some practice problems for Ch. 19/20 Ideal gas how to find P/V/T changes. How to calculate energy required for a given T

More information

THERMOCHEMISTRY & DEFINITIONS

THERMOCHEMISTRY & DEFINITIONS THERMOCHEMISTRY & DEFINITIONS Thermochemistry is the study of the study of relationships between chemistry and energy. All chemical changes and many physical changes involve exchange of energy with the

More information

The greenhouse effect

The greenhouse effect 16 Waves of amplitude of 1 m roll onto a beach at a rate of one every 12 s. If the wavelength of the waves is 120 m, calculate (a) the velocity of the waves (b) how much power there is per metre along

More information