PHYSICS. Chapter 20 Lecture 4/E FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH RANDALL D. KNIGHT Pearson Education, Inc.

Size: px
Start display at page:

Download "PHYSICS. Chapter 20 Lecture 4/E FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH RANDALL D. KNIGHT Pearson Education, Inc."

Transcription

1 PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 20 Lecture RANDALL D. KNIGHT 2017 Pearson Education, Inc.

2 Chapter 20 The Micro/Macro Connection IN THIS CHAPTER, you will see how macroscopic properties depend on the motion of atoms Pearson Education, Inc. Slide 20-2

3 Chapter 20 Preview 2017 Pearson Education, Inc. Slide 20-3

4 Chapter 20 Preview 2017 Pearson Education, Inc. Slide 20-4

5 Chapter 20 Preview 2017 Pearson Education, Inc. Slide 20-5

6 Chapter 20 Preview 2017 Pearson Education, Inc. Slide 20-6

7 Chapter 20 Preview 2017 Pearson Education, Inc. Slide 20-7

8 Chapter 20 Reading Questions 2017 Pearson Education, Inc. Slide 20-8

9 Reading Question 20.1 What is the name of the quantity represented as v rms? A. Random-measured-step viscosity B. Root-mean-squared speed C. Relative-mean-system velocity D. Radial-maser-system volume 2017 Pearson Education, Inc. Slide 20-9

10 Reading Question 20.1 What is the name of the quantity represented as v rms? A. Random-measured-step viscosity B. Root-mean-squared speed C. Relative-mean-system velocity D. Radial-maser-system volume 2017 Pearson Education, Inc. Slide 20-10

11 Reading Question 20.2 What additional kind of energy makes C V larger for a diatomic than for a monatomic gas? A. Charismatic energy B. Translational energy C. Heat energy D. Rotational energy E. Solar energy 2017 Pearson Education, Inc. Slide 20-11

12 Reading Question 20.2 What additional kind of energy makes C V larger for a diatomic than for a monatomic gas? A. Charismatic energy B. Translational energy C. Heat energy D. Rotational energy E. Solar energy 2017 Pearson Education, Inc. Slide 20-12

13 Reading Question 20.3 The second law of thermodynamics says that A. The entropy of an isolated system never decreases. B. Heat never flows spontaneously from cold to hot. C. The total thermal energy of an isolated system is constant. D. Both A and B. E. Both A and C Pearson Education, Inc. Slide 20-13

14 Reading Question 20.3 The second law of thermodynamics says that A. The entropy of an isolated system never decreases. B. Heat never flows spontaneously from cold to hot. C. The total thermal energy of an isolated system is constant. D. Both A and B. E. Both A and C Pearson Education, Inc. Slide 20-14

15 Reading Question 20.4 In general, A. Both microscopic and macroscopic processes are reversible. B. Both microscopic and macroscopic processes are irreversible. C. Microscopic processes are reversible and macroscopic processes are irreversible. D. Microscopic processes are irreversible and macroscopic processes are reversible Pearson Education, Inc. Slide 20-15

16 Reading Question 20.4 In general, A. Both microscopic and macroscopic processes are reversible. B. Both microscopic and macroscopic processes are irreversible. C. Microscopic processes are reversible and macroscopic processes are irreversible. D. Microscopic processes are irreversible and macroscopic processes are reversible Pearson Education, Inc. Slide 20-16

17 Chapter 20 Content, Examples, and QuickCheck Questions 2017 Pearson Education, Inc. Slide 20-17

18 Molecular Speeds and Collisions A gas consists of a vast number of molecules, each moving randomly and undergoing millions of collisions every second. Shown is the distribution of molecular speeds in a sample of nitrogen gas at 20ºC. The micro/macro connection is built on the idea that the macroscopic properties of a system, such as temperature or pressure, are related to the average behavior of the atoms and molecules Pearson Education, Inc. Slide 20-18

19 Mean Free Path A single molecule follows a zig-zag path through a gas as it collides with other molecules. The average distance between the collisions is called the mean free path: (N/V) is the number density of the gas in m 3. r is the radius of the molecules when modeled as hard spheres; for many common gases r m Pearson Education, Inc. Slide 20-19

20 QuickCheck 20.1 The temperature of a rigid container of oxygen gas (O 2 ) is lowered from 300ºC to 0ºC. As a result, the mean free path of oxygen molecules A. Increases. B. Is unchanged. C. Decreases Pearson Education, Inc. Slide 20-20

21 QuickCheck 20.1 The temperature of a rigid container of oxygen gas (O 2 ) is lowered from 300ºC to 0ºC. As a result, the mean free path of oxygen molecules A. Increases. B. Is unchanged. C. Decreases. λ depends only on N/V, not T Pearson Education, Inc. Slide 20-21

22 Example 20.1 The Mean Free Path at Room Temperature 2017 Pearson Education, Inc. Slide 20-22

23 Pressure in a Gas Why does a gas have pressure? In Chapter 14 we suggested that the pressure in a gas is due to collisions of the molecules with the walls of its container. The steady rain of a vast number of molecules striking a wall each second exerts a measurable macroscopic force. The gas pressure is the force per unit area (p = F/A) resulting from these molecular collisions Pearson Education, Inc. Slide 20-23

24 Pressure in a Gas The figure shows a molecule that collides with a wall, exerting an impulse on it. The x-component of the change in the molecule s momentum is If there are N coll such collisions during a small time interval Δt, the total momentum change of the gas is 2017 Pearson Education, Inc. Slide 20-24

25 Pressure in a Gas Every one of the molecules in the shaded region of the figure that is moving to the right will reach and collide with the wall during t. The average force on the wall is where the rate of collisions is 2017 Pearson Education, Inc. Slide 20-25

26 Pressure in a Gas The pressure is the average force on the walls of the container per unit area: (N/V ) is the number density of the gas in m 3. Note that the average velocity of many molecules traveling in random directions is zero. v rms is the root-mean-square speed of the molecules, which is the square root of the average value of the squares of the speeds of the molecules: 2017 Pearson Education, Inc. Slide 20-26

27 QuickCheck 20.2 A rigid container holds oxygen gas (O 2 ) at 100ºC. The average velocity of the molecules is A. Greater than zero. B. Zero. C. Less than zero Pearson Education, Inc. Slide 20-27

28 QuickCheck 20.2 A rigid container holds oxygen gas (O 2 ) at 100ºC. The average velocity of the molecules is A. Greater than zero. B. Zero. C. Less than zero Pearson Education, Inc. Slide 20-28

29 Example 20.2 The rms Speed of Helium Atoms 2017 Pearson Education, Inc. Slide 20-29

30 QuickCheck 20.3 A rigid container holds both hydrogen gas (H 2 ) and nitrogen gas (N 2 ) at 100ºC. Which statement describes their rms speeds? A. v rms of H 2 < v rms of N 2 B. v rms of H 2 = v rms of N 2 C. v rms of H 2 > v rms of N Pearson Education, Inc. Slide 20-30

31 QuickCheck 20.3 A rigid container holds both hydrogen gas (H 2 ) and nitrogen gas (N 2 ) at 100ºC. Which statement describes their rms speeds? A. v rms of H 2 < v rms of N 2 B. v rms of H 2 = v rms of N 2 C. v rms of H 2 > v rms of N Pearson Education, Inc. Slide 20-31

32 Temperature in a Gas The thing we call temperature measures the average translational kinetic energy є avg of molecules in a gas. A higher temperature corresponds to a larger value of є avg and thus to higher molecular speeds. Absolute zero is the temperature at which є avg = 0 and all molecular motion ceases. By definition, є avg = ½mv rms2, where v rms is the root mean squared molecular speed; using the ideal-gas law, we found є avg = 3/2 k B T. By equating these expressions we find that the rms speed of molecules in a gas is 2017 Pearson Education, Inc. Slide 20-32

33 QuickCheck 20.4 A rigid container holds both hydrogen gas (H 2 ) and nitrogen gas (N 2 ) at 100ºC. Which statement describes the average translational kinetic energies of the molecules? A. є avg of H 2 < є avg of N 2 B. є avg of H 2 = є avg of N 2 C. є avg of H 2 > є avg of N Pearson Education, Inc. Slide 20-33

34 QuickCheck 20.4 A rigid container holds both hydrogen gas (H 2 ) and nitrogen gas (N 2 ) at 100ºC. Which statement describes the average translational kinetic energies of the molecules? A. є avg of H 2 < є avg of N 2 B. є avg of H 2 = є avg of N 2 C. є avg of H 2 > є avg of N Pearson Education, Inc. Slide 20-34

35 The Micro/Macro Connection for Pressure and Temperature 2017 Pearson Education, Inc. Slide 20-35

36 Example 20.3 Total Microscopic Kinetic Energy 2017 Pearson Education, Inc. Slide 20-36

37 Example 20.4 Mean Time Between Collisions 2017 Pearson Education, Inc. Slide 20-37

38 Thermal Energy and Specific Heat The thermal energy of a system is E th = K micro + U micro. The figure shows a monatomic gas such as helium or neon. The atoms in a monatomic gas have no molecular bonds with their neighbors, hence U micro = 0. Since the average kinetic energy of a single atom in an ideal gas is є avg = 3/2 k B T, the total thermal energy is 2017 Pearson Education, Inc. Slide 20-38

39 Thermal Energy and Specific Heat If the temperature of a monatomic gas changes by ΔT, its thermal energy changes by In Chapter 19 we found that the change in thermal energy for any ideal-gas process is related to the molar specific heat at constant volume by Combining these equations gives us a prediction for the molar specific heat for a monatomic gas: This prediction is confirmed by experiments Pearson Education, Inc. Slide 20-39

40 The Equipartition Theorem Atoms in a monatomic gas carry energy exclusively as translational kinetic energy (3 degrees of freedom). Molecules in a gas may have additional modes of energy storage, for example, the kinetic and potential energy associated with vibration, or rotational kinetic energy. We define the number of degrees of freedom as the number of distinct and independent modes of energy storage: 2017 Pearson Education, Inc. Slide 20-40

41 QuickCheck 20.5 A mass on a spring oscillates back and forth on a frictionless surface. How many degrees of freedom does this system have? A. 1 B. 2 C. 3 D. 4 E Pearson Education, Inc. Slide 20-41

42 QuickCheck 20.5 A mass on a spring oscillates back and forth on a frictionless surface. How many degrees of freedom does this system have? A. 1 B. 2 C. 3 D. 4 E. 6 It can hold energy as kinetic energy or potential energy Pearson Education, Inc. Slide 20-42

43 Thermal Energy of a Solid The figure reminds you of the bedspring model of a solid with particle-like atoms connected by spring-like molecular bonds. There are 3 degrees of freedom associated with kinetic energy + 3 more associated with the potential energy in the molecular bonds = 6 degrees of freedom total. The energy stored in each degree of freedom is ½ Nk B T, so 2017 Pearson Education, Inc. Slide 20-43

44 Diatomic Molecules In addition to the 3 degrees of freedom from translational kinetic energy, a diatomic gas at commonly used temperatures has 2 additional degrees of freedom from end-over-end rotations. This gives 5 degrees of freedom total: 2017 Pearson Education, Inc. Slide 20-44

45 Thermal Energy and Specific Heat 2017 Pearson Education, Inc. Slide 20-45

46 QuickCheck 20.6 Systems A and B are both monatomic gases. At this instant, A. T A > T B B. T A = T B C. T A < T B D. There s not enough information to compare their temperatures Pearson Education, Inc. Slide 20-46

47 QuickCheck 20.6 Systems A and B are both monatomic gases. At this instant, A. T A > T B A has the larger average energy per atom. B. T A = T B C. T A < T B D. There s not enough information to compare their temperatures Pearson Education, Inc. Slide 20-47

48 Thermal Interactions and Heat Consider two gases, initially at different temperatures T 1i > T 2i. They can interact thermally through a very thin barrier. The membrane is so thin that atoms can collide at the boundary as if the membrane were not there, yet atoms cannot move from one side to the other. The situation is analogous, on an atomic scale, to basketballs colliding through a shower curtain Pearson Education, Inc. Slide 20-48

49 Thermal Interactions and Heat The figure shows a fast atom and a slow atom approaching the barrier from opposite sides. During the collision, there is an energy transfer from the faster atom s side to the slower atom s side. Heat is the energy transferred via collisions between the more-energetic (warmer) atoms on one side and the less-energetic (cooler) atoms on the other Pearson Education, Inc. Slide 20-49

50 Thermal Interactions and Heat Equilibrium is reached when the atoms on each side have, on average, equal energies: Because the average energies are directly proportional to the final temperatures, 2017 Pearson Education, Inc. Slide 20-50

51 Thermal Interactions and Heat The final thermal energies of the two systems are No work is done on either system, so the first law of thermodynamics is Conservation of energy requires that Q 1 = Q Pearson Education, Inc. Slide 20-51

52 Example 20.6 A Thermal Interaction 2017 Pearson Education, Inc. Slide 20-52

53 Example 20.6 A Thermal Interaction 2017 Pearson Education, Inc. Slide 20-53

54 Example 20.6 A Thermal Interaction 2017 Pearson Education, Inc. Slide 20-54

55 Example 20.6 A Thermal Interaction 2017 Pearson Education, Inc. Slide 20-55

56 Irreversible Processes and the Second Law of Thermodynamics When two gases are brought into thermal contact, heat energy is transferred from the warm gas to the cold gas until they reach a common final temperature. Energy could still be conserved if heat was transferred in the opposite direction, but this never happens. The transfer of heat energy from hot to cold is an example of an irreversible process, a process that can happen only in one direction Pearson Education, Inc. Slide 20-56

57 QuickCheck 20.7 A large 20ºC ice cube is dropped into a super-insulated container holding a small amount of 5ºC water, then the container is sealed. Ten minutes later, is it possible that the temperature of the ice cube will be colder than 20ºC? A. Yes B. No C. Maybe. It would depend on other factors Pearson Education, Inc. Slide 20-57

58 QuickCheck 20.7 A large 20ºC ice cube is dropped into a super-insulated container holding a small amount of 5ºC water, then the container is sealed. Ten minutes later, is it possible that the temperature of the ice cube will be colder than 20ºC? A. Yes B. No C. Maybe. It would depend on other factors Pearson Education, Inc. Slide 20-58

59 Molecular Collisions Are Reversible 2017 Pearson Education, Inc. Slide 20-59

60 A Car Crash Is Irreversible 2017 Pearson Education, Inc. Slide 20-60

61 Which Way to Equilibrium? The figure shows two boxes containing identical balls. Once every second, one ball is chosen at random and moved to the other box. What do you expect to see if you return several hours later? Although each transfer is reversible, it is more likely that the system will evolve toward a state in which N 1 N 2 than toward a state in which N 1 >> N 2. The macroscopic drift toward equilibrium is irreversible Pearson Education, Inc. Slide 20-61

62 Order, Disorder, and Entropy Scientists and engineers use a state variable called entropy to measure the probability that a macroscopic state will occur spontaneously. It is often said that entropy measures the amount of disorder in a system Pearson Education, Inc. Slide 20-62

63 Order, Disorder, and Entropy In principle, any number of heads are possible if you throw N coins in the air and let them fall. If you throw four coins, the odds are 1 in 2 4, or 1 in 16 of getting four heads; this represents fairly low entropy. With 10 coins, the probability that N heads = 10 is /1000, which corresponds to much lower entropy. With 100 coins, the probability that N heads = 100 has dropped to ; it is safe to say it will never happen. Entropy is highest when N heads N tails Pearson Education, Inc. Slide 20-63

64 The Second Law of Thermodynamics Macroscopic systems evolve irreversibly toward equilibrium in accordance with the following law: This law tells us what a system does spontaneously, on its own, without outside intervention. Order turns into disorder and randomness. Information is lost rather than gained. The system runs down Pearson Education, Inc. Slide 20-64

65 The Second Law of Thermodynamics The second law of thermodynamics is often stated in several equivalent but more informal versions: Establishing the arrow of time is one of the most profound implications of the second law of thermodynamics Pearson Education, Inc. Slide 20-65

66 QuickCheck 20.8 A large 20ºC ice cube is dropped into a superinsulated container holding a small amount of 5ºC water, then the container is sealed. Ten minutes later, the temperature of the ice (and any water that has melted from the ice) will be warmer than 20ºC. This is a consequence of A. The first law of thermodynamics. B. The second law of thermodynamics. C. The third law of thermodynamics. D. Both the first and the second laws. E. Joule s law Pearson Education, Inc. Slide 20-66

67 QuickCheck 20.8 A large 20ºC ice cube is dropped into a superinsulated container holding a small amount of 5ºC water, then the container is sealed. Ten minutes later, the temperature of the ice (and any water that has melted from the ice) will be warmer than 20ºC. This is a consequence of A. The first law of thermodynamics. B. The second law of thermodynamics. C. The third law of thermodynamics. D. Both the first and the second laws. E. Joule s law Pearson Education, Inc. Slide 20-67

68 Chapter 20 Summary Slides 2017 Pearson Education, Inc. Slide 20-68

69 General Principles The micro/macro connection relates the macroscopic properties of a system to the motion and collisions of its atoms and molecules Pearson Education, Inc. Slide 20-69

70 General Principles The micro/macro connection relates the macroscopic properties of a system to the motion and collisions of its atoms and molecules Pearson Education, Inc. Slide 20-70

71 Important Concepts 2017 Pearson Education, Inc. Slide 20-71

72 Important Concepts 2017 Pearson Education, Inc. Slide 20-72

73 Important Concepts 2017 Pearson Education, Inc. Slide 20-73

74 Important Concepts 2017 Pearson Education, Inc. Slide 20-74

75 Important Concepts 2017 Pearson Education, Inc. Slide 20-75

76 Applications 2017 Pearson Education, Inc. Slide 20-76

77 Applications 2017 Pearson Education, Inc. Slide 20-77

Knight: Chapter 18. The Micro/Macro Connection. (Thermal Interactions and Heat & Irreversible Processes and the 2 nd Law of Thermodynamics)

Knight: Chapter 18. The Micro/Macro Connection. (Thermal Interactions and Heat & Irreversible Processes and the 2 nd Law of Thermodynamics) Knight: Chapter 18 The Micro/Macro Connection (Thermal Interactions and Heat & Irreversible Processes and the 2 nd Law of Thermodynamics) Last time p Thermal energy of a Monatomic gas.. E th = 3 2 NK BT

More information

Collisions between molecules

Collisions between molecules Collisions between molecules We model molecules as rigid spheres of radius r as shown at the right. The mean free path of a molecule is the average distance it travels between collisions. The average time

More information

QuickCheck. Collisions between molecules. Collisions between molecules

QuickCheck. Collisions between molecules. Collisions between molecules Collisions between molecules We model molecules as rigid spheres of radius r as shown at the right. The mean free path of a molecule is the average distance it travels between collisions. The average time

More information

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

If the position of a molecule is measured after increments of 10, 100, 1000 steps, what will the distribution of measured steps look like?

If the position of a molecule is measured after increments of 10, 100, 1000 steps, what will the distribution of measured steps look like? If the position of a molecule is measured after increments of 10, 100, 1000 steps, what will the distribution of measured steps look like? (1) No longer Gaussian (2) Identical Gaussians (3) Gaussians with

More information

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass Atomic Mass and Atomic Mass Number The mass of an atom is determined primarily by its most massive constituents: protons and neutrons in its nucleus. The sum of the number of protons and neutrons is called

More information

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1 Chapter 19 Entropy Slide 20-1 Ch 19 & 20 material What to focus on? Just put out some practice problems for Ch. 19/20 Ideal gas how to find P/V/T changes. How to calculate energy required for a given T

More information

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1 Chapter 19 Entropy Slide 20-1 Ch 19 & 20 material What to focus on? Just put out some practice problems Ideal gas how to find P/V/T changes. E.g., gas scaling, intro to the ideal gas law, pressure cooker,

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES LECTURE 8 KINETIC THEORY OF GASES Text Sections 0.4, 0.5, 0.6, 0.7 Sample Problems 0.4 Suggested Questions Suggested Problems Summary None 45P, 55P Molecular model for pressure Root mean square (RMS) speed

More information

Lecture Presentation Chapter 11 Using Energy

Lecture Presentation Chapter 11 Using Energy Lecture Presentation Chapter 11 Using Energy Suggested Videos for Chapter 11 Prelecture Videos Efficiency The Laws of Thermodynamics Heat Engines and Heat Pumps Class Videos Work and Thermal Energy in

More information

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 5: Rise and Fall of the Clockwork Universe You should be able to demonstrate and show your understanding of: 5.2: Matter Particle model: A gas consists of many very small, rapidly

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

Physics 1501 Lecture 35

Physics 1501 Lecture 35 Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

T s change via collisions at boundary (not mechanical interaction)

T s change via collisions at boundary (not mechanical interaction) Lecture 14 Interaction of 2 systems at different temperatures Irreversible processes: 2nd Law of Thermodynamics Chapter 19: Heat Engines and Refrigerators Thermal interactions T s change via collisions

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith

MP203 Statistical and Thermal Physics. Jon-Ivar Skullerud and James Smith MP203 Statistical and Thermal Physics Jon-Ivar Skullerud and James Smith October 3, 2017 1 Contents 1 Introduction 3 1.1 Temperature and thermal equilibrium.................... 4 1.1.1 The zeroth law of

More information

Lecture 24. Paths on the pv diagram

Lecture 24. Paths on the pv diagram Goals: Lecture 24 Chapter 17 Apply heat and energy transfer processes Recognize adiabatic processes Chapter 18 Follow the connection between temperature, thermal energy, and the average translational kinetic

More information

Kinetic Theory. 84 minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Kinetic Theory. 84 minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments: Kinetic Theory Name: Class: Date: Time: 84 minutes Marks: 62 marks Comments: Page 1 of 19 1 Which one of the following is not an assumption about the properties of particles in the simple kinetic theory?

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

LECTURE 01: Microscopic view of matter

LECTURE 01: Microscopic view of matter LECTURE 01: of matter Select LEARNING OBJECTIVES: Compare macroscopic and microscopic models of matter. Introduce state variables. Convert between molar mass and number of moles as well as number of particles.

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5 THE SECOND LAW OF THERMODYNAMICS Professor Benjamin G. Levine CEM 182H Lecture 5 Chemical Equilibrium N 2 + 3 H 2 2 NH 3 Chemical reactions go in both directions Systems started from any initial state

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

KINETICE THEROY OF GASES

KINETICE THEROY OF GASES INTRODUCTION: Kinetic theory of gases relates the macroscopic properties of gases (like pressure, temperature, volume... etc) to the microscopic properties of the gas molecules (like speed, momentum, kinetic

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Chapter 12. Temperature and Heat. continued

Chapter 12. Temperature and Heat. continued Chapter 12 Temperature and Heat continued 12.3 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of

More information

PHYSICS. Chapter 9 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 9 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 9 Lecture RANDALL D. KNIGHT Chapter 9 Work and Kinetic Energy IN THIS CHAPTER, you will begin your study of how energy is transferred

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Kinetic Theory continued

Kinetic Theory continued Chapter 12 Kinetic Theory continued 12.4 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the

More information

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 18 Physics, 4 th Edition James S. Walker Chapter 18 The Laws of Thermodynamics Units of Chapter 18 The Zeroth Law of Thermodynamics The First Law of Thermodynamics Thermal Processes

More information

Brownian Motion and The Atomic Theory

Brownian Motion and The Atomic Theory Brownian Motion and The Atomic Theory Albert Einstein Annus Mirabilis Centenary Lecture Simeon Hellerman Institute for Advanced Study, 5/20/2005 Founders Day 1 1. What phenomenon did Einstein explain?

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

What Is Air Temperature?

What Is Air Temperature? 2.2 Read What Is Air Temperature? In Learning Set 1, you used a thermometer to measure air temperature. But what exactly was the thermometer measuring? What is different about cold air and warm air that

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Objectives: You Should Be Able To: Define and give examples of impulse and momentum along with appropriate units. Write and apply a relationship between impulse and momentum in

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

19-9 Adiabatic Expansion of an Ideal Gas

19-9 Adiabatic Expansion of an Ideal Gas 19-9 Adiabatic Expansion of an Ideal Gas Learning Objectives 19.44 On a p-v diagram, sketch an adiabatic expansion (or contraction) and identify that there is no heat exchange Q with the environment. 19.45

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1)

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) 1. Kinetic Theory of Gases This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) where n is the number of moles. We

More information

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 1 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University 1. Molecular Model of an Ideal Gas. Molar Specific Heat of an Ideal Gas. Adiabatic

More information

Chapter Practice Test Grosser

Chapter Practice Test Grosser Class: Date: Chapter 10-11 Practice Test Grosser Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the kinetic-molecular theory, particles of

More information

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature Bởi: OpenStaxCollege We have developed macroscopic definitions of pressure and temperature. Pressure is the force divided by

More information

Announcements 13 Nov 2014

Announcements 13 Nov 2014 Announcements 13 Nov 2014 1. Prayer 2. Exam 3 starts on Tues Nov 25 a. Covers Ch 9-12, HW 18-24 b. Late fee on Wed after Thanksgiving, 3 pm c. Closes on Thursday after Thanksgiving, 3 pm d. Jerika review

More information

Chapter 16 Thermodynamics

Chapter 16 Thermodynamics Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 16 Thermodynamics Thermodynamics Introduction Another area of physics is thermodynamics Continues with the principle of conservation of energy

More information

A, B, and C, in the P V plane. i C. D: none of the above

A, B, and C, in the P V plane. i C. D: none of the above pressure A gas is in a container with a piston lid and is taken from the state, i, to a state, f, by several different paths, A, B, and C, in the P V plane. A B f D: none of the above i C volume The work

More information

11/22/11. If you add some heat to a substance, is it possible for the temperature of the substance to remain unchanged?

11/22/11. If you add some heat to a substance, is it possible for the temperature of the substance to remain unchanged? Physics 101 Tuesday 11/22/11 Class 26" Chapter 17.2, 17.5, 17.6, 18.1, 18.2" Kinetic Theory" Latent Heat" Phase changes" 1 st law of thermodynamics" " Which one is not the assumption in kinetic theory

More information

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2 F1 (a) Since the ideal gas equation of state is PV = nrt, we can equate the right-hand sides of both these equations (i.e. with PV = 2 3 N ε tran )and write: nrt = 2 3 N ε tran = 2 3 nn A ε tran i.e. T

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics Today Announcements: HW#5 is due by 8:00 am Wed. Feb. 5th. Extra Credit Exam due by Tomorrow 8am. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics ISP09s9 Lecture 11-1- Energy and

More information

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1)

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) 1. Kinetic Theory of Gases This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) where n is the number of moles. We

More information

Downloaded from

Downloaded from Chapter 13 (Kinetic Theory) Q1. A cubic vessel (with face horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of500 ms in vertical direction.

More information

Thermal Physics. Topics to be covered. Slide 2 / 105. Slide 1 / 105. Slide 3 / 105. Slide 4 / 105. Slide 5 / 105. Slide 6 / 105.

Thermal Physics. Topics to be covered. Slide 2 / 105. Slide 1 / 105. Slide 3 / 105. Slide 4 / 105. Slide 5 / 105. Slide 6 / 105. Slide 1 / 105 Slide 2 / 105 Topics to be covered Thermal Physics Temperature and Thermal quilibrium Gas Laws Internal nergy Heat Work Laws of Thermodynamics Heat ngines Slide 3 / 105 Thermodynamics System

More information

Lecture 4: Classical Illustrations of Macroscopic Thermal Effects

Lecture 4: Classical Illustrations of Macroscopic Thermal Effects Lecture 4: Classical Illustrations of Macroscopic Thermal Effects Heat capacity of solids & liquids Thermal conductivity Irreversibility References for this Lecture: Elements Ch 3,4A-C Reference for Lecture

More information

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal.

S = k log W 11/8/2016 CHEM Thermodynamics. Change in Entropy, S. Entropy, S. Entropy, S S = S 2 -S 1. Entropy is the measure of dispersal. Entropy is the measure of dispersal. The natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal of matter: Thermodynamics We analyze the constraints

More information

ADIABATIC PROCESS Q = 0

ADIABATIC PROCESS Q = 0 THE KINETIC THEORY OF GASES Mono-atomic Fig.1 1 3 Average kinetic energy of a single particle Fig.2 INTERNAL ENERGY U and EQUATION OF STATE For a mono-atomic gas, we will assume that the total energy

More information

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position?

If the dividing wall were allowed to move, which of the following statements would not be true about its equilibrium position? PHYS 213 Exams Database Midterm (A) A block slides across a rough surface, eventually coming to a stop. 1) What happens to the block's internal thermal energy and entropy? a. and both stay the same b.

More information

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax-CNX module: m55236 1 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Turning up the heat: thermal expansion

Turning up the heat: thermal expansion Lecture 3 Turning up the heat: Kinetic molecular theory & thermal expansion Gas in an oven: at the hot of materials science Here, the size of helium atoms relative to their spacing is shown to scale under

More information

Kinetic theory of the ideal gas

Kinetic theory of the ideal gas Appendix H Kinetic theory of the ideal gas This Appendix contains sketchy notes, summarizing the main results of elementary kinetic theory. The students who are not familiar with these topics should refer

More information

Chapter 12. The Laws of Thermodynamics

Chapter 12. The Laws of Thermodynamics Chapter 12 The Laws of Thermodynamics First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy of a system can be increased by Adding energy to the system Doing work

More information

Ch. 7: Thermochemistry

Ch. 7: Thermochemistry Thermodynamics and Thermochemistry Thermodynamics concerns itself with energy and its relationship to the large scale bulk properties of a system that are measurable: Volume, Temperature, Pressure, Heat

More information

Active Learners Reflective Learners Use both ways equally frequently More Inclined to be Active More inclined to be Reflective

Active Learners Reflective Learners Use both ways equally frequently More Inclined to be Active More inclined to be Reflective Active Learners Reflective Learners Use both ways equally frequently More Inclined to be Active More inclined to be Reflective Sensory Leaners Intuitive Learners Use both ways equally frequently More inclined

More information

12.1 Work in Thermodynamic Processes

12.1 Work in Thermodynamic Processes Name APPH7_Notes3key Page 1 of 6 AP Physics Date Notes: Thermodynamics 12.1 Work in Thermodynamic Processes First Law of Thermodynamics The First Law of Thermodynamics tells us that the internal energy

More information

Thermodynamics: Microscopic vs. Macroscopic (Chapters 16, )

Thermodynamics: Microscopic vs. Macroscopic (Chapters 16, ) Thermodynamics: Microscopic vs. Macroscopic (Chapters 16, 18.1-5 ) Matter and Thermal Physics Thermodynamic quantities: Volume V and amount of substance Pressure P Temperature T: Ideal gas Zeroth Law of

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES KINETIC THEORY OF GASES Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure. Charle s Law: At constant pressure volume of a given mass of gas is directly

More information

The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT

The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT The Kinetic Theory of Matter Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 6 HEAT Kinetic Theory of Matter: Matter is made up of tiny particles (atoms or molecules) that are always in

More information

IT IS THEREFORE A SCIENTIFIC LAW.

IT IS THEREFORE A SCIENTIFIC LAW. Now we talk about heat: Zeroth Law of Thermodynamics: (inserted after the 3 Laws, and often not mentioned) If two objects are in thermal equilibrium with a third object, they are in thermal equilibrium

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. CH. 19 PRACTICE Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When a fixed amount of ideal gas goes through an isobaric expansion, A) its

More information

CHEM Thermodynamics. Entropy, S

CHEM Thermodynamics. Entropy, S hermodynamics Change in Change in Entropy, S Entropy, S Entropy is the measure of dispersal. he natural spontaneous direction of any process is toward greater dispersal of matter and of energy. Dispersal

More information

Understanding KMT using Gas Properties and States of Matter

Understanding KMT using Gas Properties and States of Matter Understanding KMT using Gas Properties and States of Matter Learning Goals: Students will be able to describe matter in terms of particle motion. The description should include Diagrams to support the

More information

Physics 161 Lecture 14 Kinetic Theory of Gas. October 18, 2018

Physics 161 Lecture 14 Kinetic Theory of Gas. October 18, 2018 Physics 161 Lecture 14 Kinetic Theory of Gas October 18, 2018 1 Exam 1, Thursday 18 Oct The exam will start promptly at 10:00pm. You will be permitted to open your exam at 10:00pm. You will have until

More information

Assess why particular characteristics are necessary for effective conduction KEY POINTS

Assess why particular characteristics are necessary for effective conduction KEY POINTS Conduction LEARNING OBJECTIVES Assess why particular characteristics are necessary for effective conduction KEY POINTS On a microscopic scale, conduction occurs as rapidly moving or vibrating atoms and

More information

Tells us the average translational kinetic energy of the particles

Tells us the average translational kinetic energy of the particles Temperature and Heat What is temperature? Kinetic Energy What is heat? Thermal Expansion Specific Heat Latent Heat and phase changes Unit 03, Slide 1 Temperature Tells us the average translational kinetic

More information

Temperature, Energy and the First Law of Thermodynamics. 8.01t Nov 29, 2004

Temperature, Energy and the First Law of Thermodynamics. 8.01t Nov 29, 2004 Temperature, Energy and the First Law of Thermodynamics 8.01t Nov 29, 2004 Temperature The hotness or coldness of an object is a macroscopic property of that object. When a cold object is placed in contact

More information

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments: Ideal Gases Name: Class: Date: Time: 247 minutes Marks: 205 marks Comments: Page 1 of 48 1 Which one of the graphs below shows the relationship between the internal energy of an ideal gas (y-axis) and

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Kinds of Energy. Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation. Conservation of Energy. Sco; Denning CSU ESMEI ATS 1

Kinds of Energy. Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation. Conservation of Energy. Sco; Denning CSU ESMEI ATS 1 Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation Energy is the capacity to perform work (but physicists have a special definition for work, too!) Part of the trouble is that scientists have appropriated

More information

Chemical thermodynamics the area of chemistry that deals with energy relationships

Chemical thermodynamics the area of chemistry that deals with energy relationships Chemistry: The Central Science Chapter 19: Chemical Thermodynamics Chemical thermodynamics the area of chemistry that deals with energy relationships 19.1: Spontaneous Processes First law of thermodynamics

More information

Thermal Properties of Matter (Microscopic models)

Thermal Properties of Matter (Microscopic models) Chapter 18 Thermal Properties of Matter (Microscopic models) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_18_2012

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES KINETIC THEORY OF GASES VERY SHORT ANSWER TYPE QUESTIONS ( MARK). Write two condition when real gases obey the ideal gas equation ( nrt). n number of mole.. If the number of molecule in a container is

More information

(a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision.

(a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision. 1 (a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision. State two more assumptions that are made in the kinetic

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

Chapter 11 Heat Engines and The Second Law of Thermodynamics

Chapter 11 Heat Engines and The Second Law of Thermodynamics Chapter 11 Heat Engines and The Second Law of Thermodynamics Heat Engines Heat engines use a temperature difference involving a high temperature (T H ) and a low temperature (T C ) to do mechanical work.

More information

Monday, October 21, 13. Copyright 2009 Pearson Education, Inc.

Monday, October 21, 13. Copyright 2009 Pearson Education, Inc. Lecture 4 1st Law of Thermodynamics (sections 19-4 to 19-9) 19-4 Calorimetry 19-5 Latent Heat 19-6 The 1st Law of Thermodynamics 19-7 Gas: Calculating the Work 19-8 Molar Specific Heats 19-9 Adiabatic

More information

VISUAL PHYSICS ONLINE THERMODYNAMICS SECOND LAW OF THERMODYNAMICS ENTROPY

VISUAL PHYSICS ONLINE THERMODYNAMICS SECOND LAW OF THERMODYNAMICS ENTROPY VISUAL PHYSICS ONLINE THERMODYNAMICS SECOND LAW OF THERMODYNAMICS ENTROPY The Second Law of Thermodynamics is one of the fundamental laws which describes the workings of our universe. Not like other laws

More information

Quantitative Exercise 9.4. Tip 9/14/2015. Quantitative analysis of an ideal gas

Quantitative Exercise 9.4. Tip 9/14/2015. Quantitative analysis of an ideal gas Chapter 9 - GASES 9. Quantitative analysis of gas 9.4 emperature 9.5 esting the ideal gas Quantitative analysis of an ideal gas We need more simplifying assumptions. Assume that the particles do not collide

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases Physics week 7 Chapter 3 The Kinetic Theory of Gases 3.1. Ideal Gases 3.1.1. Experimental Laws and the Equation of State 3.1.. Molecular Model of an Ideal Gas 3.. Mean Free Path 3.3. The Boltzmann Distribution

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

Archimedes Principle

Archimedes Principle Archimedes Principle applies in air the more air an object displaces, the greater the buoyant force on it if an object displaces its weight, it hovers at a constant altitude if an object displaces less

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Ch 18. Kinetic Theory of Gases

Ch 18. Kinetic Theory of Gases Physics 5D: Heat, Thermo, Kinetics Ch 18. Kinetic Theory of Gases Prof. Joel Primack 318 ISB 459-2580 joel@physics.ucsc.edu Text Copyright Text 2009 Pearson Text Education, Text Inc. Neuschwanstein Bavaria

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Chapter 8 Covalent Bonding 8.1 What information does a molecular formula provide? 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc.,

More information

Chapter 8: Internal Energy and the Laws of Thermodynamics

Chapter 8: Internal Energy and the Laws of Thermodynamics Chapter 8: Internal Energy and the Laws of Thermodynamics Goals of Period 8 Section 8.1: To discuss conservation of energy and the first law of thermodynamics Section 8.: To discuss irreversible processes

More information