Molecular Motion and Gas Laws

Size: px
Start display at page:

Download "Molecular Motion and Gas Laws"

Transcription

1 Molecular Motion and Gas Laws What is the connection between the motion of molecules (F = ma and K = mv 2 /2) and the thermodynamics of gases (pv = nrt and U = 3nRT/2)? In this lab, you will discover how the pressure and temperature of air depend on the velocity and kinetic energy of a nitrogen molecule. In previous labs, you studied N = 1 or 2 objects, each of mass m 1 kg, moving at speed v 1 m/s. In today s lab, you will study N objects, each of mass m kg, moving on average at v 500 m/s! Welcome to the world of atoms and molecules. 1. The Spring of Air In his pioneering memoir on The Spring of Air published in 1660, Robert Boyle introduced the concept of pressure into science. The celebrated ideal gas law, pv = nrt, originated from Boyle s experiments on air pressure. On your table is a cylinder fitted with a piston. Pull the piston all the way to the top of the cylinder. This procedure draws air into the cylinder. The tube connected at the base of the cylinder contains a one-way valve that allows air to flow into the cylinder by not out. Release the piston. The piston should remain at rest at a height somewhere between 95 mm and 100 mm. If the piston falls down, then air is escaping from the cylinder. Consult with your instructor if the cylinder seems to leak. CAUTION: Do not compress the gas too much. High pressure can break parts and shatter plastic. Push down lightly on the piston and feel the springiness of the substance inside the cylinder. Pushing down on the invisible air inside the cylinder feels the same as pushing down on a stiff invisible spring. In this lab, you will measure the spring constant of air. Boyle imagined air to consist of a heap of little bodies, lying one upon another, as may be resembled to a fleece of wool. This pile of bodies compresses when pushed and springs back when released. We now know that the little bodies that make up air and all other gases are molecules in random motion. 2. Molecular Collisions The pressure of a gas is due to the perpetual bombardment of the gas molecules against a surface. The magnitude of the pressure is equal to the average force exerted by the molecules per unit area. Here you will use this molecular-kinetic picture to answer the following basic question: What happens to the pressure of a gas if its volume is reduced to half its original value? The temperature of the gas is kept fixed (at a value equal to room temperature) as the volume is cut in half. Based on your qualitative observation of the springiness of air, it is clear that as the volume of the gas is decreased, the gas pressure increases. To understand the pressure-volume relation in terms of molecular motion, it is sufficient to focus on the motion of one molecule bouncing back and forth at constant speed between the top and bottom walls of the cylinder. By Newton s second law, the average 1

2 force exerted by the molecule on the top wall (piston) is proportional to the rate at which the molecule hits the wall: force number of collisions per second. The force is also proportional to the change in momentum of the molecule during each collision, but this velocity-dependent quantity depends only on temperature and thus remains constant during the change in volume. Molecular Data: The gas (air) inside your cylinder consists of a multitude of tiny nitrogen balls moving randomly in the x, y, z directions. The mass of one nitrogen molecule is m = kg. The average speed of each molecule at room temperature is v = 515 m/s or 1150 mi/hr. The average velocity component of each molecule is v x = v y = v z = 297 m/s. Note: Air consists of 80% nitrogen (N 2 ) and 20% oxygen (O 2 ). Since the mass of N 2 is close to the mass of O 2, it is okay to assume that air is all N 2. Speed squared is v 2 = v x 2 + v y 2 +v z 2. Since room temperature remains fixed, the average speed of each molecule remains constant. Calculating the Collision Rate. The picture below shows one air molecule (nitrogen ball) bouncing between the ends of the cylinder in your experiment. If the volume is reduced by one half, V V/2, then the rate at which the molecule hits the piston changes. Calculate the collision rate the number of times the molecule hits the piston in one second before and after the reduction in volume. Volume V Volume V/2 297 m/s 100 mm 297 m/s 50 mm Collision Rate = coll/sec. Collision Rate = coll/sec. 2

3 Molecular Theory Prediction. Based on your collision-rate analysis and the mechanical relations, Pressure Force Collision Rate, state your prediction: If the volume of a gas (at constant temperature) is reduced by a factor of ½, then the pressure of the gas will increase by a factor of. Generalize your collision-rate analysis. For example, what happens to the collision rate and the pressure p if V is reduced from V to V/4? Circle the general p-v relation: p V p V 2 p 1/V p 1/V 2 3. The Force of the Atmosphere When the piston is stationary, the acceleration of the piston is zero and therefore the net force on the piston must be zero. There are two forces acting on the piston: F atm = Force of atmosphere outside the cylinder pushing down on the piston. F gas = Force of gas (air) molecules inside the cylinder pushing up on the piston. We are assuming that the only external force acting on the piston is due to the atmosphere. There is no friction and no push due to your hand or other object. You can neglect the weight of the piston it is negligible compared to the weight of the atmosphere above the piston! Compute the downward force on the piston due to the atmosphere using the following data: Radius of piston = mm. Atmospheric pressure: 1 atm = N/m 2. F atm = N. When the piston is at the top of the cylinder (after you pull the piston up to draw in air), what is the upward force of the gas molecules on the piston? F gas = N when L = mm. 3

4 4. Measuring the Relation Between F gas and L If you push down on the piston with a force probe, the gas will be confined to a smaller space, and therefore the gas molecules will hit the piston at a greater rate: If L decreases, then F gas increases. Note that F atm stays the same. The following force diagrams illustrate this inverse relation between the molecular force F gas and the size of the gas L. F atm F atm F probe F gas L F gas L Here you will use the force probe to study the relation between F gas and L. Pull the piston to the top of the cylinder. Release the piston. The piston should remain at rest at a value of L somewhere between 95 mm and 100 mm. Record this initial value of L in the table below. Set the switch on the force probe to 50 N. Open the file Force Probe. Zero the force probe while holding it in the vertical position. Activate the force probe and then use the probe to push down on the piston through a sequence of heights as follows: (1) Push down quickly until you reach 90 mm. Hold at 90 mm for 2-3 seconds. (2) Push from 90 mm to 85 mm quickly. Hold at 85 mm for 2-3 seconds. (3) Push from 85 mm to 80 mm quickly. Hold at 80 mm for 2-3 seconds. (4) Push from 80 mm to 75 mm quickly. Hold at 75 mm for 2-3 seconds. The whole pushing-down process should take no more than 15 seconds. This short time is necessary to minimize any air leakage from your cylinder. You may have to practice this sequence of pushes-andholds until you get the timing just right. Use Autoscale to see the whole Force-time graph. Your Force-time graph should resemble a staircase of five steps. Each horizontal line segment on your graph, which lasts for 2-3 seconds, corresponds to a different force one for each value of L. Record the Force values in the table below. Repeat this whole procedure pull the piston to the top, push the piston through the sequence of heights, record the forces. Average the two force values. L (mm) F probe (N) 0 F probe (N) 0 Average F probe (N) 0 4

5 The quantity of interest is the force F gas of the gas molecules inside the cylinder pounding against the piston. Use Newton s second law (net force on piston due to gas + probe + atm must equal zero) to find the value of F gas for each of your four values of L. See the free-body diagrams on the previous page. Show your Newton-law calculations and record your results in the table. L (m) F gas (N) 5. Finding the Equation of State Do your experimental values of F gas and L follow a simple pattern? In theory, ideal gases obey the following law of physics: Boyle s Law: The pressure of a gas kept at constant temperature is inversely proportional to the volume of the gas: p 1/V. Hence, the product of pressure and volume is a constant: pv = constant ( for constant T ). So in theory, when you push down on the piston (make L smaller) in your experiment, the pressure of the gas in the cylinder should increase (F gas gets bigger) in such a way that the product F gas L stays the same. Discovering Boyle s Law. Is F gas L equal to a Constant? Compute the product F gas L using your measured values of F gas and L in the previous table: F gas L =,,,,. Are your five values of F gas L equal within experimental error (10%)? If so then you have proven Boyle s Law. If not, then see your instructor. Report the average value of Boyle s constant : F gas L = Joules. This relation between the state variables, F gas and L, is the equation of state of the gas in your cylinder. Express the equation of state in terms of the state variables p and V. Hints: The definition of pressure p is F/A. The volume V of a cylinder is AL. pv = Joules. 5

6 6. pv Diagram The subject of thermodynamics is full of pv diagrams. Here you will plot F gas vs L, which is equivalent to a p vs V plot. Use the program graphical analysis: plot L on the x axis and F gas on the y axis. Fit your data points with the inverse function y = A/x. Hand in your graph showing the best-fit curve. Answer the following two questions directly on the graph: (1) Compare the value of the curve-fit parameter A with your experimental value of Boyle s constant. (2) Can you conclude that the gas in your cylinder obeys the ideal gas relation p 1/V? 7. How Many Molecules are in the Cylinder? Use your experimental value of pv, together with the ideal gas law pv = nrt, to deduce the number N of air molecules inside your cylinder. Also find the total mass M of air inside the cylinder. Show your calculations. Hints: The gas constant is R = 8.31 J/K mol. Avogadro s number is N A = molecules per mole. Room temperature is 298 K. N = molecules. M = milligrams. 8. What is the Distance Between Air Molecules? Find the average distance d (in nanometers) between the centers of two neighboring molecules in air (at sea level and room temperature). Hints: For T = 298 K and p = 1 atm, the piston in your cylinder is at L 95 mm. For N particles that are uniformly distributed (equally separated by d) in a region of space, the volume of the region is Nd 3. The diameter of an air molecule is 0.30 nm. How many molecular diameters is d? d = nanometers. d = molecular diameters. 6

7 9. Kinetic Energy of Molecules How do you measure the velocity of an air molecule? How do you keep track of just one molecule? There are 25,000,000,000,000,000,000 molecules occupying each cubic centimeter of air. The motion sensor would have to be an atomic-size (nanometer) device. It turns out that you have already measured the kinetic energy of a nitrogen molecule using the force sensor! Kinetic theory shows that the work constant F gas L, which you measured with the force sensor, is directly related to the average translational kinetic energy ½ mv 2 of a gas molecule: F gas L = (2N/3) ½ mv 2. Calculate the kinetic energy K of the N air molecules in your cylinder two different ways: Microscopic: K = N ½ mv 2 = ½ ( ) 2 = J. Macroscopic: K = 3/2 F gas L = 3/2 = J. 10. Molecular Meaning of Temperature: Using the force relation pv = nrt, the energy relation above can be written in the form ½ mv 2 = 3/2 kt. This important relation says that the absolute temperature of a gas is proportional to the average translational kinetic energy of a molecule in the gas. Calculate the value of the proportionality constant k in the space below. Pay attention to units. k =. Congratulations. You have discovered one of the fundamental constants of nature known as Boltzmann s Constant. The universal constants of nature are G, c, h, k. These four constants characterize the four main fields of physics: Astrophysics (big objects), Electrodynamics (charged objects), Quantum Mechanics (small objects), and Thermodynamics (many objects). 7

8 11. Molecular Calculation of Force Now that you know the numerical values of N, L, m, and v, you can calculate the pressure of a gas from a purely mechanical analysis of molecules bouncing off a piston. Newton s second law states Average force = Momentum delivered to piston Number of collisions on piston per collision per second Compute the two terms on the right side of Newton s law using the following guide: Momentum delivered to piston per collision = Change in momentum of one molecule during a collision = mv y ( mv y ) = 2 kg m/s = kg m/s. Number of collisions per second = Collision rate for one molecule (for L = 100 mm) Number of molecules = coll/sec = coll/sec. Conclusion. Calculate the average force on the piston. Calculate the pressure due to this force. F = N. p = N/m 2. Your calculated value of pressure (for L = 100 mm) based on molecular motion should agree with the well-known experimental value of atmospheric pressure. Compare these values. 8

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments: Ideal Gases Name: Class: Date: Time: 247 minutes Marks: 205 marks Comments: Page 1 of 48 1 Which one of the graphs below shows the relationship between the internal energy of an ideal gas (y-axis) and

More information

Revision Guide for Chapter 13

Revision Guide for Chapter 13 Matter: very simple Revision Guide for Chapter Contents Student s Checklist Revision Notes Ideal gas... Ideal gas laws... Assumptions of kinetic theory of gases... 5 Internal energy... 6 Specific thermal

More information

Lab 13: Temperature and Thermodynamics

Lab 13: Temperature and Thermodynamics Physics 2020, Spring 2005 Lab 13 page 1 of 10 Lab 13: Temperature and Thermodynamics INTRODUCTION & BACKGROUND: By now you are probably very familiar with the ideal gas law PV=nRT, or the equivalent PV=Nk

More information

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES.

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES. !! www.clutchprep.com CONCEPT: ATOMIC VIEW OF AN IDEAL GAS Remember! A gas is a type of fluid whose volume can change to fill a container - What makes a gas ideal? An IDEAL GAS is a gas whose particles

More information

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov 18-23 2015 MSU Physics 231 Fall 2015 1 homework 3 rd midterm final Thursday 8-10 pm makeup Friday final 9-11 am MSU

More information

Gases. Pressure is formally defined as the force exerted on a surface per unit area:

Gases. Pressure is formally defined as the force exerted on a surface per unit area: Gases Pressure is formally defined as the force exerted on a surface per unit area: Force is measure in Newtons Area is measured in m 2 and it refers to the Area the particle/object is touching (From the

More information

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70)

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70) Name Period CRHS Academic Chemistry Unit 11 - Gas Laws Practice Problems Due Date Assignment On-Time (100) Late (70) 11.1 11.2 11.3 11.4 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2 F1 (a) Since the ideal gas equation of state is PV = nrt, we can equate the right-hand sides of both these equations (i.e. with PV = 2 3 N ε tran )and write: nrt = 2 3 N ε tran = 2 3 nn A ε tran i.e. T

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 13 Gases Properties of

More information

Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

More information

Downloaded from

Downloaded from Chapter 13 (Kinetic Theory) Q1. A cubic vessel (with face horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of500 ms in vertical direction.

More information

Chapter 10: Thermal Physics

Chapter 10: Thermal Physics Chapter 10: hermal Physics hermal physics is the study of emperature, Heat, and how these affect matter. hermal equilibrium eists when two objects in thermal contact with each other cease to echange energy.

More information

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Part I: Basic Concepts of Thermodynamics Lecture 3: Heat and Work Kinetic Theory of Gases Ideal Gases 3-1 HEAT AND WORK Here we look in some detail at how heat and work are exchanged between a system and

More information

There are three phases of matter: Solid, liquid and gas

There are three phases of matter: Solid, liquid and gas FLUIDS: Gases and Liquids Chapter 4 of text There are three phases of matter: Solid, liquid and gas Solids: Have form, constituents ( atoms and molecules) are in fixed positions (though they can vibrate

More information

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Gases. Characteristics of Gases. Unlike liquids and solids, gases Gases Characteristics of Gases Unlike liquids and solids, gases expand to fill their containers; are highly compressible; have extremely low densities. 1 Pressure Pressure is the amount of force applied

More information

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 5: Rise and Fall of the Clockwork Universe You should be able to demonstrate and show your understanding of: 5.2: Matter Particle model: A gas consists of many very small, rapidly

More information

Kinetic Theory. 84 minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

Kinetic Theory. 84 minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments: Kinetic Theory Name: Class: Date: Time: 84 minutes Marks: 62 marks Comments: Page 1 of 19 1 Which one of the following is not an assumption about the properties of particles in the simple kinetic theory?

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K Thermal Physics Internal Energy: total potential energy and random kinetic energy of the molecules of a substance Symbol: U Units: J Internal Kinetic Energy: arises from random translational, vibrational,

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

Chapter 13: Temperature, Kinetic Theory and Gas Laws

Chapter 13: Temperature, Kinetic Theory and Gas Laws Chapter 1: Temperature, Kinetic Theory and Gas Laws Zeroth Law of Thermodynamics (law of equilibrium): If objects A and B are separately in thermal equilibrium with a third object C, then A and B are in

More information

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction. 9.1 Kinetic Theory of Gases : Assumption (1) The molecules of a gas are identical, spherical and perfectly elastic point masses. (2) The volume of molecules is negligible in comparison to the volume of

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

Thermodynamics. Atoms are in constant motion, which increases with temperature.

Thermodynamics. Atoms are in constant motion, which increases with temperature. Thermodynamics SOME DEFINITIONS: THERMO related to heat DYNAMICS the study of motion SYSTEM an object or set of objects ENVIRONMENT the rest of the universe MICROSCOPIC at an atomic or molecular level

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

People s Physics book 3e

People s Physics book 3e The Big Ideas Heat is a form of energy transfer. It can change the kinetic energy of a substance. For example, the average molecular kinetic energy of gas molecules is related to temperature. A heat engine

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. In an experiment to measure the temperature of the flame of a Bunsen burner, a lump of copper of mass 0.12 kg is heated in the flame for several minutes. The copper is then

More information

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. The Ideal Gas Law Derived

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. The Ideal Gas Law Derived 1/6 2009/11/14 上午 11:11 Manage this Assignment: Chapter 17 Due: 12:00am on Saturday, July 3, 2010 Note: You will receive no credit for late submissions To learn more, read your instructor's Grading Policy

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES KINETIC THEORY OF GASES VERY SHORT ANSWER TYPE QUESTIONS ( MARK). Write two condition when real gases obey the ideal gas equation ( nrt). n number of mole.. If the number of molecule in a container is

More information

CHEMISTRY NOTES Chapter 12. The Behavior of Gases

CHEMISTRY NOTES Chapter 12. The Behavior of Gases Goals : To gain an understanding of : 1. The kinetic theory of matter. 2. Avogadro's hypothesis. 3. The behavior of gases and the gas laws. NOTES: CHEMISTRY NOTES Chapter 12 The Behavior of Gases The kinetic

More information

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law Handout : Ideal gas, internal energy, work and heat Ideal gas law For a gas at pressure p, volume V and absolute temperature T, ideal gas law states that pv = nrt, where n is the number of moles and R

More information

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

- 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

More information

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids Slide 1 / 66 1 What is the name of the following statement: "When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium with each other"? A B C D E First Law

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

CHAPTER III: Kinetic Theory of Gases [5%]

CHAPTER III: Kinetic Theory of Gases [5%] CHAPTER III: Kinetic Theory of Gases [5%] Introduction The kinetic theory of gases (also known as kinetic-molecular theory) is a law that explains the behavior of a hypothetical ideal gas. According to

More information

Force and Motion. Thought Experiment

Force and Motion. Thought Experiment Team Force and Motion In previous labs, you used a motion sensor to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that caused the object

More information

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. 10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES. Key words: Atoms, Molecules, Atomic Theory of Matter, Molecular Mass, Solids, Liquids, and Gases, Thermodynamics, State Variables,

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Chapter 11 Gases 1 Copyright McGraw-Hill 2009 Chapter 11 Gases Copyright McGraw-Hill 2009 1 11.1 Properties of Gases The properties of a gas are almost independent of its identity. (Gas molecules behave as if no other molecules are present.) Compressible

More information

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m PV = n R T = N k T P is the Absolute pressure Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m V is the volume of the system in m 3 often the system

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the following

More information

Web Resource: Ideal Gas Simulation. Kinetic Theory of Gases. Ideal Gas. Ideal Gas Assumptions

Web Resource: Ideal Gas Simulation. Kinetic Theory of Gases. Ideal Gas. Ideal Gas Assumptions Web Resource: Ideal Gas Simulation Kinetic Theory of Gases Physics Enhancement Programme Dr. M.H. CHAN, HKBU Link: http://highered.mheducation.com/olcweb/cgi/pluginpop.cgi?it=swf::00%5::00%5::/sites/dl/free/003654666/7354/ideal_na.swf::ideal%0gas%0law%0simulation

More information

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2.

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2. Force and Motion Team In previous labs, you used a motion sensor to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that caused the object

More information

Empirical Gas Laws (Parts 1 and 2) Pressure-volume and pressure-temperature relationships in gases

Empirical Gas Laws (Parts 1 and 2) Pressure-volume and pressure-temperature relationships in gases Empirical Gas Laws (Parts 1 and 2) Pressure-volume and pressure-temperature relationships in gases Some of the earliest experiments in chemistry and physics involved the study of gases. The invention of

More information

SPRING 2003 Final Exam, Part A

SPRING 2003 Final Exam, Part A Physics 151 SPRING 2003 Final Exam, Part A Roster No.: Score: 17 pts. possible Exam time limit: 2 hours. You may use calculators and both sides of 2 sheets of notes, handwritten only. Closed book; no collaboration.

More information

If the position of a molecule is measured after increments of 10, 100, 1000 steps, what will the distribution of measured steps look like?

If the position of a molecule is measured after increments of 10, 100, 1000 steps, what will the distribution of measured steps look like? If the position of a molecule is measured after increments of 10, 100, 1000 steps, what will the distribution of measured steps look like? (1) No longer Gaussian (2) Identical Gaussians (3) Gaussians with

More information

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Preview Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Section 1 Gases and Pressure Lesson Starter Make a list of gases you already know about. Separate your list into elements,

More information

Mind Catalyst Stick It!

Mind Catalyst Stick It! Mind Catalyst Stick It! O With a partner, use the following scenarios as a guide to come up with the relationships of the gas properties. For each scenario, write the two properties and their relationship

More information

Chapter 10 Notes: Gases

Chapter 10 Notes: Gases Chapter 10 Notes: Gases Watch Bozeman Videos & other videos on my website for additional help: Big Idea 2: Gases 10.1 Characteristics of Gases Read p. 398-401. Answer the Study Guide questions 1. Earth

More information

Part I. Two Force-ometers : The Spring Scale and The Force Probe

Part I. Two Force-ometers : The Spring Scale and The Force Probe Team Force and Motion In previous labs, you used a motion detector to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that got the object

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

A PHYSICS 201 Final Exam

A PHYSICS 201 Final Exam PHYSICS 201 Final Exam Fall 2014 Last Name: First Name: Section: UIN: You have 120 minutes to complete the exam. Formulae are provided. You may NOT use any other formula sheet. You may use a calculator

More information

Part One: The Gas Laws. gases (low density, easy to compress)

Part One: The Gas Laws. gases (low density, easy to compress) CHAPTER FIVE: THE GASEOUS STATE Part One: The Gas Laws A. Introduction. 1. Comparison of three states of matter: fluids (flow freely) solids condensed states liquids (high density, hard to compress) gases

More information

Slide 1-2. Slide 3-4. Slide 5-6. Review from Physics 114. Gasses. Three possible mechanisms that explain how the alcohol disappears

Slide 1-2. Slide 3-4. Slide 5-6. Review from Physics 114. Gasses. Three possible mechanisms that explain how the alcohol disappears Slide 1-2 Review from Physics 114 Gasses Physics 115 Eyres Draw force diagrams (FBDs) (Section 2.1). Use Newton's second and third laws to analyze interactions of objects (Section 2.8). Use the impulse-momentum

More information

(Refer Slide Time: 0:28)

(Refer Slide Time: 0:28) Engineering Thermodynamics Professor Jayant K Singh Department of Chemical Engineering Indian Institute of Technology Kanpur Lecture 08 Examples on basic concept & energy balance Welcome back! Myself Parul

More information

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law:

Physics 231 Lecture 30. Main points of today s lecture: Ideal gas law: Physics 231 Lecture 30 Main points of today s lecture: Ideal gas law: PV = nrt = Nk BT 2 N 1 2 N 3 3 V 2 3 V 2 2 P = m v = KE ; KE KE = kbt Phases of Matter Slide 12-16 Ideal Gas: properties Approximate

More information

KINETIC THEORY. was the original mean square velocity of the gas. (d) will be different on the top wall and bottom wall of the vessel.

KINETIC THEORY. was the original mean square velocity of the gas. (d) will be different on the top wall and bottom wall of the vessel. Chapter Thirteen KINETIC THEORY MCQ I 13.1 A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500m s 1

More information

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines Zeroeth Law Two systems individually in thermal equilibrium with a third

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time.

RELEASED. Go to next page. 2. The graph shows the acceleration of a car over time. 1. n object is launched across a room. How can a student determine the average horizontal velocity of the object using a meter stick and a calculator? The student can calculate the object s initial potential

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

some are moving faster and some slower at any moment

some are moving faster and some slower at any moment Lecture 9: Kinetic Theory of Gases, Part 4, and Heat Engines We now know that the temperature of a gas is proportional to the average energy of each molecule But we also know that all the molecules don

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

PHY101: Major Concepts in Physics I

PHY101: Major Concepts in Physics I Welcome back to PHY101: Major Concepts in Physics I Photo: J. M. Schwarz Announcements In class today we will finish Chapter 20 (sections 3, 4, and 7). and then move to Chapter 13 (the first six sections).

More information

UNIT 5 : STATES OF MATTER Concept 1. INTERMOLECULAR FORCES

UNIT 5 : STATES OF MATTER Concept 1. INTERMOLECULAR FORCES www.tiwariacademy.in UNIT 5 : STATES OF MATTER CONCEPT WISE HANDOUTS KEY CONCEPTS : 1. Intermolecular Forces 2. Gas Laws 3. Behaviour of gases Concept 1. INTERMOLECULAR FORCES Intermolecular forces- forces

More information

CHEM1100 Summary Notes Module 2

CHEM1100 Summary Notes Module 2 CHEM1100 Summary Notes Module 2 Lecture 14 Introduction to Kinetic Theory & Ideal Gases What are Boyle s and Charles Laws? Boyle s Law the pressure of a given mass of an ideal gas is inversely proportional

More information

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 11 SESSION 13 (LEARNER NOTES)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 11 SESSION 13 (LEARNER NOTES) KINETIC THEORY OF GASES Learner Note: This section is related to chemical equilibrium and rates of reaction. Relationships in the section are very important. Emphasise the Kinetic Theory as this is again

More information

Centimeters of mercury

Centimeters of mercury CHAPTER 11 PROPERTIES OF GASES Gases have an indefinite shape: a gas takes the shape of its container and fills it uniformly. If the shape of the container changes, so does the shape of the gas. Gases

More information

Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee

Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee Engineering Physics 1 Dr. B. K. Patra Department of Physics Indian Institute of Technology-Roorkee Module-05 Lecture-02 Kinetic Theory of Gases - Part 02 (Refer Slide Time: 00:32) So, after doing the angular

More information

LAB 12 - THE IDEAL GAS LAW

LAB 12 - THE IDEAL GAS LAW L12-1 Name Date Partners LAB 12 - THE IDEAL GAS LAW OBJECTIVES... the hypothesis, that supposes the pressures and expansions to be in reciprocal proportions.. Robert Boyle To understand how a gaseous system

More information

AP Chemistry Unit 5 - Gases

AP Chemistry Unit 5 - Gases Common Gases at Room Temperature AP Chemistry Unit 5 - Gases Know these! HCN toxic slight odor of almonds HS toxic odor of rotten eggs CO toxic odorless CO odorless CH4 methane odorless, flammable CH4

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature

Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax-CNX module: m55236 1 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Characteristics of Unlike liquids and solids, they Expand to fill their containers.

More information

Chapter 10. Gases. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 10. Gases. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike

More information

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

More information

Gases, Liquids, Solids, and Intermolecular Forces

Gases, Liquids, Solids, and Intermolecular Forces Chapter 6 Gases, Liquids, Solids, and Intermolecular Forces Solids: The particles of a solid have fixed positions and exhibit motions of vibration. Liquids: The particles of a liquid are free to move within

More information

Physics 1501 Lecture 35

Physics 1501 Lecture 35 Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 10 2015 Pearson Education James F. Kirby Quinnipiac University Hamden, CT Characteristics of Physical properties of gases are all similar. Composed mainly of nonmetallic elements

More information

Physics 161 Lecture 14 Kinetic Theory of Gas. October 18, 2018

Physics 161 Lecture 14 Kinetic Theory of Gas. October 18, 2018 Physics 161 Lecture 14 Kinetic Theory of Gas October 18, 2018 1 Exam 1, Thursday 18 Oct The exam will start promptly at 10:00pm. You will be permitted to open your exam at 10:00pm. You will have until

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship 7/6/0 Chapter Five: GASES Characteristics of Gases Uniformly fills any container. Mixes completely with any other gas. Exerts pressure on its surroundings. When subjected to pressure, its volume decreases.

More information

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc.

More information

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy I. Ideal gases. A. Ideal gas law review. GASES (Chapter 5) 1. PV = nrt Ideal gases obey this equation under all conditions. It is a combination ofa. Boyle's Law: P 1/V at constant n and T b. Charles's

More information

Chapter 11 Ideal gases

Chapter 11 Ideal gases OCR (A) specifications: 5.4.10c,d,e,i,j,k Chapter 11 Ideal gases Worksheet Worked examples Practical: Determining absolute zero of temperature from the pressure law End-of-chapter test Marking scheme:

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

Newton s Third Law, Momentum, Center of Mass

Newton s Third Law, Momentum, Center of Mass Team: Newton s Third Law, Momentum, Center of Mass Newton s Third Law is a deep statement on the symmetry of interaction between any two bodies in the universe. How is the pull of the earth on the moon

More information

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 10 James F. Kirby Quinnipiac University Hamden, CT Characteristics of Physical properties of gases are all similar. Composed mainly of nonmetallic elements with simple formulas

More information

PHYSICS 220. Lecture 22. Textbook Sections Lecture 22 Purdue University, Physics 220 1

PHYSICS 220. Lecture 22. Textbook Sections Lecture 22 Purdue University, Physics 220 1 PHYSICS 220 Lecture 22 Temperature and Ideal Gas Textbook Sections 14.1 14.3 Lecture 22 Purdue University, Physics 220 1 Overview Last Lecture Speed of sound v = sqrt(b/ρ) Intensity level β = (10 db) log

More information

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College Cottleville, MO Chapter 10 Problems Problems

More information

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 17 Physics, 4 th Edition James S. Walker Chapter 17 Phases and Phase Changes Ideal Gases Kinetic Theory Units of Chapter 17 Solids and Elastic Deformation Phase Equilibrium and

More information

The Gas Laws. Types of Variation. What type of variation is it? Write the equation of the line.

The Gas Laws. Types of Variation. What type of variation is it? Write the equation of the line. The Gas Laws 1) Types of Variation 2) Boyle's Law + P V Investigation 3) Charles' Law + T V Thought Lab 4) Lussac's Law + T P Investigation 5) The Combined Gas Law 6) Avogadro and the Universal Gas Law

More information

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v)

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v) PHYSICS 220 Lecture 22 Temperature and Ideal Gas Moving Observer and Source Combine: f o = f s (1-v o /v) / (1-v s /v) A: You are driving along the highway at 65 mph, and behind you a police car, also

More information

LAB 11: THE IDEAL GAS LAW AND ABSOLUTE ZERO OF TEMPERATURE

LAB 11: THE IDEAL GAS LAW AND ABSOLUTE ZERO OF TEMPERATURE 173 Name Date Partners LAB 11: THE IDEAL GAS LAW AND ABSOLUTE ZERO OF TEMPERATURE OBJECTIVES... the hypothesis, that supposes the pressures and expansions to be in reciprocal proportions.. Robert Boyle

More information