Statistical Mechanics

Size: px
Start display at page:

Download "Statistical Mechanics"

Transcription

1 Statistical Mechanics

2 Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average' or approximate behavior of the system that will be useful for practical purposes Describing this average dynamics is the goal of thermodynamics A microscopic level fundamental understanding of thermodynamics was found later, and this field is called statistical mechanics

3 Average energy Suppose we have probability p i to have energy E i Then the average energy is hei = P i P i E i P i P i Continuous variables: Probability for any given value is zero, but we have a probability for a range P (v) dv v v + dv v

4 v P (v) Area under curve Z P (v)dv =1 v Sometimes we may give the number of particles per unit velocity range N(v)dv particles have momentum between and v v + dv N(v) Area under curve Z N(v)dv = N total

5 GREPracticeBook 56. A sample of N molecules has the distribution of speeds shown in the figure above. P u du is an estimate of the number of molecules with speeds between u and u + du, and this number is nonzero only up to 3u 0, where u 0 is constant. Which of the following gives the value of a? N (A) a 3 u 0 N (B) a 2 u (C) a (D) a N u (E) a N N 2 u 0

6 GREPracticeBook 56. A sample of N molecules has the distribution of speeds shown in the figure above. P u du is an estimate of the number of molecules with speeds between u and u + du, and this number is nonzero only up to 3u 0, where u 0 is constant. Which of the following gives the value of a? N (A) a 3 u 0 N (B) a 2 u (C) a (D) a N u (E) a N N 2 u 0

7 Hot bath, temperature T The particle can get energy from the hot walls when it touches them Basic law of Statistical Mechanics: Probability for the particle to have energy E P / e E kt Here k = JK 1 is the Boltzmann constant

8 77. An ensemble of systems is in thermal equilibrium with a reservoir for which kt = ev. State A has an energy that is 0.1 ev above that of state B. If it is assumed the systems obey Maxwell-Boltzmann statistics and that the degeneracies of the two states are the same, then the ratio of the number of systems in state A to the number in state B is (A) e +4 (B) e (C) 1 (D) e (E) e -4 GRE0177

9 77. An ensemble of systems is in thermal equilibrium with a reservoir for which kt = ev. State A has an energy that is 0.1 ev above that of state B. If it is assumed the systems obey Maxwell-Boltzmann statistics and that the degeneracies of the two states are the same, then the ratio of the number of systems in state A to the number in state B is (A) e +4 (B) e (C) 1 (D) e (E) e -4 GRE0177

10 e E kt E = kt E For each degree of freedom, hei = 1 2 kt A state with lower energy is more likely...

11 First consider the 1-dimensional problem v P / e E kt E = 1 2 mv2 P (v) / e mv2 2kT The most likely speed is v =0

12 Hot bath, temperature T (v 2 x +v2 y ) P / e 2kT v y Many velocities ~v to the same speed v correspond v =0 v x Higher speeds are suppressed because they have more energy Higher speeds are enhanced because there are more possible velocities for higher speeds

13 57. Which of the following statements is (are) true for a Maxwell-Boltzmann description of an ideal gas of atoms in equilibrium at temperature T? I. The average velocity of the atoms is zero. II. The distribution of the speeds of the atoms has a maximum at u = 0. III. The probability of finding an atom with zero kinetic energy is zero. (A) I only (B) II only (C) I and II (D) I and III (E) II and III GREPracticeBook

14 57. Which of the following statements is (are) true for a Maxwell-Boltzmann description of an ideal gas of atoms in equilibrium at temperature T? I. The average velocity of the atoms is zero. II. The distribution of the speeds of the atoms has a maximum at u = 0. III. The probability of finding an atom with zero kinetic energy is zero. (A) I only (B) II only (C) I and II (D) I and III (E) II and III GREPracticeBook

15 For each degree of freedom, hei = 1 2 kt v hei = h 1 2 mv2 i = 1 2 kt Hot bath, temperature T hei = h 1 2 mv2 i + h 1 2 Kx2 i K = 1 2 kt + 1 kt = kt 2 m

16 Hot bath, temperature T Particle in 3-d hei = h 1 2 mv2 x mv2 y mv2 zi = 3 2 kt

17 5. A three-dimensional harmonic oscillator is in thermal equilibrium with a temperature reservoir at temperature T. The average total energy of the oscillator is GRE0177 (A) 1 2 kt (B) kt (C) 3 2 kt (D) 3kT (E) 6kT

18 5. A three-dimensional harmonic oscillator is in thermal equilibrium with a temperature reservoir at temperature T. The average total energy of the oscillator is GRE0177 (A) 1 2 kt (B) kt (C) 3 2 kt (D) 3kT (E) 6kT

19 48. A gaseous mixture of O 2 (molecular mass 32 u) and N 2 (molecular mass 28 u) is maintained at constant temperature. What is the ratio u u rms ( N ) rms( O 2 2) of the root-mean-square speeds of the molecules? GRE0177 (A) 7 8 (B) (C) (D) FH 8 I K 7 2 FH (E) ln 8I K 7

20 48. A gaseous mixture of O 2 (molecular mass 32 u) and N 2 (molecular mass 28 u) is maintained at constant temperature. What is the ratio u u rms ( N ) rms( O 2 2) of the root-mean-square speeds of the molecules? GRE0177 (A) 7 8 (B) (C) (D) FH 8 I K 7 2 FH (E) ln 8I K 7

21 Avagadro number N = (1 mole) Avagadro number of H atoms weigh 1 gram Avagadro number of He atoms weigh 4 grams Molar mass of H = 1gm = mass of H atom times N Molar mass of He = 4 gm = mass of He atom times N We define kn = R R =8.31 JK 1 /mole One degree of freedom hei = 1 2 kt N degrees of freedom hei = 1 2 NkT = 1 2 RT

22 9. The root-mean-square speed of molecules in an ideal gas of molar mass M at temperature T is (A) 0 GREPracticeBook (B) (C) (D) (E) RT M RT M 3RT M 3RT M

23 9. The root-mean-square speed of molecules in an ideal gas of molar mass M at temperature T is (A) 0 GREPracticeBook (B) (C) (D) (E) RT M RT M 3RT M 3RT M

24 Blackbody radiation is made of photons p y P e E kt p x p =0 Wien displacement constant W = mk W peak = T peak Wien displacement law: Double T double peak E halve wavelength

25 GRE The distribution of relative intensity I ( l ) of blackbody radiation from a solid object versus the wavelength l is shown in the figure above. If the Wien displacement law constant is m K, what is the approximate temperature of the object? (A) 10 K (B) 50 K (C) 250 K (D) 1,500 K (E) 6,250 K

26 GRE The distribution of relative intensity I ( l ) of blackbody radiation from a solid object versus the wavelength l is shown in the figure above. If the Wien displacement law constant is m K, what is the approximate temperature of the object? (A) 10 K (B) 50 K (C) 250 K (D) 1,500 K (E) 6,250 K

27 Approximations e E kt E = kt E For x 1 e x 1 x +... Low energy e E kt 1 E kt

28 GRE0177 C 3kN hv A kt hv / kt F I = H K hv / kt - 2 (e e 1) Einstein s formula for the molar heat capacity C of solids is given above. At high temperatures, C approaches which of the following? (A) 0 (B) 3kN A F H (C) 3kN hv A (D) 3kN A (E) Nhv A hv kt I K

29 GRE0177 C 3kN hv A kt hv / kt F I = H K hv / kt - 2 (e e 1) Einstein s formula for the molar heat capacity C of solids is given above. At high temperatures, C approaches which of the following? (A) 0 (B) 3kN A F H (C) 3kN hv A (D) 3kN A (E) Nhv A hv kt I K

30 The partition function

31 The average energy is hei = P i P i E i P i P i with P i / e E i kt To compute this, we define the Partition Function Z = X i e E i kt We write 1 kt = This gives Z = X i e = X i e E i E i = P i e E i E i Pi e E i = hei

32 98. Suppose that a system in quantum state i has energy E i. In thermal equilibrium, the expression GRE0177  i  i Ee i e - E - E i i / kt / kt represents which of the following? (A) The average energy of the system (B) The partition function (C) Unity (D) The probability to find the system with energy E i (E) The entropy of the system

33 98. Suppose that a system in quantum state i has energy E i. In thermal equilibrium, the expression GRE0177  i  i Ee i e - E - E i i / kt / kt represents which of the following? (A) The average energy of the system (B) The partition function (C) Unity (D) The probability to find the system with energy E i (E) The entropy of the system

34 49. In a Maxwell-Boltzmann system with two states of energies and 2, respectively, and a degeneracy of 2 for each state, the partition function is GRE0177 (A) e- /kt (B) 2e-2 /kt (C) 2e-3 /kt (D) e - /kt + e-2 /kt (E) 2[e - /kt + e -2 /kt ]

35 49. In a Maxwell-Boltzmann system with two states of energies and 2, respectively, and a degeneracy of 2 for each state, the partition function is GRE0177 (A) e- /kt (B) 2e-2 /kt (C) 2e-3 /kt (D) e - /kt + e-2 /kt (E) 2[e - /kt + e -2 /kt ]

36 An unusual situation

37 76. The mean kinetic energy of the conduction electrons in metals is ordinarily much higher than kt because (A) electrons have many more degrees of freedom than atoms do (B) the electrons and the lattice are not in thermal equilibrium (C) the electrons form a degenerate Fermi gas (D) electrons in metals are highly relativistic (E) electrons interact strongly with phonons GRE0177

38 76. The mean kinetic energy of the conduction electrons in metals is ordinarily much higher than kt because (A) electrons have many more degrees of freedom than atoms do (B) the electrons and the lattice are not in thermal equilibrium (C) the electrons form a degenerate Fermi gas (D) electrons in metals are highly relativistic (E) electrons interact strongly with phonons p y GRE0177 E kt p x p =0

39 Deriving hei = 1 2 kt

40 First consider the 1-dimensional problem v P e E kt E = 1 2 mv2 P (v) / e mv2 2kT Adding over all possibilities : Z 1 1 dv

41 First consider the 1-dimensional problem v hei = P i p i E i P i p i p / e E kt E = 1 2 mv2 p(v) / e mv2 2kT hei = R 1 1 dv( 1 2 mv2 ) e mv2 2kT R 1 1 mv2 dv e 2kT = 1 2 kt

42 Hot bath, temperature T K p / e E kt m E = 1 2 mv Kx2 p / e mv2 2kT e Kx 2 2kT Adding over all possibilities of velocity : Adding over all possibilities of position : Z 1 1 Z 1 1 dv dx

43 Hot bath, temperature T K p / e E kt m E = 1 2 mv Kx2 p / e mv2 2kT e Kx 2 2kT Adding over all probabilities Z Z dvdx e mv2 2kT e Kx 2 2kT = Z dv e mv2 2kT Z dx e Kx2 2kT

44 Hot bath, temperature T K m p / e mv2 2kT e Kx 2 2kT E = 1 2 mv Kx2 h 1 2 mv2 i = R dv dx ( 1 2 mv2 ) e mv R dv dx e mv 2 2kT 2 2kT e Kx2 2kT e Kx2 2kT = R dv ( 1 2 mv2 ) e mv R dv e mv 2 2kT 2 2kT R dx e Kx 2 2kT R dx e Kx 2 2kT = 1 2 kt

45 Hot bath, temperature T K m p / e mv2 2kT e Kx 2 2kT E = 1 2 mv Kx2 h 1 2 mv2 i + h 1 2 Kx2 i = 1 2 kt kt = kt

STSF2223 Quantum Mechanics I

STSF2223 Quantum Mechanics I STSF2223 Quantum Mechanics I What is quantum mechanics? Why study quantum mechanics? How does quantum mechanics get started? What is the relation between quantum physics with classical physics? Where is

More information

Ch. 19: The Kinetic Theory of Gases

Ch. 19: The Kinetic Theory of Gases Ch. 19: The Kinetic Theory of Gases In this chapter we consider the physics of gases. If the atoms or molecules that make up a gas collide with the walls of their container, they exert a pressure p on

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work, with partial credit where it is deserved. Please give clear, well-organized solutions. 1. Consider the coexistence curve separating two different

More information

Chapter 15 Thermal Properties of Matter

Chapter 15 Thermal Properties of Matter Chapter 15 Thermal Properties of Matter To understand the mole and Avogadro's number. To understand equations of state. To study the kinetic theory of ideal gas. To understand heat capacity. To learn and

More information

Rate of Heating and Cooling

Rate of Heating and Cooling Rate of Heating and Cooling 35 T [ o C] Example: Heating and cooling of Water E 30 Cooling S 25 Heating exponential decay 20 0 100 200 300 400 t [sec] Newton s Law of Cooling T S > T E : System S cools

More information

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m. College of Science and Engineering School of Physics H T O F E E U D N I I N V E B R U S I R T Y H G Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat Thursday 24th April, 2008

More information

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m

PV = n R T = N k T. Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m PV = n R T = N k T P is the Absolute pressure Measured from Vacuum = 0 Gauge Pressure = Vacuum - Atmospheric Atmospheric = 14.7 lbs/sq in = 10 5 N/m V is the volume of the system in m 3 often the system

More information

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Lecture 25 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 5 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular collisions

More information

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points

Problem #1 30 points Problem #2 30 points Problem #3 30 points Problem #4 30 points Problem #5 30 points Name ME 5 Exam # November 5, 7 Prof. Lucht ME 55. POINT DISTRIBUTION Problem # 3 points Problem # 3 points Problem #3 3 points Problem #4 3 points Problem #5 3 points. EXAM INSTRUCTIONS You must do four

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Chapter 18 Thermal Properties of Matter

Chapter 18 Thermal Properties of Matter Chapter 18 Thermal Properties of Matter In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the

More information

ADIABATIC PROCESS Q = 0

ADIABATIC PROCESS Q = 0 THE KINETIC THEORY OF GASES Mono-atomic Fig.1 1 3 Average kinetic energy of a single particle Fig.2 INTERNAL ENERGY U and EQUATION OF STATE For a mono-atomic gas, we will assume that the total energy

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature Any physical property that changes with temperature is called a thermometric property and can be used to measure

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 67 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

Physics 4230 Final Examination 10 May 2007

Physics 4230 Final Examination 10 May 2007 Physics 43 Final Examination May 7 In each problem, be sure to give the reasoning for your answer and define any variables you create. If you use a general formula, state that formula clearly before manipulating

More information

Thermodynamics and Statistical Physics Exam

Thermodynamics and Statistical Physics Exam Thermodynamics and Statistical Physics Exam You may use your textbook (Thermal Physics by Schroeder) and a calculator. 1. Short questions. No calculation needed. (a) Two rooms A and B in a building are

More information

Einstein s Approach to Planck s Law

Einstein s Approach to Planck s Law Supplement -A Einstein s Approach to Planck s Law In 97 Albert Einstein wrote a remarkable paper in which he used classical statistical mechanics and elements of the old Bohr theory to derive the Planck

More information

Thermal Properties of Matter (Microscopic models)

Thermal Properties of Matter (Microscopic models) Chapter 18 Thermal Properties of Matter (Microscopic models) PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_18_2012

More information

Elements of Statistical Mechanics

Elements of Statistical Mechanics Dr. Y. Aparna, Associate Prof., Dept. of Physics, JNTU College of ngineering, JNTU - H, lements of Statistical Mechanics Question: Discuss about principles of Maxwell-Boltzmann Statistics? Answer: Maxwell

More information

Please read the following instructions:

Please read the following instructions: MIDTERM #1 PHYS 33 (MODERN PHYSICS II) DATE/TIME: February 16, 17 (8:3 a.m. - 9:45 a.m.) PLACE: RB 11 Only non-programmable calculators are allowed. Name: ID: Please read the following instructions: This

More information

Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Physics 404: Final Exam Name (print): I pledge on my honor that I have not given or received any unauthorized assistance on this examination. Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination." May 20, 2008 Sign Honor Pledge: Don't get bogged down on

More information

Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual

Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual Physics 333, Thermal and Statistical Physics: Homework #2 Solutions Manual 1. n 5 = 0 n 5 = 1 n 5 = 2 n 5 = 3 n 5 = 4 n 5 = 5 d n 5,0,0,0,0 4 0 0 0 0 1 5 4,1,0,0,0 12 4 0 0 4 0 20 3,2,0,0,0 12 0 4 4 0

More information

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions 1 PHYS3113, 3d year Statistical Mechanics Tutorial problems Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions Problem 1 The macrostate probability in an ensemble of N spins 1/2 is

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

to satisfy the large number approximations, W W sys can be small.

to satisfy the large number approximations, W W sys can be small. Chapter 12. The canonical ensemble To discuss systems at constant T, we need to embed them with a diathermal wall in a heat bath. Note that only the system and bath need to be large for W tot and W bath

More information

The Equipartition Theorem

The Equipartition Theorem Chapter 8 The Equipartition Theorem Topics Equipartition and kinetic energy. The one-dimensional harmonic oscillator. Degrees of freedom and the equipartition theorem. Rotating particles in thermal equilibrium.

More information

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS Imperial College London BSc/MSci EXAMINATION May 2008 This paper is also taken for the relevant Examination for the Associateship THERMODYNAMICS & STATISTICAL PHYSICS For Second-Year Physics Students Wednesday,

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Reading/Homework Assignment Read chapter 3 in Rose. Midterm Exam, April 5 (take home)

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k. Lecture 23: Ideal Gas Law and The First Law of Thermodynamics 1 (REVIEW) Chapter 17: Heat Transfer Origin of the calorie unit A few hundred years ago when people were investigating heat and temperature

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Kinetic Theory, Thermodynamics OBJECTIVE QUESTIONS IIT-JAM-2005

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Kinetic Theory, Thermodynamics OBJECTIVE QUESTIONS IIT-JAM-2005 Institute for NE/JRF, GAE, II JAM, JES, IFR and GRE in HYSIAL SIENES Kinetic heory, hermodynamics OBJEIE QUESIONS II-JAM-005 5 Q. he molar specific heat of a gas as given from the kinetic theory is R.

More information

PHYS 352 Homework 2 Solutions

PHYS 352 Homework 2 Solutions PHYS 352 Homework 2 Solutions Aaron Mowitz (, 2, and 3) and Nachi Stern (4 and 5) Problem The purpose of doing a Legendre transform is to change a function of one or more variables into a function of variables

More information

Thermodynamics. Fill in the blank (1pt)

Thermodynamics. Fill in the blank (1pt) Fill in the blank (1pt) Thermodynamics 1. The Newton temperature scale is made up of different points 2. When Antonine Lavoisier began his study of combustion, he noticed that metals would in weight upon

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Also: Question: what is the nature of radiation emitted by an object in equilibrium

Also: Question: what is the nature of radiation emitted by an object in equilibrium They already knew: Total power/surface area Also: But what is B ν (T)? Question: what is the nature of radiation emitted by an object in equilibrium Body in thermodynamic equilibrium: i.e. in chemical,

More information

Thermodynamics & Statistical Mechanics

Thermodynamics & Statistical Mechanics hysics GRE: hermodynamics & Statistical Mechanics G. J. Loges University of Rochester Dept. of hysics & Astronomy xkcd.com/66/ c Gregory Loges, 206 Contents Ensembles 2 Laws of hermodynamics 3 hermodynamic

More information

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1)

This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) 1. Kinetic Theory of Gases This is a statistical treatment of the large ensemble of molecules that make up a gas. We had expressed the ideal gas law as: pv = nrt (1) where n is the number of moles. We

More information

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2 F1 (a) Since the ideal gas equation of state is PV = nrt, we can equate the right-hand sides of both these equations (i.e. with PV = 2 3 N ε tran )and write: nrt = 2 3 N ε tran = 2 3 nn A ε tran i.e. T

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS1013W1 SEMESTER 2 EXAMINATION 2014-2015 ENERGY AND MATTER Duration: 120 MINS (2 hours) This paper contains 8 questions. Answers to Section A and Section B must be in separate

More information

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy Thermodynamics The goal of thermodynamics is to understand how heat can be converted to work Main lesson: Not all the heat energy can be converted to mechanical energy This is because heat energy comes

More information

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Bahram M. Askerov Sophia R. Figarova Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases With im Figures Springer Contents 1 Basic Concepts of Thermodynamics and Statistical Physics...

More information

Please read the following instructions:

Please read the following instructions: MIDTERM #1 PHYS 33 (MODERN PHYSICS II) DATE/TIME: February 16, 17 (8:3 a.m. - 9:45 a.m.) PLACE: RB 11 Only non-programmable calculators are allowed. Name: ID: Please read the following instructions: This

More information

Lecture 11: Models of the chemical potential

Lecture 11: Models of the chemical potential Lecture 11: 10.15.05 Models of the chemical potential Today: LAST TIME... 2 MORE ON THE RELATIONSHIP BETWEEN CHEMICAL POTENTIAL AND GIBBS FREE ENERGY... 3 Chemical potentials in multicomponent systems

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B. Sc. M. Sci. Physics 2B28: Statistical Thermodynamics and Condensed Matter Physics

More information

Preliminary Examination - Day 2 August 16, 2013

Preliminary Examination - Day 2 August 16, 2013 UNL - Department of Physics and Astronomy Preliminary Examination - Day August 16, 13 This test covers the topics of Quantum Mechanics (Topic 1) and Thermodynamics and Statistical Mechanics (Topic ). Each

More information

19-9 Adiabatic Expansion of an Ideal Gas

19-9 Adiabatic Expansion of an Ideal Gas 19-9 Adiabatic Expansion of an Ideal Gas Learning Objectives 19.44 On a p-v diagram, sketch an adiabatic expansion (or contraction) and identify that there is no heat exchange Q with the environment. 19.45

More information

Physics Oct A Quantum Harmonic Oscillator

Physics Oct A Quantum Harmonic Oscillator Physics 301 5-Oct-2005 9-1 A Quantum Harmonic Oscillator The quantum harmonic oscillator (the only kind there is, really) has energy levels given by E n = (n + 1/2) hω, where n 0 is an integer and the

More information

2. Fingerprints of Matter: Spectra

2. Fingerprints of Matter: Spectra 2. Fingerprints of Matter: Spectra 2.1 Measuring spectra: prism and diffraction grating Light from the sun: white light, broad spectrum (wide distribution) of wave lengths. 19th century: light assumed

More information

Physics 2203, Fall 2011 Modern Physics

Physics 2203, Fall 2011 Modern Physics Physics 2203, Fall 2011 Modern Physics. Friday, Nov. 2 nd, 2012. Energy levels in Nitrogen molecule Sta@s@cal Physics: Quantum sta@s@cs: Ch. 15 in our book. Notes from Ch. 10 in Serway Announcements Second

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY

QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY CHEM 330 B. O. Owaga Classical physics Classical physics is based on three assumptions i. Predicts precise trajectory for particles with precisely specified

More information

Downloaded from

Downloaded from Chapter 13 (Kinetic Theory) Q1. A cubic vessel (with face horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of500 ms in vertical direction.

More information

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas

Physics 207 Lecture 25. Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas Lecture 25, Nov. 26 Goals: Chapter 18 Understand the molecular basis for pressure and the idealgas law. redict the molar specific heats of gases and solids. Understand how heat is transferred via molecular

More information

KINETICE THEROY OF GASES

KINETICE THEROY OF GASES INTRODUCTION: Kinetic theory of gases relates the macroscopic properties of gases (like pressure, temperature, volume... etc) to the microscopic properties of the gas molecules (like speed, momentum, kinetic

More information

Chapter 14 Kinetic Theory

Chapter 14 Kinetic Theory Chapter 14 Kinetic Theory Kinetic Theory of Gases A remarkable triumph of molecular theory was showing that the macroscopic properties of an ideal gas are related to the molecular properties. This is the

More information

Lecture 15: Electron Degeneracy Pressure

Lecture 15: Electron Degeneracy Pressure Lecture 15: Electron Degeneracy Pressure As the core contracts during shell H-burning we reach densities where the equation of state becomes significantly modified from that of the ideal gas law. The reason

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2024W1 SEMESTER 2 EXAMINATION 2011/12 Quantum Physics of Matter Duration: 120 MINS VERY IMPORTANT NOTE Section A answers MUST BE in a separate blue answer book. If any blue

More information

Turning up the heat: thermal expansion

Turning up the heat: thermal expansion Lecture 3 Turning up the heat: Kinetic molecular theory & thermal expansion Gas in an oven: at the hot of materials science Here, the size of helium atoms relative to their spacing is shown to scale under

More information

Chapter 10. Thermal Physics

Chapter 10. Thermal Physics Chapter 10 Thermal Physics Thermal Physics Thermal physics is the study of Temperature Heat How these affect matter Thermal Physics, cont Descriptions require definitions of temperature, heat and internal

More information

Solid Thermodynamics (1)

Solid Thermodynamics (1) Solid Thermodynamics (1) Class notes based on MIT OCW by KAN K.A.Nelson and MB M.Bawendi Statistical Mechanics 2 1. Mathematics 1.1. Permutation: - Distinguishable balls (numbers on the surface of the

More information

Set 3: Thermal Physics

Set 3: Thermal Physics Set 3: Thermal Physics Equilibrium Thermal physics describes the equilibrium distribution of particles for a medium at temperature T Expect that the typical energy of a particle by equipartition is E kt,

More information

Lecture 18 Molecular Motion and Kinetic Energy

Lecture 18 Molecular Motion and Kinetic Energy Physical Principles in Biology Biology 3550 Fall 2017 Lecture 18 Molecular Motion and Kinetic Energy Monday, 2 October c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Fick s First

More information

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21 Preface Reference tables Table A Counting and combinatorics formulae Table B Useful integrals, expansions, and approximations Table C Extensive thermodynamic potentials Table D Intensive per-particle thermodynamic

More information

Computer simulations as concrete models for student reasoning

Computer simulations as concrete models for student reasoning Computer simulations as concrete models for student reasoning Jan Tobochnik Department of Physics Kalamazoo College Kalamazoo MI 49006 In many thermal physics courses, students become preoccupied with

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Ideal Gas Behavior. NC State University

Ideal Gas Behavior. NC State University Chemistry 331 Lecture 6 Ideal Gas Behavior NC State University Macroscopic variables P, T Pressure is a force per unit area (P= F/A) The force arises from the change in momentum as particles hit an object

More information

Kinetic theory of the ideal gas

Kinetic theory of the ideal gas Appendix H Kinetic theory of the ideal gas This Appendix contains sketchy notes, summarizing the main results of elementary kinetic theory. The students who are not familiar with these topics should refer

More information

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year.

CONTENTS 1. In this course we will cover more foundational topics such as: These topics may be taught as an independent study sometime next year. CONTENTS 1 0.1 Introduction 0.1.1 Prerequisites Knowledge of di erential equations is required. Some knowledge of probabilities, linear algebra, classical and quantum mechanics is a plus. 0.1.2 Units We

More information

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PH 05 PHYSICAL SCIENCE TEST SERIES # 1. Quantum, Statistical & Thermal Physics

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PH 05 PHYSICAL SCIENCE TEST SERIES # 1. Quantum, Statistical & Thermal Physics UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM BOOKLET CODE SUBJECT CODE PH 05 PHYSICAL SCIENCE TEST SERIES # Quantum, Statistical & Thermal Physics Timing: 3: H M.M: 00 Instructions. This test

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne Lehman McGill College University City University of New York Thermodynamics Charged Particle and Correlations Statistical Mechanics in Minimum Bias Events at ATLAS Statistical

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 607 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

Temperature, Thermal Expansion and the Gas Laws

Temperature, Thermal Expansion and the Gas Laws Temperature, Thermal Expansion and the Gas Laws z x Physics 053 Lecture Notes Temperature,Thermal Expansion and the Gas Laws Temperature and Thermometers Thermal Equilibrium Thermal Expansion The Ideal

More information

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x

Lecture 7: Kinetic Theory of Gases, Part 2. ! = mn v x Lecture 7: Kinetic Theory of Gases, Part 2 Last lecture, we began to explore the behavior of an ideal gas in terms of the molecules in it We found that the pressure of the gas was: P = N 2 mv x,i! = mn

More information

Statistical Mechanics Notes. Ryan D. Reece

Statistical Mechanics Notes. Ryan D. Reece Statistical Mechanics Notes Ryan D. Reece August 11, 2006 Contents 1 Thermodynamics 3 1.1 State Variables.......................... 3 1.2 Inexact Differentials....................... 5 1.3 Work and Heat..........................

More information

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm Name:.57/.570 Midterm Exam No. April 4, 0 :00 am -:30 pm Instructions: ().57 students: try all problems ().570 students: Problem plus one of two long problems. You can also do both long problems, and one

More information

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 21 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 1 THE KINETIC THEORY OF GASES-PART? Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University 1. Molecular Model of an Ideal Gas. Molar Specific Heat of an Ideal Gas. Adiabatic

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Statistical Thermodynamics COURSE CODE : PHAS2228 UNIT VALUE : 0.50 DATE

More information

Final Review Prof. WAN, Xin

Final Review Prof. WAN, Xin General Physics I Final Review Prof. WAN, Xin xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ About the Final Exam Total 6 questions. 40% mechanics, 30% wave and relativity, 30% thermal physics. Pick

More information

The answer (except for Z = 19) can be seen in Figure 1. All credit to McGraw- Hill for the image.

The answer (except for Z = 19) can be seen in Figure 1. All credit to McGraw- Hill for the image. Problem 9.3 Which configuration has a greater number of unpaired spins? Which one has a lower energy? [Kr]4d 9 5s or [Kr]4d. What is the element and how does Hund s rule apply?. Solution The element is

More information

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES.

PHYSICS - CLUTCH CH 19: KINETIC THEORY OF IDEAL GASSES. !! www.clutchprep.com CONCEPT: ATOMIC VIEW OF AN IDEAL GAS Remember! A gas is a type of fluid whose volume can change to fill a container - What makes a gas ideal? An IDEAL GAS is a gas whose particles

More information

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Chapter 10 Thermal Physics Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion of Solids and Liquids Ideal

More information

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat Tian Ma and Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid Outline

More information

Part I: Basic Concepts of Thermodynamics

Part I: Basic Concepts of Thermodynamics Part I: Basic Concepts of Thermodynamics Lecture 3: Heat and Work Kinetic Theory of Gases Ideal Gases 3-1 HEAT AND WORK Here we look in some detail at how heat and work are exchanged between a system and

More information

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17 Lesson 12 Physics 168 1 Temperature and Kinetic Theory of Gases 2 Atomic Theory of Matter On microscopic scale, arrangements of molecules in solids, liquids, and gases are quite different 3 Temperature

More information

Physics 132- Fundamentals of Physics for Biologists II

Physics 132- Fundamentals of Physics for Biologists II Physics 132- Fundamentals of Physics for Biologists II Statistical Physics and Thermodynamics It s all about energy Classifying Energy Kinetic Energy Potential Energy Macroscopic Energy Moving baseball

More information

Dr. Gundersen Phy 206 Test 2 March 6, 2013

Dr. Gundersen Phy 206 Test 2 March 6, 2013 Signature: Idnumber: Name: You must do all four questions. There are a total of 100 points. Each problem is worth 25 points and you have to do ALL problems. A formula sheet is provided on the LAST page

More information

Physics 160 Thermodynamics and Statistical Physics: Lecture 2. Dr. Rengachary Parthasarathy Jan 28, 2013

Physics 160 Thermodynamics and Statistical Physics: Lecture 2. Dr. Rengachary Parthasarathy Jan 28, 2013 Physics 160 Thermodynamics and Statistical Physics: Lecture 2 Dr. Rengachary Parthasarathy Jan 28, 2013 Chapter 1: Energy in Thermal Physics Due Date Section 1.1 1.1 2/3 Section 1.2: 1.12, 1.14, 1.16,

More information

Introduction. Chapter The Purpose of Statistical Mechanics

Introduction. Chapter The Purpose of Statistical Mechanics Chapter 1 Introduction 1.1 The Purpose of Statistical Mechanics Statistical Mechanics is the mechanics developed to treat a collection of a large number of atoms or particles. Such a collection is, for

More information

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3 The following two problems refer to this situation: #1 A cylindrical chamber containing an ideal diatomic gas is sealed by a movable piston with cross-sectional area A = 0.0015 m 2. The volume of the chamber

More information

Dr. Kasra Etemadi September 21, 2011

Dr. Kasra Etemadi September 21, 2011 Dr. Kasra Etemadi September, 0 - Velocity Distribution -Reaction Rate and Equilibrium (Saha Equation 3-E3 4- Boltzmann Distribution 5- Radiation (Planck s Function 6- E4 z r dxdydz y x Applets f( x r

More information

Temperature and Heat. Ken Intriligator s week 4 lectures, Oct 21, 2013

Temperature and Heat. Ken Intriligator s week 4 lectures, Oct 21, 2013 Temperature and Heat Ken Intriligator s week 4 lectures, Oct 21, 2013 This week s subjects: Temperature and Heat chapter of text. All sections. Thermal properties of Matter chapter. Omit the section there

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 6: Boltzmann Statistics SDSMT, Physics Fall Semester: Oct. - Dec., 2013 1 Introduction: Very brief 2 Boltzmann Factor Isolated System and System of Interest Boltzmann Factor The Partition Function

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 Reading check Main concept introduced in first half of this chapter A)Temperature

More information