Lecture 3. XML Into RDBMS. XML and Databases. Memory Representations. Memory Representations. Traversals and Pre/Post-Encoding. Memory Representations

Size: px
Start display at page:

Download "Lecture 3. XML Into RDBMS. XML and Databases. Memory Representations. Memory Representations. Traversals and Pre/Post-Encoding. Memory Representations"

Transcription

1 Leture XML into RDBMS XML n Dtses Sestin Mneth NICTA n UNSW Leture XML Into RDBMS CSE@UNSW -- Semester, 00 Memory Representtions Memory Representtions Fts DOM is esy to use, ut memory hevy. in-memory size usully -0 times lrger thn size of originl file. SAX is very flexile. Using rrys or inry trees wo kwr pointers, in-memory size is pprox. sme s size of originl file. Cn e further improve using DAGs/shring-Grphs & oing/ompression for t vlues. Fts DOM is esy to use, ut memory hevy. in-memory size usully -0 times lrger thn size of originl file. SAX is very flexile. Using rrys or inry trees wo kwr pointers, in-memory size is pprox. sme s size of originl file. Cn e further improve using DAGs/shring-Grphs & oing/ompression for t vlues. TODAY How n we mp XML into reltionl DB? Memory Representtions Trversls n Pre/Post-Enoing Fts DOM is esy to use, ut memory hevy. in-memory size usully -0 times lrger thn size of originl file.. Pre-Orer Trversl (reursively). Post-Orer SAX is very flexile. Using rrys or inry trees wo kwr pointers, in-memory size is pprox. sme s size of originl file.. Pre-Orer (itertively). Into RDBMS with Pre/Post-enoing Cn e further improve using DAGs/shring-Grphs & oing/ompression for t vlues. TODAY TODAY How n we mp XML into reltionl DB? How n we mp XML into reltionl DB? ut first: Memory effiient tree trversls using e.g. DOM? ut first: Memory effiient tree trversls using e.g. DOM?

2 Tree Trversls Tree Trversls Strt t root noe; wnt to visit every noe. Strt t root noe; wnt to visit every noe. () reursively firstchil lstchil firstchil lstchil [ ] hilnoes [ ] hilnoes Tree Trversls Strt t root noe; wnt to visit every noe. Tree Trversls Strt t root noe; wnt to visit every noe. Tr() pr() Tr() pr() 0 () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) firstchil lstchil [ ] hilnoes firstchil lstchil [ ] hilnoes Tree Trversls Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tree Trversls Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr() pr() firstchil lstchil [ ] hilnoes firstchil lstchil [ ] hilnoes

3 firstchil Tree Trversls Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) lstchil [ ] hilnoes reursion epth = Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tree Trversls Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) reursion epth = firstchil lstchil 0 [ ] hilnoes Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr() pr() Tr(0) pr(0) Tr() pr() Tr() pr() END Tree Trversls Tree Trversls Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) Memory nee proportionl Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) Memory nee proportionl Shoul e fine. Usully height (XML o) is smll. ( ) Shoul e fine. Usully height (XML o) is smll. ( ) Prolemti n reursion on hilren TR(n:Noe){ if(m=firstchil(n))!=nil then Tr(m); if(m=nextsiling(n))!=nil then Tr(m) Tree Trversls Tree Trversls Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) Memory nee proportionl Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) Memory nee proportionl Shoul e fine. Usully height (XML o) is smll. ( ) Shoul e fine. Usully height (XML o) is smll. ( ) Prolemti n reursion on hilren TR(n:Noe){ if(m=firstchil(n))!=nil then Tr(m); if(m=nextsiling(n))!=nil then Tr(m) Prolemti n reursion on hilren TR(n:Noe){ if(m=firstchil(n))!=nil then TR(m); if(m=nextsiling(n))!=nil then TR(m) A B C D E F TR();pr() TR();pr() TR();pr() TR(A);pr(A) TR(B);pr(B)

4 Tree Trversls Tree Trversls 0 Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) Memory nee proportionl Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) Memory nee proportionl Shoul e fine. Usully height (XML o) is smll. ( ) Shoul e fine. Usully height (XML o) is smll. ( ) Prolemti n reursion on hilren A B C D E F TR(n:Noe){ if(m=firstchil(n))!=nil then Tr(m); if(m=nextsiling(n))!=nil then Tr(m) TR();pr() TR();pr() TR();pr() TR(A);pr(A) TR(B);pr(B) Memory nee proportionl to mx. length of (firstchil nextsiling)*-pth Prolemti n reursion on hilren A B C D E F Tr(n:Noe){ if(m=firstchil(n))!=nil then Tr(m); if(m=nextsiling(n))!=nil then Tr(m) TR();pr() TR();pr() TR();pr() TR(A);pr(A) TR(B);pr(B) Cn e HUGE!!! Memory nee =size(tree) proportionl to mx. length of (firstchil nextsiling)*-pth Tree Trversls firstchil lstchil [ ] hilnoes Strt t root noe; wnt to visit every noe. () reursively Trverse(n:Noe){ For m in hilnoes(n) Trverse(m) Memory nee proportionl Shoul e fine. Usully height (XML o) is smll. ( ) Tr(n:Noe){ if(m=firstchil(n))!=nil then Tr(m); if(m=nextsiling(n))!=nil then Tr(m) Wht is the mx reursion epth on this tree? Cn e HUGE!!! Memory nee =size(tree) proportionl to mx. length of (firstchil nextsiling)*-pth Prolemti n reursion on hilren A B C D E F Rell inry tree (firstchil/nextsiling) enoing. In the inry tree, wht orrespons to this numer? TR();pr() TR();pr() TR();pr() TR(A);pr(A) TR(B);pr(B) mx. length of (firstchil nextsiling)*-pth Binry Tree Enoing Rell firstchil/nextsiling enoing. The firstchil eomes the left pointer The nextsiling eomes the right pointer per Noe pointers/ids + lel info oth, Trverse n TR n e exeute on the f/ns-inry tree enoing. Tree Trversls firstchil 0 ID f:ns:l (:-:) (-::) (::) (-::) (::) (-::) (-:-:) (-:-:) (-:0:) 0 (-,-:) firstchil 0

5 Tree Trversls Tree Trversls oth, Trverse n Tr n e exeute on the f/ns-inry tree enoing. For m in hilnoes(n) Trverse(n) oth, Trverse n Tr n e exeute on the f/ns-inry tree enoing. For m in hilnoes(n) Trverse(n) if(m=n->left)!=nil { while(m=n->right)!=nil Trverse(m) if(m=n->left)!=nil { while(m=n->right)!=nil Trverse(m) firstchil 0 if(m=firstchil(n))!=nil then TR(m); if(m=nextsiling(n))!=nil then TR(m) if(m=n->left)!=nil then TR(m) if(m=n->right)!=nil then TR(m) firstchil 0 if(m=firstchil(n))!=nil then Tr(m); if(m=nextsiling(n))!=nil then Tr(m) if(m=n->left)!=nil then TR(m) if(m=n->right)!=nil then TR(m) Reursion tkes re of the ft tht we o not hve prent pointers. (true for oth, unrnke & inry tree) Other Trversls Other Trversls We isusse the Pre-orer of the tree. (or, in XML-jrgon: oument-orer). Relize y Trverse & TR We isusse the Pre-orer of the tree. (or, in XML-jrgon: oument-orer). Relize y Trverse & TR Post-orer of tree =. Trverse left sutree in post-orer. Trverse right sutree in post-orer. Visit the root Reverse Polish Nottion Post-orer of tree =. Trverse left sutree in post-orer. Trverse right sutree in post-orer. Visit the root Reverse Polish Nottion In-orer Breth-First (left-to-right) level-orer Breth-First (left-to-right) level-orer Binry Serh Tree (inresing) q.enq(root); while(not q.empty){ Visit(q.eq); If(q->Left!=NIL) q.enq(q->left) If(q->Right!=NIL) q.enq(q->right) Memory nee proportionl to mx. #noes on one level q.enq(root); while(not q.empty){ Visit(q.eq); If(q->Left!=NIL) q.enq(q->left) If(q->Right!=NIL) q.enq(q->right) Other Trversls Pre-Orer 0 We isusse the Pre-orer of the tree. (or, in XML-jrgon: oument-orer). Relize y Trverse & TR Post-orer of tree =. Trverse left sutree in post-orer. Trverse right sutree in post-orer. Visit the root Reverse Polish Nottion We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) Cn e HUGE!!! Memory nee proportionl to mx. #noes on one level Breth-First (left-to-right) level-orer q.enq(root); while(not q.empty){ Visit(q.eq); If(q->Left!=NIL) q.enq(q->left) If(q->Right!=NIL) q.enq(q->right); 0

6 Pre-Orer Pre-Orer We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) How to ompute Pre-orer () itertively Memory nee? while(firstchil(n)!=nil) { n=firstchil(n); We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() How to ompute Pre-orer () itertively Memory nee? while(firstchil(n)!=nil) { n=firstchil(n); Pre-Orer Pre-Orer We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() How to ompute Pre-orer () itertively Memory nee? while(firstchil(n)!=nil) { n=firstchil(n); We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() How to ompute Pre-orer () itertively Memory nee? repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); Pre-Orer Pre-Orer We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() How to ompute Pre-orer () itertively Memory nee? repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() How to ompute Pre-orer () itertively Memory nee? repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n);

7 Pre-Orer Pre-Orer We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() How to ompute Pre-orer () itertively Memory nee? repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() How to ompute Pre-orer () itertively Memory nee? repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); Pre-Orer Pre-Orer 0 We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() How to ompute Pre-orer () itertively Memory nee? repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() pre() How to ompute Pre-orer () itertively Memory nee? repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); pre() pre() Pre-Orer Pre-Orer We sw how to ompute Pre-orer (n Post n In) () reursively memory nee: O(mx_height) pre() pre() pre() pre(0) How to ompute Pre-orer () itertively Memory nee? repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); How to ompute Pre-orer () itertively Memory nee? pre() pre(0) pre() pre() No reursion! Nees onstnt memory! (only one pointer) repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); pre() if(n=nil)then rek; pre() if(n=nil)then rek;

8 Pre-Orer Pre-Orer Given inry tree, (top-own, no prent) how muh memory o you nee to ompute pre? No reursion! Nees onstnt memory! (only one pointer) Given inry tree, (top-own, no prent) how muh memory o you nee to ompute pre? No reursion! Nees onstnt memory! (only one pointer) pre() pre() pre() pre(0) repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); Cn you o it w. onstnt memory? pre() pre() pre() pre(0) repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); pre() if(n=nil)then rek; pre() if(n=nil)then rek; Pre-Orer Pre-Orer Fun (MS ji) How muh memory you nee to hek for yles, in single-linke (pointer) list? No reursion! Nees onstnt memory! (only one pointer) Do you see how to o Post- n In-oers itertively? No reursion! Nees onstnt memory! (only one pointer) pre() pre() pre() pre(0) repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); pre() pre() pre() pre(0) repet { while(firstchil(n)!=nil) { n=firstchil(n); while(nextsiling(n)=nil) { n=prent(n); n=nextsiling(n); pre() if(n=nil)then rek; pre() if(n=nil)then rek; From pre( ) Pre-Orer From pre( ) Pre-Orer Wht is this? we n ompute PreFollowing( n ) = { noes m with pre(m) > n PrePreeing( n ) = { noes m with pre(m) < n we n ompute PreFollowing( n ) = { noes m with pre(m) > n PrePreeing( n ) = { noes m with pre(m) < n 0 pre 0 0 pre 0

9 From pre( ) Pre-Orer Wht is this? From pre( ) Pre-Orer useful?? 0 we n ompute PreFollowing( n ) = { noes m with pre(m) > n PrePreeing( n ) = { noes m with pre(m) < n we n ompute PreFollowing( n ) = { noes m with pre(m) > n PrePreeing( n ) = { noes m with pre(m) < n Not tree (nvigtion) omplete 0 pre foll pre hil? ns? 0 pre 0 XML to RDBMS Enoing

10 pre( ) is not enough Other possiilities: XML to RDBMS Enoing lrge (unprse) text lo Shem-se enoing Ajeny-se enoing De Ens Not goo Goo possiility: use Pre- n Post-orer of noe! 0 Pre/Post Enoing A POST orer 0 0 PRE POST l 0 0 CREATE VIEW esennt AS SELECT r.pre,r.pre FROM R r, R r WHERE r.pre<r.pre AND r.post>r.post 0

11 Pre/Post Enoing A POST orer 0 0 PRE POST l 0 0 CREATE VIEW esennt AS SELECT r.pre,r.pre FROM R r, R r WHERE r.pre<r.pre AND r.post>r.post struturl join Pre/Post Enoing Strightforwr how to ompute, for given noe, esennts nestors following preeing s How to o lstchil prent hilnoes Cn you fin orresponing SQL queries? END Leture

XML and Databases. Exam Preperation Discuss Answers to last year s exam. Sebastian Maneth NICTA and UNSW

XML and Databases. Exam Preperation Discuss Answers to last year s exam. Sebastian Maneth NICTA and UNSW XML n Dtses Exm Prepertion Disuss Answers to lst yer s exm Sestin Mneth NICTA n UNSW CSE@UNSW -- Semester 1, 2008 (1) For eh of the following, explin why it is not well-forme XML (is WFC or the XML grmmr

More information

XML and Databases. Outline. 1. Top-Down Evaluation of Simple Paths. 1. Top-Down Evaluation of Simple Paths. 1. Top-Down Evaluation of Simple Paths

XML and Databases. Outline. 1. Top-Down Evaluation of Simple Paths. 1. Top-Down Evaluation of Simple Paths. 1. Top-Down Evaluation of Simple Paths Outline Leture Effiient XPth Evlution XML n Dtses. Top-Down Evlution of simple pths. Noe Sets only: Core XPth. Bottom-Up Evlution of Core XPth. Polynomil Time Evlution of Full XPth Sestin Mneth NICTA n

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4

CSE 332. Sorting. Data Abstractions. CSE 332: Data Abstractions. QuickSort Cutoff 1. Where We Are 2. Bounding The MAXIMUM Problem 4 Am Blnk Leture 13 Winter 2016 CSE 332 CSE 332: Dt Astrtions Sorting Dt Astrtions QuikSort Cutoff 1 Where We Are 2 For smll n, the reursion is wste. The onstnts on quik/merge sort re higher thn the ones

More information

Lecture 11 Binary Decision Diagrams (BDDs)

Lecture 11 Binary Decision Diagrams (BDDs) C 474A/57A Computer-Aie Logi Design Leture Binry Deision Digrms (BDDs) C 474/575 Susn Lyseky o 3 Boolen Logi untions Representtions untion n e represente in ierent wys ruth tle, eqution, K-mp, iruit, et

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

Welcome. Balanced search trees. Balanced Search Trees. Inge Li Gørtz

Welcome. Balanced search trees. Balanced Search Trees. Inge Li Gørtz Welome nge Li Gørt. everse tehing n isussion of exerises: 02110 nge Li Gørt 3 tehing ssistnts 8.00-9.15 Group work 9.15-9.45 isussions of your solutions in lss 10.00-11.15 Leture 11.15-11.45 Work on exerises

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

Graph Algorithms. Vertex set = { a,b,c,d } Edge set = { {a,c}, {b,c}, {c,d}, {b,d}} Figure 1: An example for a simple graph

Graph Algorithms. Vertex set = { a,b,c,d } Edge set = { {a,c}, {b,c}, {c,d}, {b,d}} Figure 1: An example for a simple graph Inin Institute of Informtion Tehnology Design n Mnufturing, Knheepurm, Chenni 00, Ini An Autonomous Institute uner MHRD, Govt of Ini http://www.iiitm..in COM 0T Design n Anlysis of Algorithms -Leture Notes

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Connectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example

Connectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example Connetiit in Grphs CSH: Disrete Mthemtis Grph Theor II Instrtor: Işıl Dillig Tpil qestion: Is it possile to get from some noe to nother noe? Emple: Trin netork if there is pth from to, possile to tke trin

More information

CSC2542 State-Space Planning

CSC2542 State-Space Planning CSC2542 Stte-Spe Plnning Sheil MIlrith Deprtment of Computer Siene University of Toronto Fll 2010 1 Aknowlegements Some the slies use in this ourse re moifitions of Dn Nu s leture slies for the textook

More information

I 3 2 = I I 4 = 2A

I 3 2 = I I 4 = 2A ECE 210 Eletril Ciruit Anlysis University of llinois t Chigo 2.13 We re ske to use KCL to fin urrents 1 4. The key point in pplying KCL in this prolem is to strt with noe where only one of the urrents

More information

Data Structures (INE2011)

Data Structures (INE2011) Dt Strutures (INE2011) Eletronis nd Communition Engineering Hnyng University Hewoon Nm Leture 7 INE2011 Dt Strutures 1 Binry Tree Trversl Mny inry tree opertions re done y perorming trversl o the inry

More information

5.3 The Fundamental Theorem of Calculus

5.3 The Fundamental Theorem of Calculus CHAPTER 5. THE DEFINITE INTEGRAL 35 5.3 The Funmentl Theorem of Clculus Emple. Let f(t) t +. () Fin the re of the region below f(t), bove the t-is, n between t n t. (You my wnt to look up the re formul

More information

Outline Data Structures and Algorithms. Data compression. Data compression. Lossy vs. Lossless. Data Compression

Outline Data Structures and Algorithms. Data compression. Data compression. Lossy vs. Lossless. Data Compression 5-2 Dt Strutures n Algorithms Dt Compression n Huffmn s Algorithm th Fe 2003 Rjshekr Rey Outline Dt ompression Lossy n lossless Exmples Forml view Coes Definition Fixe length vs. vrile length Huffmn s

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3

I1 = I2 I1 = I2 + I3 I1 + I2 = I3 + I4 I 3 2 The Prllel Circuit Electric Circuits: Figure 2- elow show ttery nd multiple resistors rrnged in prllel. Ech resistor receives portion of the current from the ttery sed on its resistnce. The split is

More information

Search: Cost & Heuristics

Search: Cost & Heuristics 9/9/ CSE 7: Artiiil Intelligene Autumn 0 Pizz? Announements Serh: Cost & Heuristis Dn Wel Projet : Serh online tomorrow ue Mony 0/ ue We / Strt! With slies rom Dn Klein, Sturt Russell, Anrew Moore, Luke

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18 Computt onl Biology Leture 18 Genome Rerrngements Finding preserved genes We hve seen before how to rerrnge genome to obtin nother one bsed on: Reversls Knowledge of preserved bloks (or genes) Now we re

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh Computtionl Biology Leture 8: Genome rerrngements, finding miml mthes Sd Mneimneh We hve seen how to rerrnge genome to otin nother one sed on reversls nd the knowledge of the preserved loks or genes. Now

More information

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 S 224 DIGITAL LOGI & STATE MAHINE DESIGN SPRING 214 DUE : Mrh 27, 214 HOMEWORK III READ : Relte portions of hpters VII n VIII ASSIGNMENT : There re three questions. Solve ll homework n exm prolems s shown

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont. NFA DFA Exmple 3 CMSC 330: Orgniztion of Progrmming Lnguges NFA {B,D,E {A,E {C,D {E Finite Automt, con't. R = { {A,E, {B,D,E, {C,D, {E 2 Equivlence of DFAs nd NFAs Any string from {A to either {D or {CD

More information

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA

Common intervals of genomes. Mathieu Raffinot CNRS LIAFA Common intervls of genomes Mthieu Rffinot CNRS LIF Context: omprtive genomis. set of genomes prtilly/totlly nnotte Informtive group of genes or omins? Ex: COG tse Mny iffiulties! iology Wht re two similr

More information

EE 108A Lecture 2 (c) W. J. Dally and P. Levis 2

EE 108A Lecture 2 (c) W. J. Dally and P. Levis 2 EE08A Leture 2: Comintionl Logi Design EE 08A Leture 2 () 2005-2008 W. J. Dlly n P. Levis Announements Prof. Levis will hve no offie hours on Friy, Jn 8. Ls n setions hve een ssigne - see the we pge Register

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

CISC 320 Introduction to Algorithms Spring 2014

CISC 320 Introduction to Algorithms Spring 2014 CISC 20 Introdution to Algorithms Spring 2014 Leture 9 Red-Blk Trees Courtes of Prof. Lio Li 1 Binr Serh Trees (BST) ke[x]: ke stored t x. left[x]: pointer to left hild of x. right[x]: pointer to right

More information

Scientific notation is a way of expressing really big numbers or really small numbers.

Scientific notation is a way of expressing really big numbers or really small numbers. Scientific Nottion (Stndrd form) Scientific nottion is wy of expressing relly big numbers or relly smll numbers. It is most often used in scientific clcultions where the nlysis must be very precise. Scientific

More information

BİL 354 Veritabanı Sistemleri. Relational Algebra (İlişkisel Cebir)

BİL 354 Veritabanı Sistemleri. Relational Algebra (İlişkisel Cebir) BİL 354 Veritnı Sistemleri Reltionl lger (İlişkisel Ceir) Reltionl Queries Query lnguges: llow mnipultion nd retrievl of dt from dtse. Reltionl model supports simple, powerful QLs: Strong forml foundtion

More information

Surface maps into free groups

Surface maps into free groups Surfce mps into free groups lden Wlker Novemer 10, 2014 Free groups wedge X of two circles: Set F = π 1 (X ) =,. We write cpitl letters for inverse, so = 1. e.g. () 1 = Commuttors Let x nd y e loops. The

More information

6. Suppose lim = constant> 0. Which of the following does not hold?

6. Suppose lim = constant> 0. Which of the following does not hold? CSE 0-00 Nme Test 00 points UTA Stuent ID # Multiple Choie Write your nswer to the LEFT of eh prolem 5 points eh The k lrgest numers in file of n numers n e foun using Θ(k) memory in Θ(n lg k) time using

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

The DOACROSS statement

The DOACROSS statement The DOACROSS sttement Is prllel loop similr to DOALL, ut it llows prouer-onsumer type of synhroniztion. Synhroniztion is llowe from lower to higher itertions sine it is ssume tht lower itertions re selete

More information

Algorithms in Computational. Biology. More on BWT

Algorithms in Computational. Biology. More on BWT Algorithms in Computtionl Biology More on BWT tody Plese Lst clss! don't forget to submit And by next (vi emil, repo ) implementtion week or shre prgectfltw get Not I would like reding overview! Discuss

More information

1. Extend QR downwards to meet the x-axis at U(6, 0). y

1. Extend QR downwards to meet the x-axis at U(6, 0). y In the digrm, two stright lines re to be drwn through so tht the lines divide the figure OPQRST into pieces of equl re Find the sum of the slopes of the lines R(6, ) S(, ) T(, 0) Determine ll liner functions

More information

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt

More information

The graphs of Rational Functions

The graphs of Rational Functions Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior

More information

Review: The Riemann Integral Review: The definition of R b

Review: The Riemann Integral Review: The definition of R b eview: The iemnn Integrl eview: The definition of b f (x)dx. For ontinuous funtion f on the intervl [, b], Z b f (x) dx lim mx x i!0 nx i1 f (x i ) x i. This limit omputes the net (signed) re under the

More information

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005 RLETON UNIVERSIT eprtment of Eletronis ELE 2607 Swithing iruits erury 28, 05; 0 pm.0 Prolems n Most Solutions, Set, 2005 Jn. 2, #8 n #0; Simplify, Prove Prolem. #8 Simplify + + + Reue to four letters (literls).

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

dt. However, we might also be curious about dy

dt. However, we might also be curious about dy Section 0. The Clculus of Prmetric Curves Even though curve defined prmetricly my not be function, we cn still consider concepts such s rtes of chnge. However, the concepts will need specil tretment. For

More information

Learning Goals. Relational Query Languages. Formal Relational Query Languages. Formal Query Languages: Relational Algebra and Relational Calculus

Learning Goals. Relational Query Languages. Formal Relational Query Languages. Formal Query Languages: Relational Algebra and Relational Calculus Forml Query Lnguges: Reltionl Alger nd Reltionl Clculus Chpter 4 Lerning Gols Given dtse ( set of tles ) you will e le to express dtse query in Reltionl Alger (RA), involving the sic opertors (selection,

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

12.4 Similarity in Right Triangles

12.4 Similarity in Right Triangles Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right

More information

6.004 Computation Structures Spring 2009

6.004 Computation Structures Spring 2009 MIT OpenCourseWre http://ocw.mit.edu 6.004 Computtion Structures Spring 009 For informtion out citing these mterils or our Terms of Use, visit: http://ocw.mit.edu/terms. Cost/Performnce Trdeoffs: cse study

More information

Discrete Structures Lecture 11

Discrete Structures Lecture 11 Introdution Good morning. In this setion we study funtions. A funtion is mpping from one set to nother set or, perhps, from one set to itself. We study the properties of funtions. A mpping my not e funtion.

More information

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Now we must transform the original model so we can use the new parameters. = S max. Recruits MODEL FOR VARIABLE RECRUITMENT (ontinue) Alterntive Prmeteriztions of the pwner-reruit Moels We n write ny moel in numerous ifferent ut equivlent forms. Uner ertin irumstnes it is onvenient to work with

More information

First Midterm Examination

First Midterm Examination 24-25 Fll Semester First Midterm Exmintion ) Give the stte digrm of DFA tht recognizes the lnguge A over lphet Σ = {, } where A = {w w contins or } 2) The following DFA recognizes the lnguge B over lphet

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

50 AMC Lectures Problem Book 2 (36) Substitution Method

50 AMC Lectures Problem Book 2 (36) Substitution Method 0 AMC Letures Prolem Book Sustitution Metho PROBLEMS Prolem : Solve for rel : 9 + 99 + 9 = Prolem : Solve for rel : 0 9 8 8 Prolem : Show tht if 8 Prolem : Show tht + + if rel numers,, n stisf + + = Prolem

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 CMSC 330 1 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All exmples so fr Nondeterministic

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb. CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Algebra Readiness PLACEMENT 1 Fraction Basics 2 Percent Basics 3. Algebra Basics 9. CRS Algebra 1

Algebra Readiness PLACEMENT 1 Fraction Basics 2 Percent Basics 3. Algebra Basics 9. CRS Algebra 1 Algebr Rediness PLACEMENT Frction Bsics Percent Bsics Algebr Bsics CRS Algebr CRS - Algebr Comprehensive Pre-Post Assessment CRS - Algebr Comprehensive Midterm Assessment Algebr Bsics CRS - Algebr Quik-Piks

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2 CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Tries and suffixes trees

Tries and suffixes trees Trie: A dt-structure for set of words Tries nd suffixes trees Alon Efrt Comuter Science Dertment University of Arizon All words over the lhet Σ={,,..z}. In the slides, let sy tht the lhet is only {,,c,d}

More information

CSE : Exam 3-ANSWERS, Spring 2011 Time: 50 minutes

CSE : Exam 3-ANSWERS, Spring 2011 Time: 50 minutes CSE 260-002: Exm 3-ANSWERS, Spring 20 ime: 50 minutes Nme: his exm hs 4 pges nd 0 prolems totling 00 points. his exm is closed ook nd closed notes.. Wrshll s lgorithm for trnsitive closure computtion is

More information

CM10196 Topic 4: Functions and Relations

CM10196 Topic 4: Functions and Relations CM096 Topic 4: Functions nd Reltions Guy McCusker W. Functions nd reltions Perhps the most widely used notion in ll of mthemtics is tht of function. Informlly, function is n opertion which tkes n input

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

Connected-components. Summary of lecture 9. Algorithms and Data Structures Disjoint sets. Example: connected components in graphs

Connected-components. Summary of lecture 9. Algorithms and Data Structures Disjoint sets. Example: connected components in graphs Prm University, Mth. Deprtment Summry of lecture 9 Algorithms nd Dt Structures Disjoint sets Summry of this lecture: (CLR.1-3) Dt Structures for Disjoint sets: Union opertion Find opertion Mrco Pellegrini

More information

332:221 Principles of Electrical Engineering I Fall Hourly Exam 2 November 6, 2006

332:221 Principles of Electrical Engineering I Fall Hourly Exam 2 November 6, 2006 2:221 Principles of Electricl Engineering I Fll 2006 Nme of the student nd ID numer: Hourly Exm 2 Novemer 6, 2006 This is closed-ook closed-notes exm. Do ll your work on these sheets. If more spce is required,

More information

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours Mi-Term Exmintion - Spring 0 Mthemtil Progrmming with Applitions to Eonomis Totl Sore: 5; Time: hours. Let G = (N, E) e irete grph. Define the inegree of vertex i N s the numer of eges tht re oming into

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificil Intelligence Spring 2007 Lecture 3: Queue-Bsed Serch 1/23/2007 Srini Nrynn UC Berkeley Mny slides over the course dpted from Dn Klein, Sturt Russell or Andrew Moore Announcements Assignment

More information

Computing the Optimal Global Alignment Value. B = n. Score of = 1 Score of = a a c g a c g a. A = n. Classical Dynamic Programming: O(n )

Computing the Optimal Global Alignment Value. B = n. Score of = 1 Score of = a a c g a c g a. A = n. Classical Dynamic Programming: O(n ) Alignment Grph Alignment Mtrix Computing the Optiml Globl Alignment Vlue An Introduction to Bioinformtics Algorithms A = n c t 2 3 c c 4 g 5 g 6 7 8 9 B = n 0 c g c g 2 3 4 5 6 7 8 t 9 0 2 3 4 5 6 7 8

More information

A Rewrite Approach for Pattern Containment

A Rewrite Approach for Pattern Containment A Rewrite Approh or Pttern Continment Brr Kory rr.kory@univ-orlens.r LIFO - Université Orléns, Frne Astrt. In this pper we introue n pproh tht llows to hnle the ontinment prolem or the rgment XP(/,//,[

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

Mining Frequent Web Access Patterns with Partial Enumeration

Mining Frequent Web Access Patterns with Partial Enumeration Mining Frequent We Aess Ptterns with Prtil Enumertion Peiyi Tng Deprtment of Computer Siene University of Arknss t Little Rok 2801 S. University Ave. Little Rok, AR 72204 Mrkus P. Turki Deprtment of Computer

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

critical number where f '(x) = 0 or f '(x) is undef (where denom. of f '(x) = 0)

critical number where f '(x) = 0 or f '(x) is undef (where denom. of f '(x) = 0) Decoding AB Clculus Voculry solute mx/min x f(x) (sometimes do sign digrm line lso) Edpts C.N. ccelertion rte of chnge in velocity or x''(t) = v'(t) = (t) AROC Slope of secnt line, f () f () verge vlue

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

Homework Solution - Set 5 Due: Friday 10/03/08

Homework Solution - Set 5 Due: Friday 10/03/08 CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE

COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE COMPUTING THE QUARTET DISTANCE BETWEEN EVOLUTIONARY TREES OF BOUNDED DEGREE M. STISSING, C. N. S. PEDERSEN, T. MAILUND AND G. S. BRODAL Bioinformtis Reserh Center, n Dept. of Computer Siene, University

More information

f a L Most reasonable functions are continuous, as seen in the following theorem:

f a L Most reasonable functions are continuous, as seen in the following theorem: Limits Suppose f : R R. To sy lim f(x) = L x mens tht s x gets closer n closer to, then f(x) gets closer n closer to L. This suggests tht the grph of f looks like one of the following three pictures: f

More information

Factorising FACTORISING.

Factorising FACTORISING. Ftorising FACTORISING www.mthletis.om.u Ftorising FACTORISING Ftorising is the opposite of expning. It is the proess of putting expressions into rkets rther thn expning them out. In this setion you will

More information

On Determinisation of History-Deterministic Automata.

On Determinisation of History-Deterministic Automata. On Deterministion of History-Deterministic Automt. Denis Kupererg Mich l Skrzypczk University of Wrsw YR-ICALP 2014 Copenhgen Introduction Deterministic utomt re centrl tool in utomt theory: Polynomil

More information

Fast Frequent Free Tree Mining in Graph Databases

Fast Frequent Free Tree Mining in Graph Databases The Chinese University of Hong Kong Fst Frequent Free Tree Mining in Grph Dtses Peixing Zho Jeffrey Xu Yu The Chinese University of Hong Kong Decemer 18 th, 2006 ICDM Workshop MCD06 Synopsis Introduction

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

] dx (3) = [15x] 2 0

] dx (3) = [15x] 2 0 Leture 6. Double Integrls nd Volume on etngle Welome to Cl IV!!!! These notes re designed to be redble nd desribe the w I will eplin the mteril in lss. Hopefull the re thorough, but it s good ide to hve

More information

1 Part II: Numerical Integration

1 Part II: Numerical Integration Mth 4 Lb 1 Prt II: Numericl Integrtion This section includes severl techniques for getting pproimte numericl vlues for definite integrls without using ntiderivtives. Mthemticll, ect nswers re preferble

More information

MA 513: Data Structures Lecture Note Partha Sarathi Mandal

MA 513: Data Structures Lecture Note  Partha Sarathi Mandal MA 513: Dt Structures Lecture Note http://www.iitg.ernet.in/psm/indexing_m513/y09/index.html Prth Srthi Mndl psm@iitg.ernet.in Dept. of Mthemtics, IIT Guwhti Tue 9:00-9:55 Wed 10:00-10:55 Thu 11:00-11:55

More information

Today s Topics Automata and Languages

Today s Topics Automata and Languages Tody s Topics Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn DFA to Regulr Expression GFNA DFAèGNFA GNFA è RE DFA è RE Exmples 2 DFA è RE NFA DFA -NFA REX GNFA 3 Definition

More information

Automata and Languages

Automata and Languages Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Tody s Topics DFA to Regulr Expression GFNA DFAèGNFA GNFA è RE DFA è RE Exmples 2 DFA è RE NFA DFA -NFA REX GNFA 3 Definition

More information

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24

Matrix Algebra. Matrix Addition, Scalar Multiplication and Transposition. Linear Algebra I 24 Mtrix lger Mtrix ddition, Sclr Multipliction nd rnsposition Mtrix lger Section.. Mtrix ddition, Sclr Multipliction nd rnsposition rectngulr rry of numers is clled mtrix ( the plurl is mtrices ) nd the

More information

Section 10.2 Angles and Triangles

Section 10.2 Angles and Triangles 117 Ojective #1: Section 10.2 nges n Tringes Unerstning efinitions of ifferent types of nges. In the intersection of two ines, the nges tht re cttycorner fro ech other re vertic nges. Vertic nges wi hve

More information

A Short Introduction to Self-similar Groups

A Short Introduction to Self-similar Groups A Short Introution to Self-similr Groups Murry Eler* Asi Pifi Mthemtis Newsletter Astrt. Self-similr groups re fsinting re of urrent reserh. Here we give short, n hopefully essile, introution to them.

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information