Computing the Optimal Global Alignment Value. B = n. Score of = 1 Score of = a a c g a c g a. A = n. Classical Dynamic Programming: O(n )

Size: px
Start display at page:

Download "Computing the Optimal Global Alignment Value. B = n. Score of = 1 Score of = a a c g a c g a. A = n. Classical Dynamic Programming: O(n )"

Transcription

1 Alignment Grph Alignment Mtrix

2 Computing the Optiml Globl Alignment Vlue An Introduction to Bioinformtics Algorithms A = n c t 2 3 c c 4 g 5 g B = n 0 c g c g t Clssicl Dynmic Progrmming: O(n ) 2 Score of = Score of = - 2

3 A = n An Introduction 2 to Bioinformtics Algorithms The O(n ) time, Clssicl Dynmic Progrmming Algorithm c t c c g 5 g The Alignment Grph B = n c g c g t A: c g B: c g A: c g I2 I B: c g 3 I3 O = mx(i + edge[i,o]) x = x O A: c g B: c g A: c g B: c g Cn the qudrtic complexity of the optiml lignment vlue computtion be reduced without relxing the problem? x 3

4 Is it Possible to Align Sequences in Subqudrtic Time? Dynmic Progrmming tkes O(n 2 ) for globl lignment Cn we do better? O (h n 2 /log n), h <=. Lndu,Crochemore&Ziv-ukelson 2003 Techniques: () Compress the sequences. (2) Utilize the Totl Monotonicity of DIST.

5 c t c g g c An Introduction to Bioinformtics Algorithms c g c g t c t c g g c c g c g t O(n 2 ) vertices O(h n / log n) rows of n vertices + O(h n / log n) columns of n vertices 5

6 Stndrd, single-cell DP New, extended-cell DP I2 I3 I3 I4 I5 I6 c g I2 I g I O O4 3 O = mx(i + edge[i,o]) x = x x 6 O = mx(i + DIST[x,3]) 4 x = 0 x 6

7 Computing the score for Output Border Vertex O c t cg c g c g t I2 I g I3 I4 I5 I6 c g 5 6 g c I DIST[,4] I+DIST[,4] O4 I2 DIST[2,4] I2+DIST[2,4] I3 DIST[3,4] I3+DIST[3,4] I4 DIST[4,4] I4+DIST[4,4] I5 DIST[5,4] I5+DIST[5,4] I6 DIST[6,4] I6+DIST[6,4] O = mx(i + DIST[x,3]) 4 6 x = 0 x O4 7

8 Input I\ DIST Mtrix I = I2 = 2 I3 = 3 I4 = I5 = The Min Chllenges How to obtin the DIST for G in O(t) time? (Tke dvntge of the incrementl nture of LZ78 prsing). I6 = OUT[x,j] = Ix + DIST[x,j] Output vector O How to compute the column mxim of OUT in O(t) time? (Utilize the Totl Monotonicity Property of OUT). 8

9 How does Totl Monotonicity ffect Column Mxim behvior? For ll <b nd c < d, OUT[,c] <= OUT[b,c] OUT[,d] <= OUT[b,d] OUT Mtrix d b Column mxim row indices re monotoniclly non-decresing. SMAWK Mtrix Serching[Aggrwl et-l 87]. The t column mxim of Totlly Monotone rry cn be computed in O(t) time, by querying only O(t) elements. 9

10 6 An Introduction to Bioinformtics Algorithms c Trie for A g c 3 5 g 0 4 Accessing Prefix Block in Constnt time. t c t c g g c c g c g 3/2 5/2 3/4 5/4 t Trie for B g c t 5 g 3 g c left prefix (5,2) c digonl prefix (3,2) c top g g c g prefix(3,4) block G (5,4) 0

11 Another technique to Align Sequences in Subqudrtic Time? For limited edit scoring schemes, such s LCS, use Four-Russins Speedup

12 How Mny Points Of Interest? LZ-78 compression blocks of size t How mny points of interest? O(n 2 /t) n/ t rows with n vertices ech n/ t columns with n vertices ech

13 The Four-Russins technique for speeding up for dynmic progrmming Dn Gusfield: The ide, comes from pper by four uthors concerning boolen mtrix multipliction. The generl ide tken from this pper hs come to be known in the West s The Four-Russins technique, even though only one of the uthors is Russin.

14 Arlzrov, Dinic, Kronrod nd Frdzev Msek & Pterson pplied the Four Russins to the string edit problem

15 Prtitioning Alignment Grid into Blocks of equl size t n n/t t n t n/t prtition

16 Block Alignment Problem Gol: Find the longest block pth through n edit grph Input: Two sequences, u nd v prtitioned into blocks of size t. This is equivlent to n n x n edit grph prtitioned into t x t subgrids Output: The block lignment of u nd v with the mximum score (longest block pth through the edit grph)

17 Stge : compute the mini-lignments n/t s, Solve mini-lignmnent problems s,2 s,3 Block pir represented by ech smll squre How my blocks? (n/t)*(n/t) = (n 2 /t 2 )

18 Stge 2: dynmic progrmming Let s i,j denote the optiml block lignment score between the first i blocks of u nd first j blocks of v s i,j = mx s i-,j - block s i,j- - block s i-,j- + i,j block is the penlty for inserting or deleting n entire block i,j is score of pir of blocks in row i nd column j.

19 Block Alignment Runtime Indices i,j rnge from 0 to n/t Running time of lgorithm is O( [n/t]*[n/t]) = O(n 2 /t 2 ) if we don t count the time to compute ech i,j

20 Block Alignment Runtime (cont d) Computing ll i,j requires solving (n/t)*(n/t)= n 2 /t 2 mini block lignments, ech of size (t*t) = t 2 So computing ll i,j tkes time O(n 2 /t 2 * t 2 ) = O(n 2 ) This is the sme s dynmic progrmming How do we speed this up?

21 Four Russins Technique Let t = log(n), where t is block size, n is sequence size. Insted of hving (n/t)*(n/t) )= n 2 /t 2 minilignments, construct 4 t x 4 t mini-lignments for ll pirs of strings of t nucleotides (huge size), nd put in lookup tble. However, size of lookup tble is not relly tht huge if t is smll. Let t = (logn)/4. Then 4 t x 4 t = 4 (logn)/4 x 4 (logn)/4 = 4 (logn)/2 = 2 (logn) = n t t

22 AAAAAA AAAAAC AAAAAG AAAAAT AAAACA Look-up Tble for Four Russins Technique ech sequence hs t nucleotides Lookup tble Score AAAAAA AAAAAC AAAAAG AAAAAT AAAACA size is only n, insted of (n/t)*(n/t) Let t = (logn)/4. Then the number of entries In the lookup tble: 4 t x 4 t = n Computing the scores for ech entry in the tble requires dynmic progrmming for (log n) by (log n) lignment: (logn) 2 Altogether: n (logn) 2

23 New Recurrence The new lookup tble Score is indexed by pir of t-nucleotide strings, so s i,j = mx s i-,j - block s i,j- - block O(logn) time s i-,j- + Score(i th block of v, j th block of u)

24 Four Russins Speedup Runtime Since computing the lookup tble Score of size n tkes O( n (logn) 2 ) time, the running time is minly limited by the n 2 /t 2 ccesses to the lookup tble Ech ccess tkes O(logn) time Overll running time: O( [n 2 /t 2 ]*logn ) Since t = logn, substitute in: O( [n 2 /{logn} 2 ]*logn) = O(n 2 /logn )

25 So Fr (restriced to block lignment) We cn divide up the grid into blocks nd run dynmic progrmming only on the corners of these blocks In order to speed up the mini-lignment clcultions to under n 2, we crete lookup tble of size n, which consists of ll scores for ll t-nucleotide pirs Running time goes from qudrtic, O(n 2 ), to subqudrtic: O(n 2 /logn)

26 Four Russins Speedup for LCS Unlike the block prtitioned grph, the LCS pth does not hve to pss through the vertices of the blocks. block lignment longest common subsequence

27 Block Alignment vs. LCS In block lignment, we only cre bout the corners of the blocks. In LCS, we cre bout ll points on the edges of the blocks, becuse those re points tht the pth cn trverse. Recll, ech sequence is of length n, ech block is of size t, so ech sequence hs (n/t) blocks.

28 How Mny Points Of Interest? block lignment longest common subsequence How my blocks? (n/t)*(n/t) = (n 2 /t 2 ) How mny points of interest? O(n 2 /t) n/t rows with n vertices ech n/t columns with n vertices ech

29

30

31

32

33

34 Trversing Blocks for LCS (cont d) If we used regulr dynmic progrmming to compute the grid, it would tke qudrtic, O(n 2 ) time, but we wnt to do better. Use the Four Russins Tbultion! we know these scores we cn clculte these scores t x t block

35 I = ( (, 2, 3), (2, 3, 4), bc, bb) O = (4, 3, 3, 3, 2, 2, 3)

36 I = (,, 2, 3), (, 2, 3, 4), bc, bb) * 4 t * 4 t n t * n t = (4n) 2t This will be huge tble! we need nother trick O = (4, 3, 3, 3, 2, 2, 3)

37 The Longest Common Subsequence T = B C B A D B D C D S = A B C B D B D D X = LCS(S,T) = BCBDBDD L = LCS(S,T) = BCBDBDD = 7

38 The LCS Alignment Grph S = m B C B C B D C B C B A D B D D C T = n 9 Digonl blue rrows re mtch points {(i,j) S[ i ] = T[ j ] Assigned score of. Horizontl blck rrows re deletions from T. Assigned score of 0. Verticl blck rrows re deletions from S Assigned score of 0. Clssicl Dynmic Progrmming: O(n m) (Crochemore, Lndu, Ziv-Ukelson O(n m/ log m))

39 0 An Introduction to Bioinformtics Algorithms I I2 2 I3 3 I4 I0 I0 I I2 I3 I4 I5 I6 I7 I8 I I5 I6 I7 I8 I9 Observtion. Due to the unit-step properties of LCS, both I nd O re monotoniclly non-decresing series, nd their vlues go up by unit steps. [Hunt-Szymnski-77]. Input row I 0 0 B C B A D B D C D Output row O O0 O O2 O3 O4 O5 O6 O7 O8 O9

40 Reducing Tble Size Alignment scores in LCS re monotoniclly incresing, nd djcent elements cn t differ by more thn Exmple: 0,,2,2,3,4 is ok; 0,,2,4,5,8, is not becuse 2 nd 4 differ by more thn (nd so do 5 nd 8) Therefore, we only need to store qudruples whose scores re monotoniclly incresing nd differ by t most

41 Efficient Encoding of Alignment Scores Insted of recording numbers tht correspond to the index in the sequences u nd v, we cn use binry to encode the differences between the lignment scores originl encoding binry encoding

42

43 We need to precompute only (0,(0,,),(,,), bc, bb)

44 Reducing Lookup Tble Size 2 t possible steps (t = size of blocks) 4 t possible strings Lookup tble size is (2 t * 2 t )*(4 t * 4 t ) = 2 6t Computing ech entry in the tble: t 2 Totl Tble Construction Time: 2 6t t 2 Let t = (logn)/6; Tble construction time is: 2 6((logn)/6) (logn) 2 = n (logn) 2

45 Reducing Lookup Tble Size Let t = (logn)/6; Stge : Tble construction time is: 2 6((logn)/6) (logn) 2 = n (logn) 2 Stge 2: lignment grph computtion time is: O( [n 2 /t 2 ]*t ) = O( [n 2 /{logn} 2 ]*logn) =O( n 2 /logn )

46 Summry We tke dvntge of the fct tht for ech block of t = O(log n), we cn pre-compute ll possible scores nd store them in lookup tble of size n, whose vlues cn be computed in time O(n (logn) 2 ). We used the Four Russin speedup to go from qudrtic running time for LCS to subqudrtic running time: O(n 2 /logn)

Alignment of Long Sequences. BMI/CS Spring 2016 Anthony Gitter

Alignment of Long Sequences. BMI/CS Spring 2016 Anthony Gitter Alignment of Long Sequences BMI/CS 776 www.biostt.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostt.wisc.edu Gols for Lecture Key concepts how lrge-scle lignment differs from the simple cse the

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for.

4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for. 4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX Some reliminries: Let A be rel symmetric mtrix. Let Cos θ ; (where we choose θ π for Cos θ 4 purposes of convergence of the scheme)

More information

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies Stte spce systems nlysis (continued) Stbility A. Definitions A system is sid to be Asymptoticlly Stble (AS) when it stisfies ut () = 0, t > 0 lim xt () 0. t A system is AS if nd only if the impulse response

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

Geometric Sequences. Geometric Sequence a sequence whose consecutive terms have a common ratio.

Geometric Sequences. Geometric Sequence a sequence whose consecutive terms have a common ratio. Geometric Sequences Geometric Sequence sequence whose consecutive terms hve common rtio. Geometric Sequence A sequence is geometric if the rtios of consecutive terms re the sme. 2 3 4... 2 3 The number

More information

Where did dynamic programming come from?

Where did dynamic programming come from? Where did dynmic progrmming come from? String lgorithms Dvid Kuchk cs302 Spring 2012 Richrd ellmn On the irth of Dynmic Progrmming Sturt Dreyfus http://www.eng.tu.c.il/~mi/cd/ or50/1526-5463-2002-50-01-0048.pdf

More information

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

More information

Balanced binary search trees

Balanced binary search trees 02110 Inge Li Gørtz Overview Blnced binry serch trees: Red-blck trees nd 2-3-4 trees Amortized nlysis Dynmic progrmming Network flows String mtching String indexing Computtionl geometry Introduction to

More information

Chapter 2. Determinants

Chapter 2. Determinants Chpter Determinnts The Determinnt Function Recll tht the X mtrix A c b d is invertible if d-bc0. The expression d-bc occurs so frequently tht it hs nme; it is clled the determinnt of the mtrix A nd is

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information

A Matrix Algebra Primer

A Matrix Algebra Primer A Mtrix Algebr Primer Mtrices, Vectors nd Sclr Multipliction he mtrix, D, represents dt orgnized into rows nd columns where the rows represent one vrible, e.g. time, nd the columns represent second vrible,

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Bellman Optimality Equation for V*

Bellman Optimality Equation for V* Bellmn Optimlity Eqution for V* The vlue of stte under n optiml policy must equl the expected return for the best ction from tht stte: V (s) mx Q (s,) A(s) mx A(s) mx A(s) Er t 1 V (s t 1 ) s t s, t s

More information

38 Riemann sums and existence of the definite integral.

38 Riemann sums and existence of the definite integral. 38 Riemnn sums nd existence of the definite integrl. In the clcultion of the re of the region X bounded by the grph of g(x) = x 2, the x-xis nd 0 x b, two sums ppered: ( n (k 1) 2) b 3 n 3 re(x) ( n These

More information

A recursive construction of efficiently decodable list-disjunct matrices

A recursive construction of efficiently decodable list-disjunct matrices CSE 709: Compressed Sensing nd Group Testing. Prt I Lecturers: Hung Q. Ngo nd Atri Rudr SUNY t Bufflo, Fll 2011 Lst updte: October 13, 2011 A recursive construction of efficiently decodble list-disjunct

More information

DISCRETE MATHEMATICS HOMEWORK 3 SOLUTIONS

DISCRETE MATHEMATICS HOMEWORK 3 SOLUTIONS DISCRETE MATHEMATICS 21228 HOMEWORK 3 SOLUTIONS JC Due in clss Wednesdy September 17. You my collborte but must write up your solutions by yourself. Lte homework will not be ccepted. Homework must either

More information

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations. Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one

More information

Comparison-Sorting and Selecting in Totally Monotone Matrices

Comparison-Sorting and Selecting in Totally Monotone Matrices Chpter 1 Comprison-Sorting nd Selecting in Totlly Monotone Mtrices Nog Alon Yossi Azr Abstrct An m n mtrix A is clled totlly monotone if for ll i 1 < i 2 nd j 1 < j 2, A[i 1, j 1] > A[i 1, j 2] implies

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

Multivariate problems and matrix algebra

Multivariate problems and matrix algebra University of Ferrr Stefno Bonnini Multivrite problems nd mtrix lgebr Multivrite problems Multivrite sttisticl nlysis dels with dt contining observtions on two or more chrcteristics (vribles) ech mesured

More information

Vyacheslav Telnin. Search for New Numbers.

Vyacheslav Telnin. Search for New Numbers. Vycheslv Telnin Serch for New Numbers. 1 CHAPTER I 2 I.1 Introduction. In 1984, in the first issue for tht yer of the Science nd Life mgzine, I red the rticle "Non-Stndrd Anlysis" by V. Uspensky, in which

More information

Is there an easy way to find examples of such triples? Why yes! Just look at an ordinary multiplication table to find them!

Is there an easy way to find examples of such triples? Why yes! Just look at an ordinary multiplication table to find them! PUSHING PYTHAGORAS 009 Jmes Tnton A triple of integers ( bc,, ) is clled Pythgoren triple if exmple, some clssic triples re ( 3,4,5 ), ( 5,1,13 ), ( ) fond of ( 0,1,9 ) nd ( 119,10,169 ). + b = c. For

More information

Introduction To Matrices MCV 4UI Assignment #1

Introduction To Matrices MCV 4UI Assignment #1 Introduction To Mtrices MCV UI Assignment # INTRODUCTION: A mtrix plurl: mtrices) is rectngulr rry of numbers rrnged in rows nd columns Exmples: ) b) c) [ ] d) Ech number ppering in the rry is sid to be

More information

Calculus 2: Integration. Differentiation. Integration

Calculus 2: Integration. Differentiation. Integration Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 12 Solving Recurrences Mster Theorem Adm Smith Review Question: Exponentition Problem: Compute b, where b N is n bits long. Question: How mny multiplictions? Nive lgorithm:

More information

Math 231E, Lecture 33. Parametric Calculus

Math 231E, Lecture 33. Parametric Calculus Mth 31E, Lecture 33. Prmetric Clculus 1 Derivtives 1.1 First derivtive Now, let us sy tht we wnt the slope t point on prmetric curve. Recll the chin rule: which exists s long s /. = / / Exmple 1.1. Reconsider

More information

Introduction to Determinants. Remarks. Remarks. The determinant applies in the case of square matrices

Introduction to Determinants. Remarks. Remarks. The determinant applies in the case of square matrices Introduction to Determinnts Remrks The determinnt pplies in the cse of squre mtrices squre mtrix is nonsingulr if nd only if its determinnt not zero, hence the term determinnt Nonsingulr mtrices re sometimes

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Faster Regular Expression Matching. Philip Bille Mikkel Thorup

Faster Regular Expression Matching. Philip Bille Mikkel Thorup Fster Regulr Expression Mtching Philip Bille Mikkel Thorup Outline Definition Applictions History tour of regulr expression mtching Thompson s lgorithm Myers lgorithm New lgorithm Results nd extensions

More information

Lecture Note 9: Orthogonal Reduction

Lecture Note 9: Orthogonal Reduction MATH : Computtionl Methods of Liner Algebr 1 The Row Echelon Form Lecture Note 9: Orthogonl Reduction Our trget is to solve the norml eution: Xinyi Zeng Deprtment of Mthemticl Sciences, UTEP A t Ax = A

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

Predict Global Earth Temperature using Linier Regression

Predict Global Earth Temperature using Linier Regression Predict Globl Erth Temperture using Linier Regression Edwin Swndi Sijbt (23516012) Progrm Studi Mgister Informtik Sekolh Teknik Elektro dn Informtik ITB Jl. Gnesh 10 Bndung 40132, Indonesi 23516012@std.stei.itb.c.id

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

The graphs of Rational Functions

The graphs of Rational Functions Lecture 4 5A: The its of Rtionl Functions s x nd s x + The grphs of Rtionl Functions The grphs of rtionl functions hve severl differences compred to power functions. One of the differences is the behvior

More information

FUNCTIONS: Grade 11. or y = ax 2 +bx + c or y = a(x- x1)(x- x2) a y

FUNCTIONS: Grade 11. or y = ax 2 +bx + c or y = a(x- x1)(x- x2) a y FUNCTIONS: Grde 11 The prbol: ( p) q or = +b + c or = (- 1)(- ) The hperbol: p q The eponentil function: b p q Importnt fetures: -intercept : Let = 0 -intercept : Let = 0 Turning points (Where pplicble)

More information

INTRODUCTION TO LINEAR ALGEBRA

INTRODUCTION TO LINEAR ALGEBRA ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

Lecture 1: Introduction to integration theory and bounded variation

Lecture 1: Introduction to integration theory and bounded variation Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You

More information

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1.

A. Limits - L Hopital s Rule. x c. x c. f x. g x. x c 0 6 = 1 6. D. -1 E. nonexistent. ln ( x 1 ) 1 x 2 1. ( x 2 1) 2. 2x x 1. A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( ) lim where lim f or lim f limg. c g = c limg( ) = c = c = c How to find it: Try nd find limits by

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Strong Bisimulation. Overview. References. Actions Labeled transition system Transition semantics Simulation Bisimulation

Strong Bisimulation. Overview. References. Actions Labeled transition system Transition semantics Simulation Bisimulation Strong Bisimultion Overview Actions Lbeled trnsition system Trnsition semntics Simultion Bisimultion References Robin Milner, Communiction nd Concurrency Robin Milner, Communicting nd Mobil Systems 32

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but... Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

More information

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

New data structures to reduce data size and search time

New data structures to reduce data size and search time New dt structures to reduce dt size nd serch time Tsuneo Kuwbr Deprtment of Informtion Sciences, Fculty of Science, Kngw University, Hirtsuk-shi, Jpn FIT2018 1D-1, No2, pp1-4 Copyright (c)2018 by The Institute

More information

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA Nondeterminism Nondeterministic Finite Automt Nondeterminism Subset Construction A nondeterministic finite utomton hs the bility to be in severl sttes t once. Trnsitions from stte on n input symbol cn

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics SCHOOL OF ENGINEERING & BUIL ENVIRONMEN Mthemtics An Introduction to Mtrices Definition of Mtri Size of Mtri Rows nd Columns of Mtri Mtri Addition Sclr Multipliction of Mtri Mtri Multipliction 7 rnspose

More information

CHAPTER 2d. MATRICES

CHAPTER 2d. MATRICES CHPTER d. MTRICES University of Bhrin Deprtment of Civil nd rch. Engineering CEG -Numericl Methods in Civil Engineering Deprtment of Civil Engineering University of Bhrin Every squre mtrix hs ssocited

More information

First Midterm Examination

First Midterm Examination Çnky University Deprtment of Computer Engineering 203-204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does

More information

Riemann Integrals and the Fundamental Theorem of Calculus

Riemann Integrals and the Fundamental Theorem of Calculus Riemnn Integrls nd the Fundmentl Theorem of Clculus Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University September 16, 2013 Outline Grphing Riemnn Sums

More information

Natural examples of rings are the ring of integers, a ring of polynomials in one variable, the ring

Natural examples of rings are the ring of integers, a ring of polynomials in one variable, the ring More generlly, we define ring to be non-empty set R hving two binry opertions (we ll think of these s ddition nd multipliction) which is n Abelin group under + (we ll denote the dditive identity by 0),

More information

1. Extend QR downwards to meet the x-axis at U(6, 0). y

1. Extend QR downwards to meet the x-axis at U(6, 0). y In the digrm, two stright lines re to be drwn through so tht the lines divide the figure OPQRST into pieces of equl re Find the sum of the slopes of the lines R(6, ) S(, ) T(, 0) Determine ll liner functions

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Week 10: Riemann integral and its properties

Week 10: Riemann integral and its properties Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

More information

Integral points on the rational curve

Integral points on the rational curve Integrl points on the rtionl curve y x bx c x ;, b, c integers. Konstntine Zeltor Mthemtics University of Wisconsin - Mrinette 750 W. Byshore Street Mrinette, WI 5443-453 Also: Konstntine Zeltor P.O. Box

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

DATA Search I 魏忠钰. 复旦大学大数据学院 School of Data Science, Fudan University. March 7 th, 2018

DATA Search I 魏忠钰. 复旦大学大数据学院 School of Data Science, Fudan University. March 7 th, 2018 DATA620006 魏忠钰 Serch I Mrch 7 th, 2018 Outline Serch Problems Uninformed Serch Depth-First Serch Bredth-First Serch Uniform-Cost Serch Rel world tsk - Pc-mn Serch problems A serch problem consists of:

More information

Unit 1 Exponentials and Logarithms

Unit 1 Exponentials and Logarithms HARTFIELD PRECALCULUS UNIT 1 NOTES PAGE 1 Unit 1 Eponentils nd Logrithms (2) Eponentil Functions (3) The number e (4) Logrithms (5) Specil Logrithms (7) Chnge of Bse Formul (8) Logrithmic Functions (10)

More information

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont. NFA DFA Exmple 3 CMSC 330: Orgniztion of Progrmming Lnguges NFA {B,D,E {A,E {C,D {E Finite Automt, con't. R = { {A,E, {B,D,E, {C,D, {E 2 Equivlence of DFAs nd NFAs Any string from {A to either {D or {CD

More information

Algorithms in Computational. Biology. More on BWT

Algorithms in Computational. Biology. More on BWT Algorithms in Computtionl Biology More on BWT tody Plese Lst clss! don't forget to submit And by next (vi emil, repo ) implementtion week or shre prgectfltw get Not I would like reding overview! Discuss

More information

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties; Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

N 0 completions on partial matrices

N 0 completions on partial matrices N 0 completions on prtil mtrices C. Jordán C. Mendes Arújo Jun R. Torregros Instituto de Mtemátic Multidisciplinr / Centro de Mtemátic Universidd Politécnic de Vlenci / Universidde do Minho Cmino de Ver

More information

1. Weak acids. For a weak acid HA, there is less than 100% dissociation to ions. The B-L equilibrium is:

1. Weak acids. For a weak acid HA, there is less than 100% dissociation to ions. The B-L equilibrium is: th 9 Homework: Reding, M&F, ch. 15, pp. 584-598, 602-605 (clcultions of ph, etc., for wek cids, wek bses, polyprotic cids, nd slts; fctors ffecting cid strength). Problems: Nkon, ch. 18, #1-10, 16-18,

More information

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s). Mth 1A with Professor Stnkov Worksheet, Discussion #41; Wednesdy, 12/6/217 GSI nme: Roy Zho Problems 1. Write the integrl 3 dx s limit of Riemnn sums. Write it using 2 intervls using the 1 x different

More information

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014 Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method

More information

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements: Mtrices Elementry Mtrix Theory It is often desirble to use mtrix nottion to simplify complex mthemticl expressions. The simplifying mtrix nottion usully mkes the equtions much esier to hndle nd mnipulte.

More information

Here we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system.

Here we study square linear systems and properties of their coefficient matrices as they relate to the solution set of the linear system. Section 24 Nonsingulr Liner Systems Here we study squre liner systems nd properties of their coefficient mtrices s they relte to the solution set of the liner system Let A be n n Then we know from previous

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

DonnishJournals

DonnishJournals DoishJournls 2041-1189 Doish Journl of Eductionl Reserch nd Reviews Vol 2(1) pp 001-007 Jnury, 2015 http://wwwdoishjournlsorg/djerr Copyright 2015 Doish Journls Originl Reserch Article Algebr of Mtrices

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

Administrivia CSE 190: Reinforcement Learning: An Introduction

Administrivia CSE 190: Reinforcement Learning: An Introduction Administrivi CSE 190: Reinforcement Lerning: An Introduction Any emil sent to me bout the course should hve CSE 190 in the subject line! Chpter 4: Dynmic Progrmming Acknowledgment: A good number of these

More information

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 Engineering Anlysis ENG 3420 Fll 2009 Dn C. Mrinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 Lecture 13 Lst time: Problem solving in preprtion for the quiz Liner Algebr Concepts Vector Spces,

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 CMSC 330 1 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All exmples so fr Nondeterministic

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs Pre-Session Review Prt 1: Bsic Algebr; Liner Functions nd Grphs A. Generl Review nd Introduction to Algebr Hierrchy of Arithmetic Opertions Opertions in ny expression re performed in the following order:

More information

Local orthogonality: a multipartite principle for (quantum) correlations

Local orthogonality: a multipartite principle for (quantum) correlations Locl orthogonlity: multiprtite principle for (quntum) correltions Antonio Acín ICREA Professor t ICFO-Institut de Ciencies Fotoniques, Brcelon Cusl Structure in Quntum Theory, Bensque, Spin, June 2013

More information

An approximation to the arithmetic-geometric mean. G.J.O. Jameson, Math. Gazette 98 (2014), 85 95

An approximation to the arithmetic-geometric mean. G.J.O. Jameson, Math. Gazette 98 (2014), 85 95 An pproximtion to the rithmetic-geometric men G.J.O. Jmeson, Mth. Gzette 98 (4), 85 95 Given positive numbers > b, consider the itertion given by =, b = b nd n+ = ( n + b n ), b n+ = ( n b n ) /. At ech

More information

Math 61CM - Solutions to homework 9

Math 61CM - Solutions to homework 9 Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

More information

CS 188: Artificial Intelligence Spring 2007

CS 188: Artificial Intelligence Spring 2007 CS 188: Artificil Intelligence Spring 2007 Lecture 3: Queue-Bsed Serch 1/23/2007 Srini Nrynn UC Berkeley Mny slides over the course dpted from Dn Klein, Sturt Russell or Andrew Moore Announcements Assignment

More information

MATRICES AND VECTORS SPACE

MATRICES AND VECTORS SPACE MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN -SPACE AND -SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR

More information

Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties

Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties Clculus nd liner lgebr for biomedicl engineering Week 11: The Riemnn integrl nd its properties Hrtmut Führ fuehr@mth.rwth-chen.de Lehrstuhl A für Mthemtik, RWTH Achen Jnury 9, 2009 Overview 1 Motivtion:

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Math 31S. Rumbos Fall Solutions to Assignment #16

Math 31S. Rumbos Fall Solutions to Assignment #16 Mth 31S. Rumbos Fll 2016 1 Solutions to Assignment #16 1. Logistic Growth 1. Suppose tht the growth of certin niml popultion is governed by the differentil eqution 1000 dn N dt = 100 N, (1) where N(t)

More information

We will see what is meant by standard form very shortly

We will see what is meant by standard form very shortly THEOREM: For fesible liner progrm in its stndrd form, the optimum vlue of the objective over its nonempty fesible region is () either unbounded or (b) is chievble t lest t one extreme point of the fesible

More information