Vision par ordinateur

Size: px
Start display at page:

Download "Vision par ordinateur"

Transcription

1 Vision par ordinateur Géométrie épipolaire Frédéric Devernay Avec des transparents de Marc Pollefeys

2 Epipolar geometry π Underlying structure in set of matches for rigid scenes C1 m1 l1 M L2 L1 l T 1 l 2 e1 m 2 T F m 1 = 0 e2 Fundamental matrix 3x3 rank 2 matrix) m2 C2 l2 Canonical representation: P = [I 0] " P = [[ " e ] # F + " e v T " e ] 1. Computable from corresponding points 2. Simplifies matching 3. Allows to detect wrong matches 4. Related to calibration

3 Epipolar geometry x1 C1 l1 ΠP l 1 = e 1 " x 1 L2 " = P T 1 l 1 = P T 2 l 2 M L1 l T 1 l 2 e1 x T 2 Px + T 2 2 P 1 F [ex 11 ] " = x 1 0= 0 e2 x2 l2 Fundamental matrix 3x3 rank 2 matrix) C2 l 2 T x 2 = 0 l 2 = P 2 +T P 1 T l 1

4 The projective reconstruction theorem If a set of point correspondences in two views determine the fundamental matrix uniquely, then the scene and cameras may be reconstructed from these correspondences alone, and any two such reconstructions from these correspondences are projectively equivalent allows reconstruction from pair of uncalibrated images!

5 Properties of the fundamental matrix

6 Computation of F Linear 8-point) Minimal 7-point) Robust RANSAC) Non-linear refinement MLE, ) Practical approach

7 Epipolar geometry: basic equation " x T Fx = 0 x " xf 11 + x " yf 12 + x " f 13 + y " xf 21 + y " yf 22 + y " f 23 + xf 31 + yf 32 + f 33 = 0 separate known from unknown [ x " x, x " y, x ", y " x, y " y, y ", x, y,1] f 11, f 12, f 13, f 21, f 22, f 23, f 31, f 32, f 33 data) [ ] T = 0 unknowns) linear) y 1 x 1 y 1 1& f = 0 y n x n y n 1' # x 1 " x 1 x 1 " y 1 x 1 " y 1 " x 1 y 1 " y 1 " M M M M M M M M M $ x " n x n x " n y n x " n y " n x n y " n y n " Af = 0

8 the NOT normalized 8-point algorithm # x 1 x 1 " y 1 x 1 " x 1 " x 1 y 1 " y 1 y 1 " y 1 " x 1 y 1 1& x 2 x " 2 y 2 x " 2 x " 2 x 2 y " 2 y 2 y " 2 y " 2 x 2 y 2 1 M M M M M M M M M $ x n x " n y n x " n x " n x n y " n y n y " n y " n x n y n 1' ~10000 ~10000 ~100 ~10000 ~10000 ~100 ~100 ~100 1 Orders of magnitude difference! between column of data matrix $ least-squares yields poor results # f 11 f 12 f 13 f 21 f 22 f 23 f 31 f 32 f 33 & = 0 '

9 the normalized 8-point algorithm Transform image to ~[-1,1]x[-1,1] 0,500) 700,500) # $ & 0 " "1 1 ' -1,1) 0,0) 1,1) 0,0) 700,0) -1,-1) 1,-1) normalized least squares yields good results Hartley, PAMI 97)

10 the singularity constraint e " T F = 0 Fe = 0 detf = 0 rank F = 2 SVD from linearly computed F matrix rank 3) #" 1 F = U " 2 $ " 3 Compute closest rank-2 approximation & V T = U " V T + U " V T + U " V T ' min F - F " F $ # 1 & F " = U & # 2 & ' ) ) V T = U # V T + U # V T )

11 F vs. F'

12 the minimum case 7 point correspondences # x 1 " x 1 x 1 " y 1 x 1 " y 1 " x 1 y 1 " y 1 y 1 " x 1 y 1 1& M M M M M M M M M f = 0 $ x " 7 x 7 x " 7 y 7 x " 7 y " 7 x 7 y " 7 y 7 y " 7 x 7 y 7 1' T A = U 7x7 diag " 1,...," 7,0,0)V 9x9 " A[V 8 V 9 ] = 0 9x2 e.g.v T V 8 = [ ] T ) x i T F 1 + "F 2 )x i = 0,#i =1...7 one parameter family of solutions but F 1 +λf 2 not automatically rank 2

13 the minimum case impose rank 2 σ 3 obtain 1 or 3 solutions) F 7pts F 1 F 2 F detf 1 + "F 2 ) = a 3 " 3 + a 2 " 2 + a 1 " + a 0 = 0 detf 1 + "F 2 ) = det F 2 detf 2-1 F 1 + "I) = 0 cubic equation) det AB) = det A).det B) ) F 2-1 F 1 Compute possible λ as eigenvalues of only real solutions are potential solutions) Minimal solution for calibrated cameras: 5-point

14 Robust estimation What if set of matches contains gross outliers? to keep things simple let s consider line fitting first)

15 RANSAC RANdom Sampling Consensus) Objective Robust fit of model to data set S which contains outliers Algorithm i) ii) Randomly select a sample of s data points from S and instantiate the model from this subset. Determine the set of data points S i which are within a distance threshold t of the model. The set S i is the consensus set of samples and defines the inliers of S. iii) If the subset of S i is greater than some threshold T, reestimate the model using all the points in S i and terminate iv) If the size of S i is less than T, select a new subset and repeat the above. v) After N trials the largest consensus set S i is selected, and the model is re-estimated using all the points in the subset S i

16 Distance threshold Choose t so probability for inlier is α e.g. 0.95) Often empirically 2 d! Zero-mean Gaussian noise σ then follows 2! m distribution with m=codimension of model dimension+codimension=dimension space) Codimension Model line,f H,P T t σ σ σ 2

17 How many samples? Choose N so that, with probability p, at least one random sample is free from outliers. e.g. p=0.99 1" 1" e) s ) N =1" p N = log 1" p) /log 1" 1" e) s ) s proportion of outliers e Note: Assumes that inliers allow to identify other inliers

18 Acceptable consensus set? Typically, terminate when inlier ratio reaches expected ratio of inliers T = 1" e)n

19 Adaptively determining the number of samples e is often unknown a priori, so pick worst case, i.e. 0, and adapt if more inliers are found, e.g. 80 would yield e=0.2 N=, sample_count =0 While N >sample_count repeat Choose a sample and count the number of inliers Set e=1-number of inliers)/total number of points) Recompute N from e Increment the sample_count by 1 Terminate N = log 1" p) /log 1" 1" e ) s ))

20 Other robust algorithms RANSAC maximizes number of inliers LMedS minimizes median error Not recommended: case deletion, iterative least-squares, etc.

21 Non-linear refinment

22 Geometric distance Gold standard Symmetric epipolar distance

23 Gold standard Maximum Likelihood Estimation Parameterize: P = [I 0], P " = [M t],x i = least-squares for Gaussian noise) 2 " ^ 2 " " T d$ x i,x^ ) i' + d $ x # & i, x i' subject to x^ F x^ # & i Initialize: normalized 8-point, P,P ) from F, reconstruct X i x^ i = PX i,x^ i = P " X i Minimize cost using Levenberg-Marquardt preferably sparse LM, e.g. see H&Z) = 0 overparametrized)

24 Gold standard Alternative, minimal parametrization with a=1) note x,y,1) and x,y,1) are epipoles) problems: a=0 pick largest of a,b,c,d to fix to 1 epipole at infinity pick largest of x,y,w and of x,y,w 4x3x3=36 parametrizations! reparametrize at every iteration, to be sure

25 Symmetric epipolar error # i ) 2 + d x i,f T " d x " i,fx i # = ) x " T Fx $ x ) 2 i x " T 2 F) + " 1 1 x T F) Fx ) 1 + Fx) 2 & '

26 Some experiments:

27 Some experiments:

28 Some experiments:

29 Some experiments: Residual error: # i ) 2 + d x i,f T " d x " i,fx i for all points!) x ) 2 i

30 Recommendations: 1. Do not use unnormalized algorithms 2. Quick and easy to implement: 8-point normalized 3. Better: enforce rank-2 constraint during minimization 4. Best: Maximum Likelihood Estimation minimal parameterization, sparse implementation)

31 Automatic computation of F Step 1. Extract features Step 2. Compute a set of potential matches Step 3. do Step 3.1 select minimal sample i.e. 7 matches) Step 3.2 compute solutions) for F Step 3.3 determine inliers until Γ#inliers,#samples)<95 verify hypothesis) } generate hypothesis) Step 4. Compute F based on all inliers Step 5. Look for additional matches Step 6. Refine F based on all correct matches " =1# 1# # inliers ) 7 ) # samples # matches #inliers #samples

32 Two-view geometry geometric relations between two views is fully described by recovered 3x3 matrix F

EPIPOLAR GEOMETRY WITH MANY DETAILS

EPIPOLAR GEOMETRY WITH MANY DETAILS EPIPOLAR GEOMERY WIH MANY DEAILS hank ou for the slides. he come mostl from the following source. Marc Pollefes U. of North Carolina hree questions: (i) Correspondence geometr: Given an image point in

More information

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Pascal Monasse monasse@imagine.enpc.fr IMAGINE, École des Ponts ParisTech Contents Some useful rules

More information

Nonrobust and Robust Objective Functions

Nonrobust and Robust Objective Functions Nonrobust and Robust Objective Functions The objective function of the estimators in the input space is built from the sum of squared Mahalanobis distances (residuals) d 2 i = 1 σ 2(y i y io ) C + y i

More information

Method 1: Geometric Error Optimization

Method 1: Geometric Error Optimization Method 1: Geometric Error Optimization we need to encode the constraints ŷ i F ˆx i = 0, rank F = 2 idea: reconstruct 3D point via equivalent projection matrices and use reprojection error equivalent projection

More information

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s =

Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = Camera Calibration The purpose of camera calibration is to determine the intrinsic camera parameters (c 0,r 0 ), f, s x, s y, skew parameter (s = cotα), and the lens distortion (radial distortion coefficient

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Scene Planes & Homographies Lecture 19 March 24, 2005 2 In our last lecture, we examined various

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Hamed Masnadi Shirazi, Solmaz Alipour LECTURE 5 Relationships between the Homography and the Essential Matrix 5.1. Introduction In practice,

More information

The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views

The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views Richard Hartley 1,2 and RenéVidal 2,3 1 Dept. of Systems Engineering 3 Center for Imaging Science Australian National University

More information

Segmentation of Subspace Arrangements III Robust GPCA

Segmentation of Subspace Arrangements III Robust GPCA Segmentation of Subspace Arrangements III Robust GPCA Berkeley CS 294-6, Lecture 25 Dec. 3, 2006 Generalized Principal Component Analysis (GPCA): (an overview) x V 1 V 2 (x 3 = 0)or(x 1 = x 2 = 0) {x 1x

More information

Parameterizing the Trifocal Tensor

Parameterizing the Trifocal Tensor Parameterizing the Trifocal Tensor May 11, 2017 Based on: Klas Nordberg. A Minimal Parameterization of the Trifocal Tensor. In Computer society conference on computer vision and pattern recognition (CVPR).

More information

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese Lecture 5 Epipolar Geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 5-21-Jan-15 Lecture 5 Epipolar Geometry Why is stereo useful? Epipolar constraints Essential

More information

Augmented Reality VU numerical optimization algorithms. Prof. Vincent Lepetit

Augmented Reality VU numerical optimization algorithms. Prof. Vincent Lepetit Augmented Reality VU numerical optimization algorithms Prof. Vincent Lepetit P3P: can exploit only 3 correspondences; DLT: difficult to exploit the knowledge of the internal parameters correctly, and the

More information

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Stefano Soatto Shankar Sastry Department of EECS, UC Berkeley Department of Computer Sciences, UCLA 30 Cory Hall,

More information

Lecture 4.3 Estimating homographies from feature correspondences. Thomas Opsahl

Lecture 4.3 Estimating homographies from feature correspondences. Thomas Opsahl Lecture 4.3 Estimating homographies from feature correspondences Thomas Opsahl Homographies induced by central projection 1 H 2 1 H 2 u uu 2 3 1 Homography Hu = u H = h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h

More information

A Study of Kruppa s Equation for Camera Self-calibration

A Study of Kruppa s Equation for Camera Self-calibration Proceedings of the International Conference of Machine Vision and Machine Learning Prague, Czech Republic, August 14-15, 2014 Paper No. 57 A Study of Kruppa s Equation for Camera Self-calibration Luh Prapitasari,

More information

Polynomial Eigenvalue Solutions to the 5-pt and 6-pt Relative Pose Problems

Polynomial Eigenvalue Solutions to the 5-pt and 6-pt Relative Pose Problems Polynomial Eigenvalue Solutions to the 5-pt and 6-pt Relative Pose Problems Zuzana Kukelova, Martin Bujnak and Tomas Pajdla Center for Machine Perception Czech Technical University, Prague kukelova,bujnam1,pajdla@cmp.felk.cvut.cz

More information

Conditions for Segmentation of Motion with Affine Fundamental Matrix

Conditions for Segmentation of Motion with Affine Fundamental Matrix Conditions for Segmentation of Motion with Affine Fundamental Matrix Shafriza Nisha Basah 1, Reza Hoseinnezhad 2, and Alireza Bab-Hadiashar 1 Faculty of Engineering and Industrial Sciences, Swinburne University

More information

A minimal solution to the autocalibration of radial distortion

A minimal solution to the autocalibration of radial distortion A minimal solution to the autocalibration of radial distortion Zuzana Kukelova Tomas Pajdla Center for Machine Perception, Dept. of Cybernetics, Faculty of Elec. Eng. Czech Technical University in Prague,

More information

Computation of the Quadrifocal Tensor

Computation of the Quadrifocal Tensor Computation of the Quadrifocal Tensor Richard I. Hartley G.E. Corporate Research and Development Research Circle, Niskayuna, NY 2309, USA Abstract. This paper gives a practical and accurate algorithm for

More information

Motion Estimation (I)

Motion Estimation (I) Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Tutorial. Fitting Ellipse and Computing Fundamental Matrix and Homography. Kenichi Kanatani. Professor Emeritus Okayama University, Japan

Tutorial. Fitting Ellipse and Computing Fundamental Matrix and Homography. Kenichi Kanatani. Professor Emeritus Okayama University, Japan Tutorial Fitting Ellipse and Computing Fundamental Matrix and Homography Kenichi Kanatani Professor Emeritus Okayama University, Japan This tutorial is based on K. Kanatani, Y. Sugaya, and Y. Kanazawa,

More information

High Accuracy Fundamental Matrix Computation and Its Performance Evaluation

High Accuracy Fundamental Matrix Computation and Its Performance Evaluation High Accuracy Fundamental Matrix Computation and Its Performance Evaluation Kenichi Kanatani Department of Computer Science, Okayama University, Okayama 700-8530 Japan kanatani@suri.it.okayama-u.ac.jp

More information

Multiview Geometry and Bundle Adjustment. CSE P576 David M. Rosen

Multiview Geometry and Bundle Adjustment. CSE P576 David M. Rosen Multiview Geometry and Bundle Adjustment CSE P576 David M. Rosen 1 Recap Previously: Image formation Feature extraction + matching Two-view (epipolar geometry) Today: Add some geometry, statistics, optimization

More information

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix ECCV Workshop on Vision and Modeling of Dynamic Scenes, Copenhagen, Denmark, May 2002 Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Dept of EECS, UC Berkeley Berkeley,

More information

Fast RANSAC with Preview Model Parameters Evaluation

Fast RANSAC with Preview Model Parameters Evaluation 1000-9825/2005/16(08)1431 2005 Journal of Software Vol.16, No.8 +, ( ATR, 410073) Fast RANSAC with Preview Model Parameters Evaluation CHEN Fu-Xing +, WANG Run-Sheng (National Key Laboratory of ATR, National

More information

Least-Squares Fitting of Model Parameters to Experimental Data

Least-Squares Fitting of Model Parameters to Experimental Data Least-Squares Fitting of Model Parameters to Experimental Data Div. of Mathematical Sciences, Dept of Engineering Sciences and Mathematics, LTU, room E193 Outline of talk What about Science and Scientific

More information

Math Review: parameter estimation. Emma

Math Review: parameter estimation. Emma Math Review: parameter estimation Emma McNally@flickr Fitting lines to dots: We will cover how Slides provided by HyunSoo Park 1809, Carl Friedrich Gauss What about fitting line on a curved surface? Least

More information

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit Augmented Reality VU Camera Registration Prof. Vincent Lepetit Different Approaches to Vision-based 3D Tracking [From D. Wagner] [From Drummond PAMI02] [From Davison ICCV01] Consider natural features Consider

More information

Algorithms for Computing a Planar Homography from Conics in Correspondence

Algorithms for Computing a Planar Homography from Conics in Correspondence Algorithms for Computing a Planar Homography from Conics in Correspondence Juho Kannala, Mikko Salo and Janne Heikkilä Machine Vision Group University of Oulu, Finland {jkannala, msa, jth@ee.oulu.fi} Abstract

More information

Sparse Levenberg-Marquardt algorithm.

Sparse Levenberg-Marquardt algorithm. Sparse Levenberg-Marquardt algorithm. R. I. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision. Cambridge University Press, second edition, 2004. Appendix 6 was used in part. The Levenberg-Marquardt

More information

A Practical Method for Decomposition of the Essential Matrix

A Practical Method for Decomposition of the Essential Matrix Applied Mathematical Sciences, Vol. 8, 2014, no. 176, 8755-8770 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410877 A Practical Method for Decomposition of the Essential Matrix Georgi

More information

Nonlinear Programming Models

Nonlinear Programming Models Nonlinear Programming Models Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Nonlinear Programming Models p. Introduction Nonlinear Programming Models p. NLP problems minf(x) x S R n Standard form:

More information

ROBUST MULTIPLE-VIEW GEOMETRY ESTIMATION BASED ON GMM

ROBUST MULTIPLE-VIEW GEOMETRY ESTIMATION BASED ON GMM Computing and Informatics, Vol. 21, 2002, 591 606 ROBUST MULTIPLE-VIEW GEOMETRY ESTIMATION BASED ON GMM Mingxing Hu, Qiang Xing, Baozong Yuan, Xiaofang Tang Institute of Information Science Northern Jiaotong

More information

Motion Estimation (I) Ce Liu Microsoft Research New England

Motion Estimation (I) Ce Liu Microsoft Research New England Motion Estimation (I) Ce Liu celiu@microsoft.com Microsoft Research New England We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Trinocular Geometry Revisited

Trinocular Geometry Revisited Trinocular Geometry Revisited Jean Pounce and Martin Hebert 报告人 : 王浩人 2014-06-24 Contents 1. Introduction 2. Converging Triplets of Lines 3. Converging Triplets of Visual Rays 4. Discussion 1. Introduction

More information

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix CS4495/6495 Introduction to Computer Vision 3D-L3 Fundamental matrix Weak calibration Main idea: Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras

More information

Gradient-Based Learning. Sargur N. Srihari

Gradient-Based Learning. Sargur N. Srihari Gradient-Based Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation and Other Differentiation

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Pose estimation from point and line correspondences

Pose estimation from point and line correspondences Pose estimation from point and line correspondences Giorgio Panin October 17, 008 1 Problem formulation Estimate (in a LSE sense) the pose of an object from N correspondences between known object points

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Tasha Vanesian LECTURE 3 Calibrated 3D Reconstruction 3.1. Geometric View of Epipolar Constraint We are trying to solve the following problem:

More information

ROBUST ESTIMATOR FOR MULTIPLE INLIER STRUCTURES

ROBUST ESTIMATOR FOR MULTIPLE INLIER STRUCTURES ROBUST ESTIMATOR FOR MULTIPLE INLIER STRUCTURES Xiang Yang (1) and Peter Meer (2) (1) Dept. of Mechanical and Aerospace Engineering (2) Dept. of Electrical and Computer Engineering Rutgers University,

More information

Visual SLAM Tutorial: Bundle Adjustment

Visual SLAM Tutorial: Bundle Adjustment Visual SLAM Tutorial: Bundle Adjustment Frank Dellaert June 27, 2014 1 Minimizing Re-projection Error in Two Views In a two-view setting, we are interested in finding the most likely camera poses T1 w

More information

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015 CS 3710: Visual Recognition Describing Images with Features Adriana Kovashka Department of Computer Science January 8, 2015 Plan for Today Presentation assignments + schedule changes Image filtering Feature

More information

6.801/866. Affine Structure from Motion. T. Darrell

6.801/866. Affine Structure from Motion. T. Darrell 6.801/866 Affine Structure from Motion T. Darrell [Read F&P Ch. 12.0, 12.2, 12.3, 12.4] Affine geometry is, roughly speaking, what is left after all ability to measure lengths, areas, angles, etc. has

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Image Alignment and Mosaicing

Image Alignment and Mosaicing Image Alignment and Mosaicing Image Alignment Applications Local alignment: Tracking Stereo Global alignment: Camera jitter elimination Image enhancement Panoramic mosaicing Image Enhancement Original

More information

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2 International Journal of Pure and Applied Mathematics Volume 105 No. 4 2015, 669-683 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v105i4.8

More information

Visual Self-Calibration of Pan-Tilt Kinematic Structures

Visual Self-Calibration of Pan-Tilt Kinematic Structures Visual Self-Calibration of Pan-Tilt Kinematic Structures Bartosz Tworek, Alexandre Bernardino and José Santos-Victor Abstract With the increasing miniaturization of robotic devices, some actuators are

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Rigid Structure from Motion from a Blind Source Separation Perspective

Rigid Structure from Motion from a Blind Source Separation Perspective Noname manuscript No. (will be inserted by the editor) Rigid Structure from Motion from a Blind Source Separation Perspective Jeff Fortuna Aleix M. Martinez Received: date / Accepted: date Abstract We

More information

Feature extraction: Corners and blobs

Feature extraction: Corners and blobs Feature extraction: Corners and blobs Review: Linear filtering and edge detection Name two different kinds of image noise Name a non-linear smoothing filter What advantages does median filtering have over

More information

Overviews of Optimization Techniques for Geometric Estimation

Overviews of Optimization Techniques for Geometric Estimation Memoirs of the Faculty of Engineering, Okayama University, Vol. 47, pp. 8, January 03 Overviews of Optimization Techniques for Geometric Estimation Kenichi KANATANI Department of Computer Science, Okayama

More information

Determining the Epipolar Geometry and its Uncertainty: A Review

Determining the Epipolar Geometry and its Uncertainty: A Review International Journal of Computer Vision, 27(2), 161 198 (1998) c 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Determining the Epipolar Geometry and its Uncertainty: A Review

More information

Outliers Robustness in Multivariate Orthogonal Regression

Outliers Robustness in Multivariate Orthogonal Regression 674 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 6, NOVEMBER 2000 Outliers Robustness in Multivariate Orthogonal Regression Giuseppe Carlo Calafiore Abstract

More information

MULTIPLE EXPOSURES IN LARGE SURVEYS

MULTIPLE EXPOSURES IN LARGE SURVEYS MULTIPLE EXPOSURES IN LARGE SURVEYS / Johns Hopkins University Big Data? Noisy Skewed Artifacts Big Data? Noisy Skewed Artifacts Serious Issues Significant fraction of catalogs is junk GALEX 50% PS1 3PI

More information

Convex Optimization: Applications

Convex Optimization: Applications Convex Optimization: Applications Lecturer: Pradeep Ravikumar Co-instructor: Aarti Singh Convex Optimization 1-75/36-75 Based on material from Boyd, Vandenberghe Norm Approximation minimize Ax b (A R m

More information

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent Unsupervised Machine Learning and Data Mining DS 5230 / DS 4420 - Fall 2018 Lecture 7 Jan-Willem van de Meent DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Dimensionality Reduction Goal:

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 12 Jan-Willem van de Meent (credit: Yijun Zhao, Percy Liang) DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Linear Dimensionality

More information

Vector Space Models. wine_spectral.r

Vector Space Models. wine_spectral.r Vector Space Models 137 wine_spectral.r Latent Semantic Analysis Problem with words Even a small vocabulary as in wine example is challenging LSA Reduce number of columns of DTM by principal components

More information

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool

Camera calibration. Outline. Pinhole camera. Camera projection models. Nonlinear least square methods A camera calibration tool Outline Camera calibration Camera projection models Camera calibration i Nonlinear least square methods A camera calibration tool Applications Digital Visual Effects Yung-Yu Chuang with slides b Richard

More information

Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix

Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix Manolis I.A. Lourakis and Rachid Deriche Projet Robotvis, INRIA Sophia-Antipolis 00 route des Lucioles, BP 3 00

More information

Exponential Families

Exponential Families Exponential Families David M. Blei 1 Introduction We discuss the exponential family, a very flexible family of distributions. Most distributions that you have heard of are in the exponential family. Bernoulli,

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

Structure from Motion. Read Chapter 7 in Szeliski s book

Structure from Motion. Read Chapter 7 in Szeliski s book Structure from Motion Read Chapter 7 in Szeliski s book Schedule (tentative) 2 # date topic 1 Sep.22 Introduction and geometry 2 Sep.29 Invariant features 3 Oct.6 Camera models and calibration 4 Oct.13

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. rofessor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Review of robability For additional review material, see http://eecs.mines.edu/courses/csci507/schedule/

More information

Making Minimal Problems Fast

Making Minimal Problems Fast Making Minimal Problems Fast T o m a s P a j d l a presents work of M. Bujnak, Z. Kukelova & T. Pajdla Czech Technical University Prague Center for Machine Perception M o t i v a t i o n 3 D R E C O N

More information

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation

Numerical computation II. Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Numerical computation II Reprojection error Bundle adjustment Family of Newtonʼs methods Statistical background Maximum likelihood estimation Reprojection error Reprojection error = Distance between the

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 8 A. d Aspremont. Convex Optimization M2. 1/57 Applications A. d Aspremont. Convex Optimization M2. 2/57 Outline Geometrical problems Approximation problems Combinatorial

More information

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 2: Linear Classification Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d.

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Regression Clustering

Regression Clustering Regression Clustering In regression clustering, we assume a model of the form y = f g (x, θ g ) + ɛ g for observations y and x in the g th group. Usually, of course, we assume linear models of the form

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

Numerical Methods I Solving Nonlinear Equations

Numerical Methods I Solving Nonlinear Equations Numerical Methods I Solving Nonlinear Equations Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 16th, 2014 A. Donev (Courant Institute)

More information

CS6964: Notes On Linear Systems

CS6964: Notes On Linear Systems CS6964: Notes On Linear Systems 1 Linear Systems Systems of equations that are linear in the unknowns are said to be linear systems For instance ax 1 + bx 2 dx 1 + ex 2 = c = f gives 2 equations and 2

More information

Economics 573 Problem Set 5 Fall 2002 Due: 4 October b. The sample mean converges in probability to the population mean.

Economics 573 Problem Set 5 Fall 2002 Due: 4 October b. The sample mean converges in probability to the population mean. Economics 573 Problem Set 5 Fall 00 Due: 4 October 00 1. In random sampling from any population with E(X) = and Var(X) =, show (using Chebyshev's inequality) that sample mean converges in probability to..

More information

A Theory of Multi-Layer Flat Refractive Geometry Supplementary Materials

A Theory of Multi-Layer Flat Refractive Geometry Supplementary Materials A Theory of Multi-Layer Flat Refractive Geometry Supplementary Materials Amit Agrawal, Srikumar Ramalingam, Yuichi Taguchi Mitsubishi Electric Research Labs MERL) [agrawal,ramalingam,taguchi] at merl.com

More information

Robustness Meets Algorithms

Robustness Meets Algorithms Robustness Meets Algorithms Ankur Moitra (MIT) ICML 2017 Tutorial, August 6 th CLASSIC PARAMETER ESTIMATION Given samples from an unknown distribution in some class e.g. a 1-D Gaussian can we accurately

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Review of Edge Detectors #2 Today s Lecture Interest Points Detection What do we mean with Interest Point Detection in an Image Goal:

More information

CSCI5654 (Linear Programming, Fall 2013) Lectures Lectures 10,11 Slide# 1

CSCI5654 (Linear Programming, Fall 2013) Lectures Lectures 10,11 Slide# 1 CSCI5654 (Linear Programming, Fall 2013) Lectures 10-12 Lectures 10,11 Slide# 1 Today s Lecture 1. Introduction to norms: L 1,L 2,L. 2. Casting absolute value and max operators. 3. Norm minimization problems.

More information

Machine Learning for Signal Processing Sparse and Overcomplete Representations

Machine Learning for Signal Processing Sparse and Overcomplete Representations Machine Learning for Signal Processing Sparse and Overcomplete Representations Abelino Jimenez (slides from Bhiksha Raj and Sourish Chaudhuri) Oct 1, 217 1 So far Weights Data Basis Data Independent ICA

More information

General and Nested Wiberg Minimization: L 2 and Maximum Likelihood

General and Nested Wiberg Minimization: L 2 and Maximum Likelihood General and Nested Wiberg Minimization: L 2 and Maximum Likelihood Dennis Strelow Google Mountain View, CA strelow@google.com Abstract. Wiberg matrix factorization breaks a matrix Y into low-rank factors

More information

Multivariate Distributions

Multivariate Distributions Copyright Cosma Rohilla Shalizi; do not distribute without permission updates at http://www.stat.cmu.edu/~cshalizi/adafaepov/ Appendix E Multivariate Distributions E.1 Review of Definitions Let s review

More information

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St

Outline Introduction: Problem Description Diculties Algebraic Structure: Algebraic Varieties Rank Decient Toeplitz Matrices Constructing Lower Rank St Structured Lower Rank Approximation by Moody T. Chu (NCSU) joint with Robert E. Funderlic (NCSU) and Robert J. Plemmons (Wake Forest) March 5, 1998 Outline Introduction: Problem Description Diculties Algebraic

More information

2 Nonlinear least squares algorithms

2 Nonlinear least squares algorithms 1 Introduction Notes for 2017-05-01 We briefly discussed nonlinear least squares problems in a previous lecture, when we described the historical path leading to trust region methods starting from the

More information

M3: Multiple View Geometry

M3: Multiple View Geometry M3: Multiple View Geometry L18: Projective Structure from Motion: Iterative Algorithm based on Factorization Based on Sections 13.4 C. V. Jawahar jawahar-at-iiit.net Mar 2005: 1 Review: Reconstruction

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Linear Regression Linear Regression ith Shrinkage Introduction Regression means predicting a continuous (usually scalar) output y from a vector of continuous inputs (features) x. Example: Predicting vehicle

More information

Robust Statistics, Revisited

Robust Statistics, Revisited Robust Statistics, Revisited Ankur Moitra (MIT) joint work with Ilias Diakonikolas, Jerry Li, Gautam Kamath, Daniel Kane and Alistair Stewart CLASSIC PARAMETER ESTIMATION Given samples from an unknown

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Trifocal Tensor Lecture 21 March 31, 2005 2 Lord Shiva is depicted as having three eyes. The

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Multivariate Gaussians Mark Schmidt University of British Columbia Winter 2019 Last Time: Multivariate Gaussian http://personal.kenyon.edu/hartlaub/mellonproject/bivariate2.html

More information

Final Exam Due on Sunday 05/06

Final Exam Due on Sunday 05/06 Final Exam Due on Sunday 05/06 The exam should be completed individually without collaboration. However, you are permitted to consult with the textbooks, notes, slides and even internet resources. If you

More information

Problem 1: Toolbox (25 pts) For all of the parts of this problem, you are limited to the following sets of tools:

Problem 1: Toolbox (25 pts) For all of the parts of this problem, you are limited to the following sets of tools: CS 322 Final Exam Friday 18 May 2007 150 minutes Problem 1: Toolbox (25 pts) For all of the parts of this problem, you are limited to the following sets of tools: (A) Runge-Kutta 4/5 Method (B) Condition

More information

Scale & Affine Invariant Interest Point Detectors

Scale & Affine Invariant Interest Point Detectors Scale & Affine Invariant Interest Point Detectors KRYSTIAN MIKOLAJCZYK AND CORDELIA SCHMID [2004] Shreyas Saxena Gurkirit Singh 23/11/2012 Introduction We are interested in finding interest points. What

More information

A Brief Overview of Robust Statistics

A Brief Overview of Robust Statistics A Brief Overview of Robust Statistics Olfa Nasraoui Department of Computer Engineering & Computer Science University of Louisville, olfa.nasraoui_at_louisville.edu Robust Statistical Estimators Robust

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Randomized projection algorithms for overdetermined linear systems

Randomized projection algorithms for overdetermined linear systems Randomized projection algorithms for overdetermined linear systems Deanna Needell Claremont McKenna College ISMP, Berlin 2012 Setup Setup Let Ax = b be an overdetermined, standardized, full rank system

More information

More on Unsupervised Learning

More on Unsupervised Learning More on Unsupervised Learning Two types of problems are to find association rules for occurrences in common in observations (market basket analysis), and finding the groups of values of observational data

More information

Part I Generalized Principal Component Analysis

Part I Generalized Principal Component Analysis Part I Generalized Principal Component Analysis René Vidal Center for Imaging Science Institute for Computational Medicine Johns Hopkins University Principal Component Analysis (PCA) Given a set of points

More information