Multiple View Geometry in Computer Vision

Size: px
Start display at page:

Download "Multiple View Geometry in Computer Vision"

Transcription

1 Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1

2 Scene Planes & Homographies Lecture 19 March 24,

3 In our last lecture, we examined various methods of triangulation, namely homogeneous method (DLT), inhomogeneous method, and a method based on geometric error. 3

4 In this lecture, we examine the projective geometry of two cameras and a world plane. A plane induces a homography between two views. 4

5 Suppose we have some points X on a world plane. Let the images of these points be x in the first view and x in the second view. We have seen during the geometric derivation of the fundamental matrix that there is a planar homography H between the points x and x. 5

6 There are two relations between the two views: First, a point in one view determines a line in the other view which is the image of the ray through that point. 6

7 Second, a point in one view determines a point in the other view which is the image of the intersection of the ray with a plane. 7

8 Homographies given the plane Result 1. Given the projection matrices for the two views P = [I 0] and P = [A a] and a plane defined by π T X = 0 with π = (v T, 1) T, then the homography induced by the plane is x = Hx with H = A av T. 8

9 Proof: Let P = [I 0] and P = [A a] be camera matrices. Let X be a 3D point on the plane π. Let x = PX = [I 0] X. So any point X = (x T, ρ) T on the ray projects to x where ρ parametrizes the point on the ray. Since X is on the plane π, we have π T X = 0. Therefore π T X = ( v T 1 ) x = v ρ T x + ρ = 0. 9

10 Hence ρ = v T x. Therefore X = (x T, ρ) T = (x T, v T x) T. The 3D point X projects into the second view. Hence x = P X = [ A a ] = A x a v T x x v T x = (A a v T ) x. 10

11 Hence H = A a v T is the homography induduced by the plane π. Example 1. A calibrated stereo rig. Suppose the cameras matrices of a stereo rig with world origin at the first camera be P e = K [I 0] and P e = K [R t]. Let π e be the world plane with coordinates given by π e = (n T, d) T. Suppose X = ( X, x 4 ) T. Find the homography induced by the plane π e. 11

12 Answer: From Result 1, with v = n d, the homography for the cameras P = [I 0] and P = [R t] is H = R t nt d. Applying the transformations K and K to the images x and x, we obtain the cameras P e = K [I 0] and P e = K [R t]. 12

13 Therefore x = H x K x = K H x K x = ( K H K 1) K x. Hence induced homography by the plane π e is given by H e = K H K 1. 13

14 Homography compatible with epipolar geometry Suppose four points X i are chosen on a scene plane. The correspondence x i x i of their images between two views defines a homography H. So x i = H x i. These image correspondences x i x i also satisfy the epipolar constraint x T i F x i = 0. Hence x T i F x i = (H x i ) T F x i = x T i H T F x i = 0. This homography is said to be consistent with F. 14

15 Now suppose we choose four arbitrary points in the first view and four arbitrary points in the second view. Then a homography Ĥ can be computed. However, the correspondence x i x i = Ĥ x i may not satisfy the epipolar constraint. Hence there does not exist a scene plane containing the corresponding four scene points X i. 15

16 The epipole is mapped by the homography, as e = H e, since the epipoles are images of the point on the plane where the baseline intersect the scene plane π. e = H e 16

17 The epipolar lines are mapped by the homography as l e = H T l e. l e = H T l e 17

18 Any point x mapped by the homography lies on its corresponding epipolar line l e = x (Hx). l e = x (Hx) 18

19 A homography H is compatible with a fundamental matrix F if and only if the matrix H T F is skewsymmetric, that is H T F + F T H = 0. ( ) The compatibility constraint ( ) is an implicit equation in H and F. 19

20 This is a result from Chapter 8 about fundamental matrix. Result 2. The fundamental matrix F corresponding to a pair of camera matrices P = [ I 0 ] and P = [ A a ] is given by F = [a] A. The converse of this is also true. 20

21 Now we develop an explicit expression for H induced by a scene plane for a given F. Result 3. Given the fundamental matrix F between two views, the three-parameter family of homographies induced by a scene plane π = (v T, 1) T is H = A e v T where [e ] A = F is any decomposition of the fundamental matrix. 21

22 Proof: Let F be the fundamental matrix for the two views. Since F = [e ] A by Result 2, the camera matrices are given by P = [ I 0 ] and P = [ A e ]. By Result 1, the homography H induced by π is H = A e v T. 22

23 Remark: Because of F T H = ( [e ] A ) T ( A e v T ) = A T [e ] ( A e v T) = A T [e ] A + A T [e ] e v T = A T [e ] A (since [e ] e = 0), and H T F = ( F T H) T = A T [e ] A = F T H the homography H = A e v T is compatible with the fundamental matrix F. 23

24 Corollary 1. A transformation H is the homography between two images induced by some world plane if and only if the fundamental matrix F for the two images has a decomposition F = [ e ] H. 24

25 Result 4. Given the cameras in the canonical form P = [ I 0 ] and P = [ A a ], then the plane π that induces a given homography H between the views has coordinates π = (v T, 1) T where v may be obtained linearly by solving the equations λ H = A a v T, which are linear in the entries of v and λ. 25

26 Remark. The equations λ H = A a v T will have an exact solution v if H satisfies the compatibility constraint H T F + F T H = 0 with F. 26

27 If H is computed numerically from noisy data, then the equations λ H = A a v T may not yield an exact solution. 27

28 Plane induced homographies So far we have seen how to compute the induced homography H if the coordinates of the scene plane π are given. The scene plane π can also be specified if we are given three points, or a line and a point. 28

29 Computing H from three given points on π Suppose we are given the images x i in the first view and the corresponding images x i in the second view of 3 scene points X i and the fundamental matrix F for the two views. 29

30 There are two ways of computing H from three given points on π. Computing H Implicit method 3 Explicit method 30

31 Implicit Method First, the homography H may be determined from the four correspondences x i = H x i for i = 1, 2, 3, and e = H e. 31

32 If we let x i = (x i, y i, w i ) T and x i = (x i, y i, w i )T the equation x i H x i = 0 yields 0 T w i xt i y i xt i w i xt i 0 T x i xt i h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 = 0 which can be written as A i h = 0. 32

33 Algorithm (i) For each correspondence x i x i compute A i. Only two first rows needed. (ii) Assemble four 2 9 matrices A i into a single 8 9 matrix A. (iii) Obtain SVD of A. Solution for h is last column of V. (iv) Determine H from h. 33

34 Explicit Method Second, the position of three points X i is recovered in a projective reconstruction, and then the plane π is determined solving the equation X T 1 X T 2 X T 3 π = 0 and the homography H is computed from the coordinates of the plane π using Result 1. 34

35 Recall the following result from the Chapter 8. Result 5. The camera matrices corresponding to a fundamental matrix F may be chosen as P = [ I 0 ] and P = [ [e ] F e ]. The following result can be found in A3.4 on page 555 of the text book (first edition). Result 6. [ e ] [ e ] F = F (up to scale). 35

36 Result 7. Given F and the three image point correspondences x i x i, the homography induced by the plane of the 3D points is H = A e ( M 1 b ) T, where A = [ e ] F and b is a 3-vector with components ( x i (A x i ) ) T ( x i e ) b i = x i e 2 and M is a 3 3 matrix with rows x T i. 36

37 Proof: Let F the fundamental matrix for the two views. Let x i x i be the three point correspondences. By Result 5, A = [ e ] F. Hence F = [ e ] A By Result 3, H = A e v T where (v T, 1) T = π. Since x i = H x i, we have x i = A x i e (v T x i ). 37

38 Each x i x i generates a linear constraint on v. The vectors x i and A x i e (v T x i ) are parallel. Hence x i ( A x i e (v T x i ) ) = 0. This simplifies to (x i Ax i) ( x i ) e (v T x i ) = 0. Taking scalar product with x i e, we have (x i Ax i) T (x i e ) (x i e ) T (x i e )(v T x i ) = 0. 38

39 Hence x T i v = vt x i = (x i Ax i) T (x i e ) x i e 2 = b i (say). Each x i x i generates an equation xt i v = b i. Collecting the three equations we have M v = b. Here M is a matrix such that M T = [ x 1, x 2, x 3 ]. From M v = b, we get v = M 1 b. Therefore H = A e ( M 1 b ) T. 39

40 Remark. The equation M v = b can not be solved for v if M is singular, that is det(m) = 0. The determinant of M will be zero if the three image points x i in the first view are collinear. Geometrically, three collinear image points arise from collinear world points or coplanar world points where the plane contains the first camera center. 40

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Trifocal Tensor Lecture 21 March 31, 2005 2 Lord Shiva is depicted as having three eyes. The

More information

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese

Lecture 5. Epipolar Geometry. Professor Silvio Savarese Computational Vision and Geometry Lab. 21-Jan-15. Lecture 5 - Silvio Savarese Lecture 5 Epipolar Geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 5-21-Jan-15 Lecture 5 Epipolar Geometry Why is stereo useful? Epipolar constraints Essential

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Hamed Masnadi Shirazi, Solmaz Alipour LECTURE 5 Relationships between the Homography and the Essential Matrix 5.1. Introduction In practice,

More information

A Practical Method for Decomposition of the Essential Matrix

A Practical Method for Decomposition of the Essential Matrix Applied Mathematical Sciences, Vol. 8, 2014, no. 176, 8755-8770 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410877 A Practical Method for Decomposition of the Essential Matrix Georgi

More information

Trinocular Geometry Revisited

Trinocular Geometry Revisited Trinocular Geometry Revisited Jean Pounce and Martin Hebert 报告人 : 王浩人 2014-06-24 Contents 1. Introduction 2. Converging Triplets of Lines 3. Converging Triplets of Visual Rays 4. Discussion 1. Introduction

More information

Camera Models and Affine Multiple Views Geometry

Camera Models and Affine Multiple Views Geometry Camera Models and Affine Multiple Views Geometry Subhashis Banerjee Dept. Computer Science and Engineering IIT Delhi email: suban@cse.iitd.ac.in May 29, 2001 1 1 Camera Models A Camera transforms a 3D

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribe: Tasha Vanesian LECTURE 3 Calibrated 3D Reconstruction 3.1. Geometric View of Epipolar Constraint We are trying to solve the following problem:

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Basic Information Instructor: Professor Ron Sahoo Office: NS 218 Tel: (502) 852-2731 Fax: (502)

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix

CS4495/6495 Introduction to Computer Vision. 3D-L3 Fundamental matrix CS4495/6495 Introduction to Computer Vision 3D-L3 Fundamental matrix Weak calibration Main idea: Estimate epipolar geometry from a (redundant) set of point correspondences between two uncalibrated cameras

More information

A Study of Kruppa s Equation for Camera Self-calibration

A Study of Kruppa s Equation for Camera Self-calibration Proceedings of the International Conference of Machine Vision and Machine Learning Prague, Czech Republic, August 14-15, 2014 Paper No. 57 A Study of Kruppa s Equation for Camera Self-calibration Luh Prapitasari,

More information

Induced Planar Homologies in Epipolar Geometry

Induced Planar Homologies in Epipolar Geometry Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016), pp. 3759 3773 Research India Publications http://www.ripublication.com/gjpam.htm Induced Planar Homologies in

More information

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm

Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Vision 3D articielle Session 2: Essential and fundamental matrices, their computation, RANSAC algorithm Pascal Monasse monasse@imagine.enpc.fr IMAGINE, École des Ponts ParisTech Contents Some useful rules

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Stefano Soatto Shankar Sastry Department of EECS, UC Berkeley Department of Computer Sciences, UCLA 30 Cory Hall,

More information

EPIPOLAR GEOMETRY WITH MANY DETAILS

EPIPOLAR GEOMETRY WITH MANY DETAILS EPIPOLAR GEOMERY WIH MANY DEAILS hank ou for the slides. he come mostl from the following source. Marc Pollefes U. of North Carolina hree questions: (i) Correspondence geometr: Given an image point in

More information

3D Computer Vision - WT 2004

3D Computer Vision - WT 2004 3D Computer Vision - WT 2004 Singular Value Decomposition Darko Zikic CAMP - Chair for Computer Aided Medical Procedures November 4, 2004 1 2 3 4 5 Properties For any given matrix A R m n there exists

More information

Linear Independence x

Linear Independence x Linear Independence A consistent system of linear equations with matrix equation Ax = b, where A is an m n matrix, has a solution set whose graph in R n is a linear object, that is, has one of only n +

More information

Linear Algebra Exam 1 Spring 2007

Linear Algebra Exam 1 Spring 2007 Linear Algebra Exam 1 Spring 2007 March 15, 2007 Name: SOLUTION KEY (Total 55 points, plus 5 more for Pledged Assignment.) Honor Code Statement: Directions: Complete all problems. Justify all answers/solutions.

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Dynamic P n to P n Alignment

Dynamic P n to P n Alignment Dynamic P n to P n Alignment Amnon Shashua and Lior Wolf School of Engineering and Computer Science, the Hebrew University of Jerusalem, Jerusalem, 91904, Israel {shashua,lwolf}@cs.huji.ac.il We introduce

More information

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Géométrie épipolaire Frédéric Devernay Avec des transparents de Marc Pollefeys Epipolar geometry π Underlying structure in set of matches for rigid scenes C1 m1 l1 M L2 L1 l T 1 l

More information

6.801/866. Affine Structure from Motion. T. Darrell

6.801/866. Affine Structure from Motion. T. Darrell 6.801/866 Affine Structure from Motion T. Darrell [Read F&P Ch. 12.0, 12.2, 12.3, 12.4] Affine geometry is, roughly speaking, what is left after all ability to measure lengths, areas, angles, etc. has

More information

Linear Algebra (wi1403lr) Lecture no.3

Linear Algebra (wi1403lr) Lecture no.3 Linear Algebra (wi1403lr) Lecture no.3 EWI / DIAM / Numerical Analysis group Matthias Möller 25/04/2014 M. Möller (EWI/NA group) LA (wi1403lr) 25/04/2014 1 / 18 Review of lecture no.2 1.3 Vector Equations

More information

Unit 2: Lines and Planes in 3 Space. Linear Combinations of Vectors

Unit 2: Lines and Planes in 3 Space. Linear Combinations of Vectors Lesson10.notebook November 28, 2012 Unit 2: Lines and Planes in 3 Space Linear Combinations of Vectors Today's goal: I can write vectors as linear combinations of each other using the appropriate method

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Lecture 4.3 Estimating homographies from feature correspondences. Thomas Opsahl

Lecture 4.3 Estimating homographies from feature correspondences. Thomas Opsahl Lecture 4.3 Estimating homographies from feature correspondences Thomas Opsahl Homographies induced by central projection 1 H 2 1 H 2 u uu 2 3 1 Homography Hu = u H = h 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h

More information

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix ECCV Workshop on Vision and Modeling of Dynamic Scenes, Copenhagen, Denmark, May 2002 Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Dept of EECS, UC Berkeley Berkeley,

More information

Final Exam Due on Sunday 05/06

Final Exam Due on Sunday 05/06 Final Exam Due on Sunday 05/06 The exam should be completed individually without collaboration. However, you are permitted to consult with the textbooks, notes, slides and even internet resources. If you

More information

MATHEMATICS. Units Topics Marks I Relations and Functions 10

MATHEMATICS. Units Topics Marks I Relations and Functions 10 MATHEMATICS Course Structure Units Topics Marks I Relations and Functions 10 II Algebra 13 III Calculus 44 IV Vectors and 3-D Geometry 17 V Linear Programming 6 VI Probability 10 Total 100 Course Syllabus

More information

Section 1.5. Solution Sets of Linear Systems

Section 1.5. Solution Sets of Linear Systems Section 1.5 Solution Sets of Linear Systems Plan For Today Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans. Ax = b Recall: the solution

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Linear Combination. v = a 1 v 1 + a 2 v a k v k

Linear Combination. v = a 1 v 1 + a 2 v a k v k Linear Combination Definition 1 Given a set of vectors {v 1, v 2,..., v k } in a vector space V, any vector of the form v = a 1 v 1 + a 2 v 2 +... + a k v k for some scalars a 1, a 2,..., a k, is called

More information

Algorithms for Computing a Planar Homography from Conics in Correspondence

Algorithms for Computing a Planar Homography from Conics in Correspondence Algorithms for Computing a Planar Homography from Conics in Correspondence Juho Kannala, Mikko Salo and Janne Heikkilä Machine Vision Group University of Oulu, Finland {jkannala, msa, jth@ee.oulu.fi} Abstract

More information

A = u + V. u + (0) = u

A = u + V. u + (0) = u Recall: Last time we defined an affine subset of R n to be a subset of the form A = u + V = {u + v u R n,v V } where V is a subspace of R n We said that we would use the notation A = {u,v } to indicate

More information

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam MA 242 LINEAR ALGEBRA C Solutions to First Midterm Exam Prof Nikola Popovic October 2 9:am - :am Problem ( points) Determine h and k such that the solution set of x + = k 4x + h = 8 (a) is empty (b) contains

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A x= 0, where

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views

The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views The Multibody Trifocal Tensor: Motion Segmentation from 3 Perspective Views Richard Hartley 1,2 and RenéVidal 2,3 1 Dept. of Systems Engineering 3 Center for Imaging Science Australian National University

More information

Pose estimation from point and line correspondences

Pose estimation from point and line correspondences Pose estimation from point and line correspondences Giorgio Panin October 17, 008 1 Problem formulation Estimate (in a LSE sense) the pose of an object from N correspondences between known object points

More information

Systems of Linear Equations

Systems of Linear Equations LECTURE 6 Systems of Linear Equations You may recall that in Math 303, matrices were first introduced as a means of encapsulating the essential data underlying a system of linear equations; that is to

More information

Determining the Translational Speed of a Camera from Time-Varying Optical Flow

Determining the Translational Speed of a Camera from Time-Varying Optical Flow Determining the Translational Speed of a Camera from Time-Varying Optical Flow Anton van den Hengel, Wojciech Chojnacki, and Michael J. Brooks School of Computer Science, Adelaide University, SA 5005,

More information

Linear Algebra (wi1403lr) Lecture no.4

Linear Algebra (wi1403lr) Lecture no.4 Linear Algebra (wi1403lr) Lecture no.4 EWI / DIAM / Numerical Analysis group Matthias Möller 29/04/2014 M. Möller (EWI/NA group) LA (wi1403lr) 29/04/2014 1 / 28 Review of lecture no.3 1.5 Solution Sets

More information

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2

PAijpam.eu EPIPOLAR GEOMETRY WITH A FUNDAMENTAL MATRIX IN CANONICAL FORM Georgi Hristov Georgiev 1, Vencislav Dakov Radulov 2 International Journal of Pure and Applied Mathematics Volume 105 No. 4 2015, 669-683 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v105i4.8

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

CLASS-XII ( ) Units No. of Periods Marks. I. Relations and Functions II. Algebra III. Calculus 80 44

CLASS-XII ( ) Units No. of Periods Marks. I. Relations and Functions II. Algebra III. Calculus 80 44 CLASS-XII (2017-18) One Paper Time: 3 hrs. Max Marks. 100 Units No. of Periods Marks I. Relations and Functions 30 10 II. Algebra 50 13 III. Calculus 80 44 IV. Vectors and Three - Dimensional Geometry

More information

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions

Linear Systems. Carlo Tomasi. June 12, r = rank(a) b range(a) n r solutions Linear Systems Carlo Tomasi June, 08 Section characterizes the existence and multiplicity of the solutions of a linear system in terms of the four fundamental spaces associated with the system s matrix

More information

Multi-Frame Factorization Techniques

Multi-Frame Factorization Techniques Multi-Frame Factorization Techniques Suppose { x j,n } J,N j=1,n=1 is a set of corresponding image coordinates, where the index n = 1,...,N refers to the n th scene point and j = 1,..., J refers to the

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

Parameterizing the Trifocal Tensor

Parameterizing the Trifocal Tensor Parameterizing the Trifocal Tensor May 11, 2017 Based on: Klas Nordberg. A Minimal Parameterization of the Trifocal Tensor. In Computer society conference on computer vision and pattern recognition (CVPR).

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

Single view metrology

Single view metrology EECS 44 Computer vision Single view metrology Review calibration Lines and planes at infinity Absolute conic Estimating geometry from a single image Etensions Reading: [HZ] Chapters,3,8 Calibration Problem

More information

Lesson 3. Inverse of Matrices by Determinants and Gauss-Jordan Method

Lesson 3. Inverse of Matrices by Determinants and Gauss-Jordan Method Module 1: Matrices and Linear Algebra Lesson 3 Inverse of Matrices by Determinants and Gauss-Jordan Method 3.1 Introduction In lecture 1 we have seen addition and multiplication of matrices. Here we shall

More information

Applied Linear Algebra in Geoscience Using MATLAB

Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

Foundations of Computer Vision

Foundations of Computer Vision Foundations of Computer Vision Wesley. E. Snyder North Carolina State University Hairong Qi University of Tennessee, Knoxville Last Edited February 8, 2017 1 3.2. A BRIEF REVIEW OF LINEAR ALGEBRA Apply

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

Math 290, Midterm II-key

Math 290, Midterm II-key Math 290, Midterm II-key Name (Print): (first) Signature: (last) The following rules apply: There are a total of 20 points on this 50 minutes exam. This contains 7 pages (including this cover page) and

More information

Outline. Linear Algebra for Computer Vision

Outline. Linear Algebra for Computer Vision Outline Linear Algebra for Computer Vision Introduction CMSC 88 D Notation and Basics Motivation Linear systems of equations Gauss Elimination, LU decomposition Linear Spaces and Operators Addition, scalar

More information

Lecture 6. Numerical methods. Approximation of functions

Lecture 6. Numerical methods. Approximation of functions Lecture 6 Numerical methods Approximation of functions Lecture 6 OUTLINE 1. Approximation and interpolation 2. Least-square method basis functions design matrix residual weighted least squares normal equation

More information

Congruences and Concurrent Lines in Multi-View Geometry

Congruences and Concurrent Lines in Multi-View Geometry Congruences and Concurrent Lines in Multi-View Geometry arxiv:1608.05924v2 [math.ag] 25 Dec 2016 Jean Ponce, Bernd Sturmfels and Matthew Trager Abstract We present a new framework for multi-view geometry

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 4. BASES AND DIMENSION

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda 4. BASES AND DIMENSION 4. BASES AND DIMENSION Definition Let u 1,..., u n be n vectors in V. The vectors u 1,..., u n are linearly independent if the only linear combination of them equal to the zero vector has only zero scalars;

More information

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2

MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 MATH 167: APPLIED LINEAR ALGEBRA Chapter 2 Jesús De Loera, UC Davis February 1, 2012 General Linear Systems of Equations (2.2). Given a system of m equations and n unknowns. Now m n is OK! Apply elementary

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

1 Differentiable manifolds and smooth maps. (Solutions)

1 Differentiable manifolds and smooth maps. (Solutions) 1 Differentiable manifolds and smooth maps Solutions Last updated: March 17 2011 Problem 1 The state of the planar pendulum is entirely defined by the position of its moving end in the plane R 2 Since

More information

Visual Object Recognition

Visual Object Recognition Visual Object Recognition Lecture 2: Image Formation Per-Erik Forssén, docent Computer Vision Laboratory Department of Electrical Engineering Linköping University Lecture 2: Image Formation Pin-hole, and

More information

Matrices. A matrix is a method of writing a set of numbers using rows and columns. Cells in a matrix can be referenced in the form.

Matrices. A matrix is a method of writing a set of numbers using rows and columns. Cells in a matrix can be referenced in the form. Matrices A matrix is a method of writing a set of numbers using rows and columns. 1 2 3 4 3 2 1 5 7 2 5 4 2 0 5 10 12 8 4 9 25 30 1 1 Reading Information from a Matrix Cells in a matrix can be referenced

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters, transforms,

More information

CS 231A Computer Vision (Fall 2011) Problem Set 2

CS 231A Computer Vision (Fall 2011) Problem Set 2 CS 231A Computer Vision (Fall 2011) Problem Set 2 Solution Set Due: Oct. 28 th, 2011 (5pm) 1 Some Projective Geometry Problems (15 points) Suppose there are two parallel lines that extend to infinity in

More information

Recovering Unknown Focal Lengths in Self-Calibration: G.N. Newsam D.Q. Huynh M.J. Brooks H.-P. Pan.

Recovering Unknown Focal Lengths in Self-Calibration: G.N. Newsam D.Q. Huynh M.J. Brooks H.-P. Pan. Recovering Unknown Focal Lengths in Self-Calibration: An Essentially Linear Algorithm and Degenerate Congurations G.N. Newsam D.Q. Huynh M.J. Brooks H.-P. Pan fgnewsam,du,mjb,hepingg@cssip.edu.au Centre

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak, scribe: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters,

More information

Lecture Summaries for Linear Algebra M51A

Lecture Summaries for Linear Algebra M51A These lecture summaries may also be viewed online by clicking the L icon at the top right of any lecture screen. Lecture Summaries for Linear Algebra M51A refers to the section in the textbook. Lecture

More information

Optimisation on Manifolds

Optimisation on Manifolds Optimisation on Manifolds K. Hüper MPI Tübingen & Univ. Würzburg K. Hüper (MPI Tübingen & Univ. Würzburg) Applications in Computer Vision Grenoble 18/9/08 1 / 29 Contents 2 Examples Essential matrix estimation

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Review 1 Math 321: Linear Algebra Spring 2010

Review 1 Math 321: Linear Algebra Spring 2010 Department of Mathematics and Statistics University of New Mexico Review 1 Math 321: Linear Algebra Spring 2010 This is a review for Midterm 1 that will be on Thursday March 11th, 2010. The main topics

More information

1 Linearity and Linear Systems

1 Linearity and Linear Systems Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 26 Jonathan Pillow Lecture 7-8 notes: Linear systems & SVD Linearity and Linear Systems Linear system is a kind of mapping f( x)

More information

Linear Algebra Review. Fei-Fei Li

Linear Algebra Review. Fei-Fei Li Linear Algebra Review Fei-Fei Li 1 / 37 Vectors Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightnesses, etc. A vector

More information

Orthogonal Transformations

Orthogonal Transformations Orthogonal Transformations Tom Lyche University of Oslo Norway Orthogonal Transformations p. 1/3 Applications of Qx with Q T Q = I 1. solving least squares problems (today) 2. solving linear equations

More information

LINES IN P 3. Date: December 12,

LINES IN P 3. Date: December 12, LINES IN P 3 Points in P 3 correspond to (projective equivalence classes) of nonzero vectors in R 4. That is, the point in P 3 with homogeneous coordinates [X : Y : Z : W ] is the line [v] spanned by the

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

2.3 Terminology for Systems of Linear Equations

2.3 Terminology for Systems of Linear Equations page 133 e 2t sin 2t 44 A(t) = t 2 5 te t, a = 0, b = 1 sec 2 t 3t sin t 45 The matrix function A(t) in Problem 39, with a = 0 and b = 1 Integration of matrix functions given in the text was done with

More information

Linear Algebra MATH20F Midterm 1

Linear Algebra MATH20F Midterm 1 University of California San Diego NAME TA: Linear Algebra Wednesday, October st, 9 :am - :5am No aids are allowed Be sure to write all row operations used Remember that you can often check your answers

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces

Vectors Coordinate frames 2D implicit curves 2D parametric curves. Graphics 2008/2009, period 1. Lecture 2: vectors, curves, and surfaces Graphics 2008/2009, period 1 Lecture 2 Vectors, curves, and surfaces Computer graphics example: Pixar (source: http://www.pixar.com) Computer graphics example: Pixar (source: http://www.pixar.com) Computer

More information

PH1105 Lecture Notes on Linear Algebra.

PH1105 Lecture Notes on Linear Algebra. PH05 Lecture Notes on Linear Algebra Joe Ó hógáin E-mail: johog@mathstcdie Main Text: Calculus for the Life Sciences by Bittenger, Brand and Quintanilla Other Text: Linear Algebra by Anton and Rorres Matrices

More information

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit

Augmented Reality VU Camera Registration. Prof. Vincent Lepetit Augmented Reality VU Camera Registration Prof. Vincent Lepetit Different Approaches to Vision-based 3D Tracking [From D. Wagner] [From Drummond PAMI02] [From Davison ICCV01] Consider natural features Consider

More information

Math 3108: Linear Algebra

Math 3108: Linear Algebra Math 3108: Linear Algebra Instructor: Jason Murphy Department of Mathematics and Statistics Missouri University of Science and Technology 1 / 323 Contents. Chapter 1. Slides 3 70 Chapter 2. Slides 71 118

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

EECS 442 Discussion. Arash Ushani. September 20, Arash Ushani EECS 442 Discussion September 20, / 14

EECS 442 Discussion. Arash Ushani. September 20, Arash Ushani EECS 442 Discussion September 20, / 14 EECS 442 Discussion Arash Ushani September 20, 2016 Arash Ushani EECS 442 Discussion September 20, 2016 1 / 14 Projective Geometry Projective Geometry For more detail, see HZ Chapter 2 Arash Ushani EECS

More information

web: HOMEWORK 1

web:   HOMEWORK 1 MAT 207 LINEAR ALGEBRA I 2009207 Dokuz Eylül University, Faculty of Science, Department of Mathematics Instructor: Engin Mermut web: http://kisideuedutr/enginmermut/ HOMEWORK VECTORS IN THE n-dimensional

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

Chapter 1. Perspective Geometry. 1.1 Shifting Perspective The Geometric Perspective

Chapter 1. Perspective Geometry. 1.1 Shifting Perspective The Geometric Perspective Chapter Perspective Geometry When we move our bodies, heads, and eyes in space (often referred to as R 3 ), the appearance of our environment changes in predictable ways. When one moves closer to an object

More information

Multi-frame Infinitesimal Motion Model for the Reconstruction of (Dynamic) Scenes with Multiple Linearly Moving Objects

Multi-frame Infinitesimal Motion Model for the Reconstruction of (Dynamic) Scenes with Multiple Linearly Moving Objects Multi-frame Infinitesimal Motion Model for the Reconstruction of (Dynamic) Scenes with Multiple Linearly Moving Objects Amnon Shashua and Anat Levin School of Computer Science and Engineering, The Hebrew

More information

Lines and points. Lines and points

Lines and points. Lines and points omogeneous coordinates in the plane Homogeneous coordinates in the plane A line in the plane a + by + c is represented as (a, b, c). A line is a subset of points in the plane. All vectors (ka, kb, kc)

More information

CS6964: Notes On Linear Systems

CS6964: Notes On Linear Systems CS6964: Notes On Linear Systems 1 Linear Systems Systems of equations that are linear in the unknowns are said to be linear systems For instance ax 1 + bx 2 dx 1 + ex 2 = c = f gives 2 equations and 2

More information