# A Brief Overview of Robust Statistics

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 A Brief Overview of Robust Statistics Olfa Nasraoui Department of Computer Engineering & Computer Science University of Louisville, olfa.nasraoui_at_louisville.edu Robust Statistical Estimators Robust statistics have recently emerged as a family of theories and techniques for estimating the parameters of a parametric model while dealing with deviations from idealized assumptions [Goo83,Hub81,HRRS86,RL87]. Examples of deviations include the contamination of data by gross errors, rounding and grouping errors, and departure from an assumed sample distribution. Gross errors or outliers are data severely deviating from the pattern set by the majority of the data. This type of error usually occurs due to mistakes in copying or computation. They can also be due to part of the data not fitting the same model, as in the case of data with multiple clusters. Gross errors are often the most dangerous type of errors. In fact, a single outlier can completely spoil the Least Squares estimate, causing it to break down. Rounding and grouping errors result from the inherent inaccuracy in the collection and recording of data which is usually rounded, grouped, or even coarsely classified. The departure from an assumed model means that real data can deviate from the often assumed normal distribution. The departure from the normal distribution can manifest itself in many ways such as in the form of skewed (asymmetric) or longer tailed distributions. M-estimators The ordinary Least Squares (LS) method to estimate parameters is not robust because its objective function,, increases indefinitely with the residuals between the data point and the estimated fit, with being the total number of data points in a data set. Hence, extreme outliers with arbitrarily large residuals can have an infinitely large influence on the resulting estimate. M-estimators [Hub81] attempt to limit the influence of outliers by replacing the square of the residuals with a less rapidly increasing loss function of the data value,, and parameter estimate,,. The M-estimate, for the function and the sample, is the value that minimizes the following objective (1) The optimal parameter,, is determined by solving

2 (2) where, except for a multiplicative constant, (3) When the M-estimator is equivariant, i. e., for any real constant, we can write and in terms of the residuals. Also, in general, an auxiliary scale estimate, is used to obtain the scaled residuals. Hence, we can write and The functions for some familiar M-estimators are listed in Table 1. Note that LS can be considered an M- estimator, even though it is not a robust M-estimator. As seen in this table, M-estimators rely on both an accurate estimate of scale and a fixed tuning constant,. Most M-estimators use a multiple of the Median of Absolute Deviations (MAD) as a scale estimate which implicitely assumes that the noise contamination rate is. MAD is defined as follows The most common scale estimate used is where the factor adjusts the scale for maximum efficiency when the data samples come from a Gaussian distribution.

3 Table 1: A few common M- and W-estimators Type pt pt pt w(r) pt Range used of r scale (mean) 1 none (median) sgn( ) none Huber 1 MAD k sgn( ) Cauchy Tukey's MAD biweight 0 0 Andrews MAD 0 0 Welsch W-estimators W-estimators [Goo83] represent an alternative form of M-estimators. Each W-estimator has a characteristic weight function, that represents the importance of each sample in its contribution to the estimation of, which is related to the corresponding M-estimator as follows (4)

4 The optimal parameter is determined by solving (5) which is similar to the equations for a ``weighted LS'' regression problem. W-estimators offer a convenient and simple iterative computational procedure for M-estimators, where the W-estimator equations in the current iteration are solved by fixing the weight values,, to those of the previous iteration. The resulting procedure is referred to as the Iterative Reweighted Least Squares (IRLS or RLS). As in the case of M- and W-estimators, the IRLS relies on an accurate and prefixed scale estimate for the definition of its weights. The most common scale estimate used is. The and functions for some familiar M- and W-estimators are listed in Table 1. L-estimators Also known as trimmed means for the case of location estimation ( ), L-estimators [KJ78] are based on a definition of quantiles as follows. (6) In (6), is the signed residual from the data sample,, to the location estimate,. The loss function is defined as (7) The quantile of the sample, is the value of that solves (8)

5 It is easy to check that for, the half-quantile, corresponds to the sample median. The major inconvenience in L-estimators is that they are not easy to optimize, and that they rely on a known value for the noise contamination rate,. They are also among the least efficient (accurate) estimators because they completely ignore part of the data. R-estimators In this approach [Jae72], each residual is weighted by a score based on its rank as in the following objective. (9) where is the rank of the residual in and is a nondecreasing score function satisfying. For example, the Wilcoxon scores are given by. Like L-estimators, the major inconvenience in R-estimators is that they are not easy to optimize, and that the definition of the score function implicitly necessitates prior information about the noise contamination rate. The Least Median of Squares Estimator (LMedS) Instead of minimizing the sum of squared residuals,, as in LS to estimate the parameter vector, Rousseuw [RL87] proposed minimizing their median as follows (10) This estimator effectively trims the observations having the largest residuals, and uses the maximal residual value in the remaining set as the criterion to be minimized. Hence it is equivalent to assuming that the noise proportion is 50%, and its breakdown point asymptotically approaches for -dimensional data sets, and for -dimensional data sets. It can also be seen that (10) is unwieldy from an optimization point

6 of view, because of its non-differentiable form. This means that a quasi-exhaustive search on all possible parameter values needs to be done to find the global minimum. As a variation, random sampling/searching of some kind has been suggested to find the best fit [RL87], leading to a reduced complexity of instead of the high complexity of the exhaustive option. A major drawback of LMedS is its low efficiency, since it only uses the middle residual value and hence assumes that the data set contains a fraction of noise. When the data set contains less than noise, the LMedS estimates suffer in terms of accuracy, since not all the good points are used in the estimation; and when the data set contains more than noise, the LMedS estimates can suffer considerably in terms of robustness, as will be illustrated in Chapter 3. The Least Trimmed of Squares Estimator (LTS) LTS [RL87] offers a more efficient way to find robust estimates by minimizing the objective function given by where is the smallest residual or distance when the residuals are ordered in ascending order, i.e., Since is the number of data points whose residuals are included in the sum, this estimator basically finds a robust estimate by identifying the points having the largest residuals as outliers, and discarding (trimming) them from the data set. The resulting estimates are essentially LS estimates of the trimmed data set. It can be seen that should be as close as possible to the number of good points in the data set, because the higher the number of good points used in the estimates, the more accurate the estimates are. In this case, LTS will yield the best possible estimate. One problem with LTS is that its objective function does not lend itself to mathematical optimization. Besides, the estimation of itself is difficult in practice. As will be illustrated in Chapter 3, when faced with more noise than assumed, LTS will lack robustness. And when the amount of noise is less than the assumed level, it will lack efficiency, i.e., the parameter estimates suffer in terms of accuracy, since not all the good data points are taken into account. This reliance on a known or assumed amount of noise present in the data set (contamination rate) means that an exhaustive search over all possible contamination rates needs to be done; and that the optimal estimates have to be chosen based on some kind of validity test because

7 the LTS criterion is monotonically nondecreasing with when is less than the actual number of noise points. In addition, the LTS objective function is based on hard rejection. That is, a given data point is either totally included in the estimation process or totally excluded from it. This is not a good strategy if there are points in the region of doubt. As in the case of L-estimators, LTS suffers from a low efficiency, because it completely ignores part of the data. The Reweighted Least Squares Estimator (RLS) Instead of the noise proportion, some algorithms explicitly cast their objective functions in terms of a set of weights that distinguish between inliers and outliers. However, these weights usually depend on a scale measure which is also difficult to estimate. For example, the RLS estimator [HW77] tries to minimize (11) where are robust residuals resulting from an approximate LMedS or LTS procedure. Here the weights essentially trim outliers from the data used in LS minimization, and can be computed after a preliminary approximate phase of LMedS or LTS. The function is usually continuous and has a maximum at 0 and is monotonicaly non-increasing with. In addition, depends on an error scale which is usually heuristically estimated from the results of LMedS or LTS. RLS can be considered to be equivalent to W-estimators if there exists a function satisfying (4). A major advantage of RLS is its ease of computation using the IRLS procedure as for the case of W-estimators. However, RLS was intended to refine the estimates resulting from other robust but less efficient algorithms. Hence it is extremely dependent on a good initialization. Resistance Properties of M-estimators An estimator is resistant if a small number of gross errors or any number of small rounding and grouping errors have only a limited effect on the resulting estimate [Goo83]. As seen below, most of the resistance properties of an M-estimator can be inferred from the shape of its Influence Curve. The Influence Curve The Influence Curve (IC) tells us how an infinitesimal proportion of contamination affects the estimate in large samples. Formally [Goo83], the IC gives a quantitative expression of the change in the estimate that results from perturbing the samples underlying distribution,, by a point mass at sample location. For an estimator given by the functional and defined by the function, the IC at is

8 where is a point mass perturbation at and is the underlying or empirical distribution. The IC can be shown to reduce to where is the auxiliary scale estimate. The IC can be further shown to be of the form (12) Hence, the shape of IC depends only on the shape of the function, not the data distribution. The Breakdown Bound The Breakdown (BD) bound or point [Hub81] is the largest possible fraction of observations for which there is a bound on the change of the estimate when that fraction of the sample is altered without restrictions. M-estimators of location with an odd function have a BD bound close to provided that the auxiliary scale estimator has equal or better BD bound [RL87]. Rejection Point The rejection point is defined as the point beyond which IC becomes zero [Goo83]. Except possibly through the auxiliary scale estimate, observations with residuals beyond the rejection point have zero influence. Hence they make no contribution to the final estimate. Estimators who have a finite rejection point are said to be redescending and are well protected against very large outliers. However, a finite rejection point usually results in the underestimation of scale. This is because when the samples near the tails of a distribution are ignored, too little of the samples may remain for the estimation process. This in turn adversely affects the efficiency of the estimator. An estimator is efficient if the variance of its estimate is as close as possible to the variance of the best estimator for a given distribution. For the Gaussian distribution the best estimator is the mean which also yields the minimum variance of the estimate. In general, it is best for a robust estimator to use as many of the good samples of a distribution as possible, in order to maintain a good efficiency. Another adverse effect of finite rejection is that if a large part of the sample is ignored, the objective function may have many local minima

9 [Goo83]. Gross Error Sensitivity The Gross Error Sensitivity (g.e.s.) expresses asymptotically the maximum effect a contaminated observation can have on the estimator. It is the maximum absolute value of the IC. The asymptotic bias of an estimator, defined as the maximum effect of the contamination of a given distribution with a proportion from an outlying distribution, is given by Unfortunately, it was reported in [Goo83] that in general, poor g.e.s. corresponds to higher Gaussian efficiency, and vice versa. Local Shift Sensitivity The local Shift Sensitivity (l.s.s.) measures the effect of the removal of a mass at and its reintroduction at. Therefore, it measures the effect of rounding and grouping errors on an estimator. For highest resistance, it is required that the l.s.s. be bounded. For a continuous and differentiable IC, l.s.s. is given by the maximum absolute value of the slope of IC at any point. In [Goo83], it was reported that in general, a lower (hence better) l.s.s. corresponds to higher Gaussian efficiency. Winsor's Principle Winsor's principle [Tuk60] states that all distibutions are normal in the middle. Hence, the function of M- estimators should resemble the one that is optimal for Gaussian data in the middle. Since the Maximum Likelihood estimate for Gaussian data is the mean which has a linear function, it is desired that for small, where is a nonzero constant. In general, a function that is linear in the middle results in better efficiency at the Gaussian distribution. Symmetry As shown in [Goo83], it is necessary for the function to be odd in order to have an unbiased estimator, when the samples' underlying distribution is symmetric. If the underlying distribution is symmetric with center, then an estimator, is said to be unbiased if This crucial property is satisfied by all known M-estimators. Simultaneous M-estimators of Location and Scale A simultaneous M-estimator of location and scale [Goo83] for the sample is the combination of a location estimator and a scale estimator that satisfy the pair of equations

10 (13) and (14) where is a tuning constant, and for a symmetric underlying sample distribution, is an odd function, and is an even function. The problem with this approach lies in how to choose an appropriate -function that will yield a scale estimate that is as accurate as possible, that is meaningful, and that is somehow related to the -function so that the simultaneous optimization process, which usually alternates solving the two equations, makes global sense. For all these reasons, this approach has hardly been used in the past. As in the case of location M- estimators, has the same shape as the IC of the scale estimator. M-estimators and W-estimators For Regression The classical nonrobust multiple regression model relates a response vector to the explanatory variables in the matrix in the form where the rows of represent the individual observation vectors which are augmented by in the first dimension to allow for a constant term,, in the linear regression model. The elements of are unknown parameters to be estimated, and is an error vector. The Least Squares chooses the estimate as the value of that minimizes the sum of squared residuals,

11 which results in the optimal closed form solution and the fitted values The M-estimator for, based on the loss function and the data is the value which minimizes is determined by solving the set of simultaneous equations where W-estimators offer an alternative form of M-estimators by writing Hence the simultaneous equations become

12 where The above equations can be combined into the following single matrix equation where is a diagonal matrix with This results in the optimal closed form solution and the fitted values In a similar fashion to the simple location M-estimator, the IC for a regression M-estimator can be shown to take the form [HRRS86] (15) where Though is bounded for robust M- estimators, the term can grow infinitely large depending on the position of. Hence M- and W- estimators of regression have an unbounded IC. This means that leverage points for which the independent variables,, are outlying compared to the remainder of the data can have an unbounded influence on the parameter estimates. The Minimum Volume Ellipsoid Estimator (MVE) MVE [RL87] tries to generalize LMedS to the case of multivariate location estimation. The approach is based on seeking the ellipsoid with smallest volume, including at least points of the sample data set. A subsample,, consisting of observations is first drawn from the data set,, with dimensionality. Then, the subsample mean and covariance matrix are computed as per maximum likelihood,

13 and It can easily be shown that the factor, needed to inflate the ellipsod covering the subsample to the ellipsoid, which includes of the points, is given by The volume of the resulting ellipsoid is proportional to. After repeating this sampling process many times, the sample resulting in the minimum volume generates the optimal MVE parameters, and given by and, where the denominator adjusts the final covariance estimate to include all the good data points for the case of Gaussian data. Instead of the otherwise exhaustive sampling needed, Rousseeuw suggests selecting only subsamples to guarantee a probability,, of selecting at least one good subsample, where is given by the relation, and is the noise contamination rate. However, it is clear that an accurate lower bound on the number of subsamples cannot be computed if the noise contamination rate is not known in advance. MVE is also limited by its assumption that the noise contamination rate is. Random Sample Consensus (RANSAC) This approach [FB81] relies on random sampling selection to search for the best fit. The model parameters are computed for each randomly selected subset of points. Then the points within some error tolerance are called the consensus set of the model, and if the cardinality of this set exceeds a prespecified threshold, the model is accepted and its parameters are recomputed based on the whole consensus set. Otherwise, the random sampling and validation is repeated as in the above. Hence, RANSAC can be considered to seek the best model that maximizes the number of inliers. The problem with this pioneering approach is that it requires the prior specification of a tolerance threshold limit which is actually related to the inlier bound. Minimum Probability of Randomness (MINPRAN) MINPRAN [Ste95] relies on the assumption that the noise comes from a well known distribution. As in RANSAC, this approach uses random sampling to search for the fit and the inliers to this fit that are least likely

14 to come from the known noise distribution. Even with random sampling, MINPRAN's computational complexity is, which is higher than that of LMedS, where is the size of the data set and is the number of samples. All the above estimators are either obliged to perform an exhaustive search or assume a known value for the amount of noise present in the data set (contamination rate), or equivalently an estimated scale value or inlier bound. When faced with more noise than assumed, all these estimators will lack robustness. And when the amount of noise is less than the assumed level, they will lack efficiency, i.e., the parameter estimates suffer in terms of accuracy, since not all the good data points are taken into account. They are also limited to estimating a single component in a data set. Acknowledgment This work is supported by the National Science Foundation (CAREER Award IIS to O. Nasraoui). Partial support of earlier stages of this work by the Office of Naval Research grant (N ) and by the National Science Foundation Grant IIS is also gratefully acknowledged. Bibliography FB81 M. A. Fischler and R. C. Bolles. Random sample consensus for model fitting with applications to image analysis and automated cartography. Comm. of the ACM., 24: , Goo83 C. Goodall. M-estimators of location: An outline of the theory. In D. Hoaglin, F. Mosteller, and J. W. Tukey, editors, Understanding Robust and Exploratory Data Analysis, pages New York, HRRS86 F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust Statistics the Approach Based on Influence Functions. John Wiley & Sons, New York, Hub81 P. J. Huber. Robust Statistics. John Wiley & Sons, New York, HW77 P. W. Holland and R. E. Welsch. Robust regression using iteratively reweighted least-squares. Commun. Statist. Theory Meth, A6(9): , 1977.

15 Jae72 L. A. Jaeckel. Estimating regression coefficients by minimizing the dispersion of the residuals. Annals of Mathematical Statistics, 43: , KJ78 RL87 Ste95 R. Koenker and G. Basset Jr. Regression quantiles. Econometrica, 36:33-50, P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. John Wiley & Sons, New York, C. V. Stewart. Minpran: A new robust estimator for computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(10): , Oct Tuk60 J. W. Tukey. A survey of sampling from contaminated distributions. In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow,, and H. B. Mann, editors, Contributions to Probability and Statistics, Essays in Honor of Harold Hotelling, pages Stanford, CA: Stanford University Press, About this document... A Brief Overview of Robust Statistics This document was generated using the LaTeX2HTMLtranslator Version 2002 (1.62) Copyright 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds. Copyright 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney. The command line arguments were: latex2html -split 0 -image_type gif RobustStatistics.tex

### A Modified M-estimator for the Detection of Outliers

A Modified M-estimator for the Detection of Outliers Asad Ali Department of Statistics, University of Peshawar NWFP, Pakistan Email: asad_yousafzay@yahoo.com Muhammad F. Qadir Department of Statistics,

### Regression Analysis for Data Containing Outliers and High Leverage Points

Alabama Journal of Mathematics 39 (2015) ISSN 2373-0404 Regression Analysis for Data Containing Outliers and High Leverage Points Asim Kumer Dey Department of Mathematics Lamar University Md. Amir Hossain

### Detecting outliers in weighted univariate survey data

Detecting outliers in weighted univariate survey data Anna Pauliina Sandqvist October 27, 21 Preliminary Version Abstract Outliers and influential observations are a frequent concern in all kind of statistics,

### A SHORT COURSE ON ROBUST STATISTICS. David E. Tyler Rutgers The State University of New Jersey. Web-Site dtyler/shortcourse.

A SHORT COURSE ON ROBUST STATISTICS David E. Tyler Rutgers The State University of New Jersey Web-Site www.rci.rutgers.edu/ dtyler/shortcourse.pdf References Huber, P.J. (1981). Robust Statistics. Wiley,

### Robustness of Principal Components

PCA for Clustering An objective of principal components analysis is to identify linear combinations of the original variables that are useful in accounting for the variation in those original variables.

### Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error Distributions

Journal of Modern Applied Statistical Methods Volume 8 Issue 1 Article 13 5-1-2009 Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error

### Robust scale estimation with extensions

Robust scale estimation with extensions Garth Tarr, Samuel Müller and Neville Weber School of Mathematics and Statistics THE UNIVERSITY OF SYDNEY Outline The robust scale estimator P n Robust covariance

### Linear Models 1. Isfahan University of Technology Fall Semester, 2014

Linear Models 1 Isfahan University of Technology Fall Semester, 2014 References: [1] G. A. F., Seber and A. J. Lee (2003). Linear Regression Analysis (2nd ed.). Hoboken, NJ: Wiley. [2] A. C. Rencher and

### Independent Component (IC) Models: New Extensions of the Multinormal Model

Independent Component (IC) Models: New Extensions of the Multinormal Model Davy Paindaveine (joint with Klaus Nordhausen, Hannu Oja, and Sara Taskinen) School of Public Health, ULB, April 2008 My research

### Robust Scale Estimation for the Generalized Gaussian Probability Density Function

Metodološki zvezki, Vol. 3, No. 1, 26, 21-37 Robust Scale Estimation for the Generalized Gaussian Probability Density Function Rozenn Dahyot 1 and Simon Wilson 2 Abstract This article proposes a robust

### Asymptotic Relative Efficiency in Estimation

Asymptotic Relative Efficiency in Estimation Robert Serfling University of Texas at Dallas October 2009 Prepared for forthcoming INTERNATIONAL ENCYCLOPEDIA OF STATISTICAL SCIENCES, to be published by Springer

### Effects of Outliers and Multicollinearity on Some Estimators of Linear Regression Model

204 Effects of Outliers and Multicollinearity on Some Estimators of Linear Regression Model S. A. Ibrahim 1 ; W. B. Yahya 2 1 Department of Physical Sciences, Al-Hikmah University, Ilorin, Nigeria. e-mail:

### Approximate Median Regression via the Box-Cox Transformation

Approximate Median Regression via the Box-Cox Transformation Garrett M. Fitzmaurice,StuartR.Lipsitz, and Michael Parzen Median regression is used increasingly in many different areas of applications. The

### Combination of M-Estimators and Neural Network Model to Analyze Inside/Outside Bark Tree Diameters

Combination of M-Estimators and Neural Network Model to Analyze Inside/Outside Bark Tree Diameters Kyriaki Kitikidou, Elias Milios, Lazaros Iliadis, and Minas Kaymakis Democritus University of Thrace,

### Robust Outcome Analysis for Observational Studies Designed Using Propensity Score Matching

The work of Kosten and McKean was partially supported by NIAAA Grant 1R21AA017906-01A1 Robust Outcome Analysis for Observational Studies Designed Using Propensity Score Matching Bradley E. Huitema Western

### C4-304 STATISTICS OF LIGHTNING OCCURRENCE AND LIGHTNING CURRENT S PARAMETERS OBTAINED THROUGH LIGHTNING LOCATION SYSTEMS

2, rue d'artois, F-75008 Paris http://www.cigre.org C4-304 Session 2004 CIGRÉ STATISTICS OF LIGHTNING OCCURRENCE AND LIGHTNING CURRENT S PARAMETERS OBTAINED THROUGH LIGHTNING LOCATION SYSTEMS baran@el.poweng.pub.ro

### Rank-Based Estimation and Associated Inferences. for Linear Models with Cluster Correlated Errors

Rank-Based Estimation and Associated Inferences for Linear Models with Cluster Correlated Errors John D. Kloke Bucknell University Joseph W. McKean Western Michigan University M. Mushfiqur Rashid FDA Abstract

### Linear Models for Classification

Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

### Small sample corrections for LTS and MCD

Metrika (2002) 55: 111 123 > Springer-Verlag 2002 Small sample corrections for LTS and MCD G. Pison, S. Van Aelst*, and G. Willems Department of Mathematics and Computer Science, Universitaire Instelling

### Regression Estimation in the Presence of Outliers: A Comparative Study

International Journal of Probability and Statistics 2016, 5(3): 65-72 DOI: 10.5923/j.ijps.20160503.01 Regression Estimation in the Presence of Outliers: A Comparative Study Ahmed M. Gad 1,*, Maha E. Qura

### Robust statistics. Michael Love 7/10/2016

Robust statistics Michael Love 7/10/2016 Robust topics Median MAD Spearman Wilcoxon rank test Weighted least squares Cook's distance M-estimators Robust topics Median => middle MAD => spread Spearman =>

### Robust regression in Stata

The Stata Journal (2009) 9, Number 3, pp. 439 453 Robust regression in Stata Vincenzo Verardi 1 University of Namur (CRED) and Université Libre de Bruxelles (ECARES and CKE) Rempart de la Vierge 8, B-5000

### The AAFCO Proficiency Testing Program Statistics and Reporting

The AAFCO Proficiency Testing Program Statistics and Reporting Program Chair: Dr. Victoria Siegel Statistics and Reports: Dr. Andrew Crawford Contents Program Model Data Prescreening Calculating Robust

### Using Ridge Least Median Squares to Estimate the Parameter by Solving Multicollinearity and Outliers Problems

Modern Applied Science; Vol. 9, No. ; 05 ISSN 9-844 E-ISSN 9-85 Published by Canadian Center of Science and Education Using Ridge Least Median Squares to Estimate the Parameter by Solving Multicollinearity

### Applications and Algorithms for Least Trimmed Sum of Absolute Deviations Regression

Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 12-1999 Applications and Algorithms for Least Trimmed Sum of Absolute Deviations Regression Douglas M.

### Fast and Robust Discriminant Analysis

Fast and Robust Discriminant Analysis Mia Hubert a,1, Katrien Van Driessen b a Department of Mathematics, Katholieke Universiteit Leuven, W. De Croylaan 54, B-3001 Leuven. b UFSIA-RUCA Faculty of Applied

### Frequency Estimation of Rare Events by Adaptive Thresholding

Frequency Estimation of Rare Events by Adaptive Thresholding J. R. M. Hosking IBM Research Division 2009 IBM Corporation Motivation IBM Research When managing IT systems, there is a need to identify transactions

### Improvement of The Hotelling s T 2 Charts Using Robust Location Winsorized One Step M-Estimator (WMOM)

Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 50(1)(2018) pp. 97-112 Improvement of The Hotelling s T 2 Charts Using Robust Location Winsorized One Step M-Estimator (WMOM) Firas Haddad

### Robust Statistics. Frank Klawonn

Robust Statistics Frank Klawonn f.klawonn@fh-wolfenbuettel.de, frank.klawonn@helmholtz-hzi.de Data Analysis and Pattern Recognition Lab Department of Computer Science University of Applied Sciences Braunschweig/Wolfenbüttel,

### Structure in Data. A major objective in data analysis is to identify interesting features or structure in the data.

Structure in Data A major objective in data analysis is to identify interesting features or structure in the data. The graphical methods are very useful in discovering structure. There are basically two

### Supplementary Material for Wang and Serfling paper

Supplementary Material for Wang and Serfling paper March 6, 2017 1 Simulation study Here we provide a simulation study to compare empirically the masking and swamping robustness of our selected outlyingness

### High Breakdown Analogs of the Trimmed Mean

High Breakdown Analogs of the Trimmed Mean David J. Olive Southern Illinois University April 11, 2004 Abstract Two high breakdown estimators that are asymptotically equivalent to a sequence of trimmed

### Robust Estimation of Cronbach s Alpha

Robust Estimation of Cronbach s Alpha A. Christmann University of Dortmund, Fachbereich Statistik, 44421 Dortmund, Germany. S. Van Aelst Ghent University (UGENT), Department of Applied Mathematics and

### Accurate and Powerful Multivariate Outlier Detection

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 11, Dublin (Session CPS66) p.568 Accurate and Powerful Multivariate Outlier Detection Cerioli, Andrea Università di Parma, Dipartimento di

### On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator

On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator JAMES D. WILLIAMS GE Global Research, Niskayuna, NY 12309 WILLIAM H. WOODALL and JEFFREY

### OPTIMAL B-ROBUST ESTIMATORS FOR THE PARAMETERS OF THE GENERALIZED HALF-NORMAL DISTRIBUTION

REVSTAT Statistical Journal Volume 15, Number 3, July 2017, 455 471 OPTIMAL B-ROBUST ESTIMATORS FOR THE PARAMETERS OF THE GENERALIZED HALF-NORMAL DISTRIBUTION Authors: Fatma Zehra Doğru Department of Econometrics,

### Fractional Polynomial Regression

Chapter 382 Fractional Polynomial Regression Introduction This program fits fractional polynomial models in situations in which there is one dependent (Y) variable and one independent (X) variable. It

### The Model Building Process Part I: Checking Model Assumptions Best Practice (Version 1.1)

The Model Building Process Part I: Checking Model Assumptions Best Practice (Version 1.1) Authored by: Sarah Burke, PhD Version 1: 31 July 2017 Version 1.1: 24 October 2017 The goal of the STAT T&E COE

### A Course in Applied Econometrics Lecture 18: Missing Data. Jeff Wooldridge IRP Lectures, UW Madison, August Linear model with IVs: y i x i u i,

A Course in Applied Econometrics Lecture 18: Missing Data Jeff Wooldridge IRP Lectures, UW Madison, August 2008 1. When Can Missing Data be Ignored? 2. Inverse Probability Weighting 3. Imputation 4. Heckman-Type

### Letter-value plots: Boxplots for large data

Letter-value plots: Boxplots for large data Heike Hofmann Karen Kafadar Hadley Wickham Dept of Statistics Dept of Statistics Dept of Statistics Iowa State University Indiana University Rice University

### REGRESSION ANALYSIS AND ANALYSIS OF VARIANCE

REGRESSION ANALYSIS AND ANALYSIS OF VARIANCE P. L. Davies Eindhoven, February 2007 Reading List Daniel, C. (1976) Applications of Statistics to Industrial Experimentation, Wiley. Tukey, J. W. (1977) Exploratory

### Identification of Multivariate Outliers: A Performance Study

AUSTRIAN JOURNAL OF STATISTICS Volume 34 (2005), Number 2, 127 138 Identification of Multivariate Outliers: A Performance Study Peter Filzmoser Vienna University of Technology, Austria Abstract: Three

### Author s Accepted Manuscript

Author s Accepted Manuscript Robust fitting of mixtures using the Trimmed Likelihood Estimator N. Neykov, P. Filzmoser, R. Dimova, P. Neytchev PII: S0167-9473(06)00501-9 DOI: doi:10.1016/j.csda.2006.12.024

### Chapter 9. Non-Parametric Density Function Estimation

9-1 Density Estimation Version 1.2 Chapter 9 Non-Parametric Density Function Estimation 9.1. Introduction We have discussed several estimation techniques: method of moments, maximum likelihood, and least

### IDENTIFYING MULTIPLE OUTLIERS IN LINEAR REGRESSION : ROBUST FIT AND CLUSTERING APPROACH

SESSION X : THEORY OF DEFORMATION ANALYSIS II IDENTIFYING MULTIPLE OUTLIERS IN LINEAR REGRESSION : ROBUST FIT AND CLUSTERING APPROACH Robiah Adnan 2 Halim Setan 3 Mohd Nor Mohamad Faculty of Science, Universiti

### Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

### What s New in Econometrics? Lecture 14 Quantile Methods

What s New in Econometrics? Lecture 14 Quantile Methods Jeff Wooldridge NBER Summer Institute, 2007 1. Reminders About Means, Medians, and Quantiles 2. Some Useful Asymptotic Results 3. Quantile Regression

### Chapter 9. Non-Parametric Density Function Estimation

9-1 Density Estimation Version 1.1 Chapter 9 Non-Parametric Density Function Estimation 9.1. Introduction We have discussed several estimation techniques: method of moments, maximum likelihood, and least

### Chapter 1 Statistical Inference

Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

### On robust and efficient estimation of the center of. Symmetry.

On robust and efficient estimation of the center of symmetry Howard D. Bondell Department of Statistics, North Carolina State University Raleigh, NC 27695-8203, U.S.A (email: bondell@stat.ncsu.edu) Abstract

### Sigmaplot di Systat Software

Sigmaplot di Systat Software SigmaPlot Has Extensive Statistical Analysis Features SigmaPlot is now bundled with SigmaStat as an easy-to-use package for complete graphing and data analysis. The statistical

### Comparing the performance of modified F t statistic with ANOVA and Kruskal Wallis test

Appl. Math. Inf. Sci. 7, No. 2L, 403-408 (2013) 403 Applied Mathematics & Information Sciences An International ournal http://dx.doi.org/10.12785/amis/072l04 Comparing the performance of modified F t statistic

### Outlier Detection via Feature Selection Algorithms in

Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS032) p.4638 Outlier Detection via Feature Selection Algorithms in Covariance Estimation Menjoge, Rajiv S. M.I.T.,

### ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

### Generalized Linear Models for Non-Normal Data

Generalized Linear Models for Non-Normal Data Today s Class: 3 parts of a generalized model Models for binary outcomes Complications for generalized multivariate or multilevel models SPLH 861: Lecture

### Journal of the American Statistical Association, Vol. 85, No (Sep., 1990), pp

Unmasking Multivariate Outliers and Leverage Points Peter J. Rousseeuw; Bert C. van Zomeren Journal of the American Statistical Association, Vol. 85, No. 411. (Sep., 1990), pp. 633-639. Stable URL: http://links.jstor.org/sici?sici=0162-1459%28199009%2985%3a411%3c633%3aumoalp%3e2.0.co%3b2-p

### A NOTE ON ROBUST ESTIMATION IN LOGISTIC REGRESSION MODEL

Discussiones Mathematicae Probability and Statistics 36 206 43 5 doi:0.75/dmps.80 A NOTE ON ROBUST ESTIMATION IN LOGISTIC REGRESSION MODEL Tadeusz Bednarski Wroclaw University e-mail: t.bednarski@prawo.uni.wroc.pl

### Bayesian Interpretations of Heteroskedastic Consistent Covariance Estimators Using the Informed Bayesian Bootstrap

Bayesian Interpretations of Heteroskedastic Consistent Covariance Estimators Using the Informed Bayesian Bootstrap Dale J. Poirier University of California, Irvine September 1, 2008 Abstract This paper

### Part I Generalized Principal Component Analysis

Part I Generalized Principal Component Analysis René Vidal Center for Imaging Science Institute for Computational Medicine Johns Hopkins University Principal Component Analysis (PCA) Given a set of points

### Hypothesis testing, part 2. With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal

Hypothesis testing, part 2 With some material from Howard Seltman, Blase Ur, Bilge Mutlu, Vibha Sazawal 1 CATEGORICAL IV, NUMERIC DV 2 Independent samples, one IV # Conditions Normal/Parametric Non-parametric

### Statistics for Python

Statistics for Python An extension module for the Python scripting language Michiel de Hoon, Columbia University 2 September 2010 Statistics for Python, an extension module for the Python scripting language.

### Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Many economic models involve endogeneity: that is, a theoretical relationship does not fit

### Unit 2. Describing Data: Numerical

Unit 2 Describing Data: Numerical Describing Data Numerically Describing Data Numerically Central Tendency Arithmetic Mean Median Mode Variation Range Interquartile Range Variance Standard Deviation Coefficient

### Joseph W. McKean 1. INTRODUCTION

Statistical Science 2004, Vol. 19, No. 4, 562 570 DOI 10.1214/088342304000000549 Institute of Mathematical Statistics, 2004 Robust Analysis of Linear Models Joseph W. McKean Abstract. This paper presents

### ROBUST ESTIMATOR FOR MULTIPLE INLIER STRUCTURES

ROBUST ESTIMATOR FOR MULTIPLE INLIER STRUCTURES Xiang Yang (1) and Peter Meer (2) (1) Dept. of Mechanical and Aerospace Engineering (2) Dept. of Electrical and Computer Engineering Rutgers University,

### Logistic Regression: Regression with a Binary Dependent Variable

Logistic Regression: Regression with a Binary Dependent Variable LEARNING OBJECTIVES Upon completing this chapter, you should be able to do the following: State the circumstances under which logistic regression

### 6.867 Machine Learning

6.867 Machine Learning Problem set 1 Due Thursday, September 19, in class What and how to turn in? Turn in short written answers to the questions explicitly stated, and when requested to explain or prove.

### The loss function and estimating equations

Chapter 6 he loss function and estimating equations 6 Loss functions Up until now our main focus has been on parameter estimating via the maximum likelihood However, the negative maximum likelihood is

### Chapter 1 - Lecture 3 Measures of Location

Chapter 1 - Lecture 3 of Location August 31st, 2009 Chapter 1 - Lecture 3 of Location General Types of measures Median Skewness Chapter 1 - Lecture 3 of Location Outline General Types of measures What

### Parametric Techniques

Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

### STRUCTURAL EQUATION MODELING. Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013

STRUCTURAL EQUATION MODELING Khaled Bedair Statistics Department Virginia Tech LISA, Summer 2013 Introduction: Path analysis Path Analysis is used to estimate a system of equations in which all of the

### Mixture Models and EM

Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

### CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

### Review of Statistics

Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

### The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know

The Bayes classifier Theorem The classifier satisfies where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know Alternatively, since the maximum it is

### Generalized Multivariate Rank Type Test Statistics via Spatial U-Quantiles

Generalized Multivariate Rank Type Test Statistics via Spatial U-Quantiles Weihua Zhou 1 University of North Carolina at Charlotte and Robert Serfling 2 University of Texas at Dallas Final revision for

### STA121: Applied Regression Analysis

STA121: Applied Regression Analysis Linear Regression Analysis - Chapters 3 and 4 in Dielman Artin Department of Statistical Science September 15, 2009 Outline 1 Simple Linear Regression Analysis 2 Using

### Regression Model Specification in R/Splus and Model Diagnostics. Daniel B. Carr

Regression Model Specification in R/Splus and Model Diagnostics By Daniel B. Carr Note 1: See 10 for a summary of diagnostics 2: Books have been written on model diagnostics. These discuss diagnostics

### Local Asymptotics and the Minimum Description Length

Local Asymptotics and the Minimum Description Length Dean P. Foster and Robert A. Stine Department of Statistics The Wharton School of the University of Pennsylvania Philadelphia, PA 19104-6302 March 27,

### Should Non-Sensitive Attributes be Masked? Data Quality Implications of Data Perturbation in Regression Analysis

Should Non-Sensitive Attributes be Masked? Data Quality Implications of Data Perturbation in Regression Analysis Sumitra Mukherjee Nova Southeastern University sumitra@scis.nova.edu Abstract Ensuring the

### Robust high-dimensional linear regression: A statistical perspective

Robust high-dimensional linear regression: A statistical perspective Po-Ling Loh University of Wisconsin - Madison Departments of ECE & Statistics STOC workshop on robustness and nonconvexity Montreal,

### 3. QUANTILE-REGRESSION MODEL AND ESTIMATION

03-Hao.qxd 3/13/2007 5:24 PM Page 22 22 Combining these two partial derivatives leads to: m + y m f(y)dy = F (m) (1 F (m)) = 2F (m) 1. [A.2] By setting 2F(m) 1 = 0, we solve for the value of F(m) = 1/2,

### Testing Statistical Hypotheses

E.L. Lehmann Joseph P. Romano, 02LEu1 ttd ~Lt~S Testing Statistical Hypotheses Third Edition With 6 Illustrations ~Springer 2 The Probability Background 28 2.1 Probability and Measure 28 2.2 Integration.........

### Journal of Statistical Software

JSS Journal of Statistical Software April 2013, Volume 53, Issue 3. http://www.jstatsoft.org/ Fast and Robust Bootstrap for Multivariate Inference: The R Package FRB Stefan Van Aelst Ghent University Gert

### Distributed-lag linear structural equation models in R: the dlsem package

Distributed-lag linear structural equation models in R: the dlsem package Alessandro Magrini Dep. Statistics, Computer Science, Applications University of Florence, Italy dlsem

### Generalized Linear Models (GLZ)

Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) are an extension of the linear modeling process that allows models to be fit to data that follow probability distributions other than the

### Glossary for the Triola Statistics Series

Glossary for the Triola Statistics Series Absolute deviation The measure of variation equal to the sum of the deviations of each value from the mean, divided by the number of values Acceptance sampling

### Contents 1. Contents

Contents 1 Contents 1 One-Sample Methods 3 1.1 Parametric Methods.................... 4 1.1.1 One-sample Z-test (see Chapter 0.3.1)...... 4 1.1.2 One-sample t-test................. 6 1.1.3 Large sample

### Testing Statistical Hypotheses

E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

### σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

### Lawrence D. Brown* and Daniel McCarthy*

Comments on the paper, An adaptive resampling test for detecting the presence of significant predictors by I. W. McKeague and M. Qian Lawrence D. Brown* and Daniel McCarthy* ABSTRACT: This commentary deals

### Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 6. Principal component analysis (PCA) 6.1 Overview 6.2 Essentials of PCA 6.3 Numerical calculation of PCs 6.4 Effects of data preprocessing

### Identifying Financial Risk Factors

Identifying Financial Risk Factors with a Low-Rank Sparse Decomposition Lisa Goldberg Alex Shkolnik Berkeley Columbia Meeting in Engineering and Statistics 24 March 2016 Outline 1 A Brief History of Factor

### PAijpam.eu M ESTIMATION, S ESTIMATION, AND MM ESTIMATION IN ROBUST REGRESSION

International Journal of Pure and Applied Mathematics Volume 91 No. 3 2014, 349-360 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v91i3.7

### Wiley. Methods and Applications of Linear Models. Regression and the Analysis. of Variance. Third Edition. Ishpeming, Michigan RONALD R.

Methods and Applications of Linear Models Regression and the Analysis of Variance Third Edition RONALD R. HOCKING PenHock Statistical Consultants Ishpeming, Michigan Wiley Contents Preface to the Third

### Hypothesis Testing for Var-Cov Components

Hypothesis Testing for Var-Cov Components When the specification of coefficients as fixed, random or non-randomly varying is considered, a null hypothesis of the form is considered, where Additional output

### Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics

Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathematical statistics A short review of the principles of mathematical statistics (or, what you should have learned in EC 151).

### Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods