Heavy Quark Effective Theory

Size: px
Start display at page:

Download "Heavy Quark Effective Theory"

Transcription

1 Hevy Qurk Eetve Theory (Andrey Bgrov, osow Stte Unversty) Introduton nd motvton Although the Stndrd odel ststorly desres most o the oservle phenomen n elementry prtles physs, severl questons, mportnt or our understndng o the Unverse, remn unnswered. Among them the most strkng unsolved prolem n hgh energy physs s the phenomenon o genertons. The guge ores n the Stndrd odel do not dsrmnte ermons reltng to derent genertons. Correspondng prtles (qurks nd gluons) elongng to the three genertons re dentl n lmost ll respets. And wth t we do not know the orgn o genertons; wht does stpulte ther numer (three)? How n we epln the present struture o herrhes o ermons msses nd mng ngles? We my epet tht we ould nd soluton o ths prolem, we shll hve hne to understnd htherto unknown undmentl lws o the Unverse nd mke new gret dsoveres. Another rul prolem s the orgn o ryogeness. Stndrd odel stses the neessry ondtons or ryogeness, whh onsst n the so-lled Skhrov rter. Bryon-numer voltng proess re unsuppressed t hgh temperture, CP-voltng ntertons re present due to omple ouplngs n the qurk setor, nd non-equlrum proesses n our durng phse trnstons drven y the epnson o the Unverse. However, Stndrd odel n not epln on quntttve level the oserved mtter-ntmtter symmetry. And so t s ovous tht we need new CP-voltng phses or new mehnsms o CPvolton. There re severl more nontrvl questons n the theory o elementry prtles onerned wth lvor physs. But the prolems mentoned ove re enough to undersore tht we must rry out the epermentl mesurements nd theoretl predtons o the prmeters o the Stndrd odel, suh s the elements o the Co-Koysh-skw mtr, s urtely s possle, sne omprng prese theoretl nd epermentl results gves us hne to nd hnt to the physs eyond the Stndrd odel. However, the omputtonl omplety o the S, n prtulr QCD, s suh tht we n not do lultons wth suent ury. A possle wy out s to gve ormulton o n eetve theory whh ppromtes QCD under ertn ondtons, nd possesses ll neessry phenomenologl propertes, llowng to perorm smple lultons. One o suh eetve theores s the Hevy Qurk Eetve Theory, whh orresponds to QCD n the lmt o nnte (or very lrge) hevy qurk mss. Struture o HQET

2 The mn de o the hevy qurks eetve theory s s ollows. Let us onsder hevy hdron, whh ontns hrm or ottom qurk, ntertng wth lght onsttuents y the ehnge o sot gluons. For suh system we hve n energy sle set y the hevy qurk mss. The sot gluons nd the spettor qurk hve energes, whh re represented y the other sle, nmely Λ QCD. Hene, the dynms o suh hevy qurk system n e solved s perturton n Λ QCD <<. Hene, s rst ppromton we n suppose, tht the hevy qurk moves wth the hdron s veloty (so-lled nnte mss lmt) nd there re no dynml degrees o reedom. Wth ths ssumpton, desrpton o the hevy qurk system eomes sgnntly smpler, nd devtons o the ehvor o rel system rom the del lmtng se ould e tken nto ount y the ntroduton o orreton terms, nversely proportonl to the powers o the hevy qurk mss, n epressons o the physl oservles. Let us gve re desrpton o the HQET struture nd t s ppltons to the lulton o physl proesses []. As we re not nterested n the study o the physs o the proesses tht our t energes ove, we my hoose uto Λ< nd seprte elds o the theory nto two terms, orrespondng to the Fourer modes wth hgh requeny ω>λ (φ H ) nd low requeny ω<λ (φ L ): ϕ = ϕ L + ϕ H A By the onstruton o ths theory, ll low-energy physl proesses re desred n φ L -elds terms. So, we n use the stndrd pprtus o quntum eld theory nd otn ll neessry normton rom orrelton untons o low-requeny elds:. R S / 0 LT ϕ ϕ n 0 = g g 0 A Z J δj L δj L L J, n L = 0 where Z J L = Z Dϕ L Dϕ H e S ` ϕ L,ϕ D H + Z d J L s the genertng untonl o the theory. Here S ϕ L,ϕ H ϕ L = Z d D L ` s the ton, D s the dmenson o the spe-tme, nd J L re the soures o lght elds. The hgh-requeny elds my e ntegrted out n the untonl ntegrl o the system: Z J L Z Dϕ L e S ` Λ ϕ D L + Z d J L ϕ L, where e S Λ ` ϕ L = Z Dϕ H e S ` ϕ L,ϕ H s lled the Wlsonn eetve ton. We must note here, tht lthough we do not onsder hevy prtles n our theory, pr reton o hevy qurks on the vrtul level ould not e eluded. So, the

3 eetve ton o the theory eomes non-lol on sles ~ Λ, sne the desrpton o suh vrtul proesses n terms o Feynmn dgrms o eetve theory s mpossle (we do not hve the orrespondng nlytl epressons or hevy-prtles propgtors). But we n epnd ths non-lol ton untonl n terms o lol opertors omposed o lght elds. Ths tehnque s lled Opertor Produt Epnson, nd onvergene o the seres s provded y the smll prmeter E Λ. where The result n e epressed n orm: = Z d D e L Λ, S Λ L Λ e ϕ L =X g Q ϕ ` L A The eetve Lgrngn presents nnte sum over lol opertors Q, multpled y ouplng onstnts g, whh re lled the Wlson oeents. It s qute dult to work wth n nnte numer o opertors, nd so we need to smply ths oet. The trk o nve dmensonl nlyss n help us. Denote A g =@ γ the mss dmenson o the eetve ouplng onstnts. And t n e wrtten s: g = γ, where C re dmensonless oeents. Beuse there s only one undmentl sle n the HQET, we n epet tht C =O(). Ths ssumpton s nmed the hypothess o nturlness. Let us ssume or smplty tht oservles re dmensonless. In ths se, the quntttve ontruton o eh opertor n OPE s epeted to sle s X C g E γ = ^\ ^Z O `, γ = 0, <<, γ > 0, >>, γ < 0A It s ler tht only ew opertors whose ouplngs hve γ 0 re mportnt to study physl proesses, nd the nnte seres eomes short sum. Besdes the generl dsusson, t s nstrutve to gve the eplt epresson o the Lgrngn o HQET []. Denote the qurk spnor eld s Q(), nd dene the lrge nd smll omponent elds h v nd H v y h ` v = e va P + Q `, H ` v = e va Q ` A So Q ` B = va h ` v + H ` v C A The eetve Lgrngn s dened n these terms s: L e =h v va Dh v + h v D^? D^? vad ε h v,

4 where D^? = v vad γ s orthogonl to hevy qurk veloty. The rst term here s the nnte mss lmt o the QCD-Lgrngn, nd the seond term provdes orretons tht orrespond to the nte mss o the hevy qurk. Sne there s n nverse derentl opertor n the seond term, we n del wth the non-lolty. OPE gves us: h hv + L e =h v va Dh v + v D g m? v σ Q m αβ G αβ h v + O ka Q Here D α,d β = G αβ αβ = gt G s the gluon eld strength tensor. h The physl menng o the two new opertors t order h hv h s qute smple. O kn = v D m? Q s the guge ovrnt etenson o the knet energy, provded y the o-shell resdul moton o hevy qurk, nd O mg = g h v σ αβ G αβ h v desres the nterton o the hevy qurk spn wth the gluon eld (hromomgnet hyperne nterton). I we solve the equtons o moton orrespondng to the ull non-lol vadh v = D^ H? v, va D + H v = D^ h? v, we get: H v = D^? vad ε h va Fnlly, epnson or the ull qurk eld s H Q ` = va L J + vad ε I Kh ` v = va h l D^? + + m kh ` m v A Q Now, when we know eplt epresson or hevy qurk eld, we n lulte mtr elements o vrous oservles; determne the ross-setons o deys nd stterngs et. Epermentl results nd perturtve lultons Appltons o the hevy qurk eetve theory re to e ompred wth the epermentl mesurements. The nlytl epressons o dey rtes n e wrtten n terms o the opertor produt epnson through severl oeents, whh re not determned wthn the rmework o the HQET. So, we need to determne them rom the eperment. In ths spet the B-meson rre nd nlusve deys re very useul tools, euse they re desred y the HQET nd llow one to nd the vlues o CK elements LV L nd the hevy qurk msses., V u

5 Let us onsder the eplt epresson or the semlepton B dey wdth through order []: Γ sl G F m u = 5 9π H L V L + A ew J z0 r h B pertc ` π G + ρ D + ρ ` LS m ` + ρ ` + ρ ` D LS m ` m k m ` pert + A 5 r m ` pert ρ ` + + AD d r D m ` + π pert + A 6 p w H r m ` + π pert A 6 p w H r m ` g + π pert F q A 6q r m ` + O AA m m ` Here z 0 r s the tree-level phse tor nd r = m ` : z 0 r + r ln r, nd the epresson or d r s d r = 8 ln r r@8r r t@8.z 0 t p w r = 0.5 The eletrowek orreton A ew tht orresponds to the ultrvolet renormlzton o the Ferm nterton s known: h + A ew t + α ln Z kt.0. π m pert The qunttes A orrespond to the perturtve orretons. We n ount or them y rryng out lultons wthn the rmework o the perturtve QCD. We wll not gve here the orrespondng omputtons. The qunttes π, G,ρ D nd ρ LS denote the epetton vlues o the knet, hromomgnet, Drwn nd spn-ort opertors respetvely. An ulry sle s ntrodued to demrk the order etween the long- nd short-dstne dynms n the OPE. Usully t s tken s t GeVA The ledng non-perturtve orretons rse n order nd re ontrolled y the mtr elements ` π nd ` G o the knet nd the hromomgnet dmenson-ve opertors, respetvely ` π. B D k / L B B L, ` G. B / σ B k G k L B The Drwn nd the spn-ortl LS terms ρ ` D nd ρ LS dmenson-s opertors: ρ ` D B B L. g k k / DA E B L pper rom the. L / A, ρ ` LS k k k B L σ A EB D B

6 The term proportonl F q denotes the eet o gener SU()-snglet ourqurk opertors, other thn Drwn opertor, o the orm Γ q Γq wth the sum over q = u,d,s nd Γ nludng oth olor nd Lorentz mtres. But ther Wlson oeents re O α s, nd we neglet these ontrutons. In ddton, t s worth to py ttenton to the H term. One desres possle eet o the tree-level epetton vlues o the our-qurk opertors wth the hrm eld. Its nlytl epresson s: H = B. L / B L γ γ 5 γ 5 ν ρ + v ν vρ, vν = P B ν A B The eet s qute smll due to the szele hrm qurk mss. But t ould not e neglgle totlly, so, one should tke t nto ount. Knowledge o these nonperturtve mtr elements llows one to determne the mss o the hevy qurk []: H Q = + Λ + H π H Q Here Λ s the resdul energy derene etween H Q h + O k, nd survvng n the nnte hevy qurk mss lmt. Let us onsder t some length detls o the epermentl mesurements o the non-perturtve HQE prmeters. In n eperment, the moments o n oservle re dened n the generl orm s [5]: where dγ dv n dγ R n E ut, = Z V@ d V, E ut dv s the spetrum n the vrle V n the B rest rme, n s the order o moment, s the sht rom the enter o the dstruton nd E ut s lower ut on the energy o lght prtle produed n the dey (lepton or photon). Severl ollortons (CLEO, DELPHI, BELLE, BABAR, CDF) rred out the orrespondng eperments wth the semlepton nd nlusve B-deys nd determned the prtl rnhng rton, the seond nd thrd entrl nd nonentrl moments o the lepton energy, the hdron mss (n the semlepton Bu X lν l deys), the photon energy (n the nlusve dey Bu X s γ ) or the derent vlues o the uts on the lepton or photon energy. Hvng t hnd these moments, s the net step we need to proess the dt nd etrt rom them vlues o the hevy qurk msses nd the neessry mtr elements. In generl qurk msses nd ouplng onstnts depend on the sheme. In the lterture, one enounters severl suh shemes: the so-lled S, PS, pole, S nd the knet shemes, epndng n, not epndng n nd usng m m (see lter), nd not epndng n m m m nd usng the knet sheme or oth m nd m. Dt s nlyzed y perormng ts to the underlyng theory. The ts n the vrous shemes re otned y the mnmzton o the χ unton wth

7 severl ree prmeters (these prmeters present the desred vlues, ther numer s derent n derent shemes) [6]: d ( ) χ mes =X ( X ) e ( ) mes ov kn ( X ) e kn A Here ( X ) mes, re the mesured moments, ( X ) kn re the orrespondng knet sheme predtons tht depend on these ree prmeters. The ovrne mtr s the sum o the epermentl nd theoretl error mtres. The mnmum o ths unton n the spe o the ree prmeters orresponds to the physl qunttes o nterest. The mn derene etween two types o t shemes onssts n the use or not o the m epnson. I we onsder Bu X trnston, two hevy qurks emerge: the ottom nd the hrm. One n tret the -qurk s hevy qurk. Ths llows one to ompute the D C meson msses s n epnson n powers o Λ QCD. The oserved D C msses n e used to determne m m. Sne the omputtons re perormed to Λ QCD, ths ntrodues errors o the rtonl order Λ QCD n m, whh gves the rtonl errors o order m m Λ QCD n the nlusve B m m dey rtes, sne the hrm mss eets rst enter t order m. Free prmeters m n ths se re L, m, G,ρ, nd Where V re the mtr elements o the tme-ordered produts o severl opertors. Ther eplt epressons re qute nvolved nd re gven n Re. []. An lterntve pproh s to vod usng the epnson or the hrm qurk, sne t ntrodues the Λ QCD orretons, whh re lrger thn the Λ QCD m m orretons. oreover, ths pproh llows one to elmnte the poorly known non-lol orreltors [7]. Wth ths proedure, one hs n ddton to seven ree prmeters: LV, two prmeters o order the qurk mss m,, two prmeters o order Λ QCD : λ,λ, nd two prmeters o order Λ QCD : ρ,ρ. Also, the t shemes der due to the denton o the qurk mss. We n dene the qurk mss through the pole o the orrespondng ull QCD-propgtor, through relton wth the meson msses, nd we n use the ormlsm o the renormlzton group to normlze the qurk mss t sutle sle. Eh o these shemes hs ts own vrtues nd shortomngs. But ths queston deserves spel onsderton nd we wll not tke up ths ssue n ths pper (see Re. [7-9]). All ollortons otned smlr ggregte results, nd here we produe, s n emple, the results o the BELLE ollorton n the knet sheme [8]: m

8 L =.9F 0.65F 0.07F 0.6 A0 B lν = 0.590F 0.6F % GeV m =.56F 0.076F 0.00 m =.05F GeV π = 0.557F 0.09F 0.0 GeV G = 0.58F 0.060F 0.00 GeV ρ D = 0.6F 0.05F GeV ρ LS =@ 0.7F 0.098F 0.00 GeV The orrespondng grphl emple o the nlyss y the BELLE ollorton s presented n Fg. (Re. []). Ltte lultons Another wy to determne the oeents n the hevy qurk epnson s ther numerl lultons wthn the tehnque o the ltte QCD. It s n mportnt tool or the nlyss o the low-energy regme o the QCD, where the ouplng onstnt s g nd we n not use the perturton pproh. Beuse the lmtton o omputtonl resoures ests, we need to resort to severl ppromtons, suh s nte ltte spng, nte totl sptl sze o ltte, not very smll qurk mss, et. One o the most useul ppromtons s the quenhed ppromton, n whh the vuum polrzton y gluon nd the qurk-ntqurk pr s not onsdered. It redues the omputtonl omplety y severl orders o mgntude, ut wth t one lso ntrodues soures o unontrolled unertntes. The ltte ounterprt o the system, tht ontns the hevy qurk, s desred y the orrespondng dsrete ton, prtulr orm o whh s [] S LQCD =X,y Q + ` K Q,y Q y.

9 The kernel tht desres the tme evoluton o hevy qurk s gven y K Q g 0 n n t δh g t + δ U + g ` δh H 0 where the nde to lel the sptl oordnte s suppressed. The opertor dened s δ δk k, y, nd H g k k δh@ B σa BA ` s ltte ovrnt Lpln ` Q ` =X ` Q ` = D =X = U = E ` Q + ^ + U Q Q, g n t, s nd B k s the hromo-mgnet eld. The prmeter n n the evoluton kernel s postve nteger tht s neessry to stlze unphysl momentum modes. In the lmt o vnshng ltte spng the dsrete ton redues to the stndrd ontnuum ton: ont L QCD H = Q + D 0 + Dk σ k k J A B + g I K Q. The prmeters, B pperng n the ltte ton hve to e mthed onto ther ontnuum ounterprts usng perturton theory. The mthng o the hevy qurk mss my e done through the lulton o the hdron msses. They n e otned rom study o the symptot ehvor o the two-pont unton:, - S =X J C J,t k J k,t + 0 k,0 Q E sm t, or suently lrge tme seprton. Wth the ltte dsrete ton we n otn the ndng energy E sm. The nterpoltng opertor J s hosen suh tht t shres the sme quntum numers wth the hdron o nterest. For nsted: g Λ s z = + w s B = d = d g γ γ 5 h, γ h, = ε u Cγ 5 d g d Σ s z =@ =@ ε u C γ + γ h R + p w u Cγ d The smered opertor J ` S s used t the soure to enhne the overlp wth the ground stte. It s sutle to dene ths opertor suh tht the hevy qurk eld s smered ordng to n eponentl orm Ar round the lght qurk eld hr, ε hs. ed t the orgn. r s dstne rom the orgn, nd the prmeters nd must e mesured to spey the wve unton o the nterestng hdron. However, t present, the prmeter B s not vlle wth the one-loop level o ury,

10 nd we my use only the tree-level vlue B =. But nl predtons or the vlues o the physl oservles my e gven n the stt lmt, whh does not requre the prmeter B. In one o the reent nlyses the quenhed ppromton llows one to otn the ollowng results [, 0]: V = 0.8F 0.9 B0, m =.7F 0.0 GeV, GeV, Λ = π =@ 0.5F 0. GeV A The grphl emple o the ltte dt s gven n Fg. nd Fg. (Re. []). The urrent omputtonl power hs mde t possle to rry out the smultons eyond the quenhed ppromton or mny mportnt qunttes. Sne dynml ermon smultons nvolve mny nversons o the ermon mtr, t s hrder to smulte the lght qurks t ther physl mss vlues. Thereore, n etrpolton n the lght qurk mss rom esle qurk msses to the physl msses s neessry (the hrl etrpolton). These smultons re smpled y usng the stggered ermons. Wth them there s n et U() hrl symmetry nd the mssless lmt s ed. O ourse, ths method hs severl shortomngs. Ths queston s onsdered n detls n Re. []. Wthn ths pproh ollowng results were otned []: strong ouplng onstnt α s = 0.75F 0.005, Z

11 the strnge qurk mss m s the ottom qurk mss m m GeV = 78F 0 ev, =.F 0.07 GeV, = 0.96F 0.008, the orm tor o semlepton kon dey + 0 the kon B prmeter B K GeV = 0.58F 0.0, the orm tors o semlepton D meson deys: Du π Du + = 0.6F, K + = 0.7F A They re n resonle greement wth the phenomenologl vlues nd ther qunttes. Summry In onluson, the ollowng should e mentoned. Use o the nlytl methods o the hevy qurks eetve theory llows one to otn the severl mportnt prmeters o the Stndrd odel suh s LV, LV u, m, m nd some o the hdron mtr elements. These methods hve llowed to mprove the preson n the knowledge o severl undmentl prmeters n the Nture. At present, numer o hdron mtr elements re determned or the moment nlyss o the semlepton nd rdtve B-deys. These mtr elements n eventully e lulted on the ltte; urrent ltte lultons re very promsng ut not yet prese enough. Reerenes.. Neuert, rxv: hep-ph/05v.. Neuert, Hevy qurk symmetry, Stnord Unversty, Stnord, Clorn, Aprl 99. D. Benson, I.I. Bg, Th. nnel nd N. Urltsev, rxv: hep-ph/006v. S. Aok et l. (JLQCD Collorton), rxv: hep-lt/0050v 5. C. W. Buer, Z. Lget,. Luke, A. V. nohr,. Trott, rxv: hepph/00800v 6. K. Ae et l. (The BELLE Collorton), rxv: hep-e/0607v 7. P. Gmno, N. Urltsev, rxv: hep-ph/0006v 8. A. Huke, rxv: hep-e/ v 9. C. W. Buer, Z. Lget,. Luke, A. V. nohr, rxv: hep-ph/ A. S. Kroneld, J. N. Smone, rxv: hep-ph/00065v. S. Hshmoto, Interntonl Journl o odern Physs A, Vol. 0, No., Gemm, A. Kpustn, Physl Revew D, Vol. 55, No.,

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro

More information

New Exact Solutions for Static Axially Symmetric Einstein Vacuum Equations

New Exact Solutions for Static Axially Symmetric Einstein Vacuum Equations The Arn Revew o Physs : 8 New Et Solutons or Stt Ally Symmetr Ensten Vuum Equtons Ahmd T. Al Froo Rhmn * nd Syeedul Islm Kng Adul A nversty Fulty o Sene Deprtment o Mthemts Jeddh Sud Ar nd Mthemts Deprtment

More information

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

 = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction Eletromgnet Induton nd Frdy s w Eletromgnet Induton Mhel Frdy (1791-1867) dsoered tht hngng mgnet feld ould produe n eletr urrent n ondutor pled n the mgnet feld. uh urrent s lled n ndued urrent. The phenomenon

More information

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B] Conept of Atvty Equlbrum onstnt s thermodynm property of n equlbrum system. For heml reton t equlbrum; Conept of Atvty Thermodynm Equlbrum Constnts A + bb = C + dd d [C] [D] [A] [B] b Conentrton equlbrum

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

N=4 super Yang-Mills Plasma

N=4 super Yang-Mills Plasma N= suer Yn-Mlls Plsm ln Czj Insttute o Physs, Jn Kohnows Unversty, Kele, Poln bse on:. Czj & St. Mrówzyńs, Physl Revew D86 01 05017. Czj & St. Mrówzyńs, Physl Revew D8 011 10500. Czj & St. Mrówzyńs, Physl

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity Generlzed Lorentz Trnsformton Allowng the Relte Veloty of Inertl Referene Systems Greter Thn the Lght Veloty Yu-Kun Zheng Memer of the Chnese Soety of Grtton nd Reltst Astrophyss Eml:yzheng@puorgn Astrt:

More information

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS ournl o Mthetl enes: dvnes nd ppltons Volue Nuer Pes 65-77 REGULR TURM-LIOUVILLE OPERTOR WITH TRNMIION CONDITION T INITE INTERIOR DICONTINUOU POINT XIOLING HO nd IONG UN hool o Mthetl enes Inner Monol

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M NLELE ŞTIINŢIICE LE UNIERSITĂŢII L.I.CUZ IŞI Toul XLII, s.i, Mtetă, 2001, f.2. STRENGTH IELDS ND LGRNGINS ON GOs 2 M BY DRIN SNDOICI strt. In ths pper we stud the strength felds of the seond order on the

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7 TELOM 3 Tme Vryng Queues Dvd Tpper Assote Professor Grdute Teleommuntons nd Networkng Progrm Unversty of Pttsburgh ldes 7 Tme Vryng Behvor Teletrff typlly hs lrge tme of dy vrtons Men number of lls per

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods Engneerng Prt I 009-0, Pper 4, Mthemtl Methods, Fst Course, J.B.Young CMBRIDGE UNIVERSITY ENGINEERING DEPRTMENT PRT I (Frst Yer) 009-00 Pper 4 : Mthemtl Methods Leture ourse : Fst Mths Course, Letures

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations Dynm o Lnke Herrhe Contrne ynm The Fethertone equton Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Graphical rules for SU(N)

Graphical rules for SU(N) M/FP/Prours of Physque Théorque Invrnes n physs nd group theory Grph rues for SU(N) In ths proem, we de wth grph nguge, whh turns out to e very usefu when omputng group ftors n Yng-Ms fed theory onstruted

More information

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Generalization of 2-Corner Frequency Source Models Used in SMSIM Generliztion o 2-Corner Frequeny Soure Models Used in SMSIM Dvid M. Boore 26 Mrh 213, orreted Figure 1 nd 2 legends on 5 April 213, dditionl smll orretions on 29 My 213 Mny o the soure spetr models ville

More information

New Algorithms: Linear, Nonlinear, and Integer Programming

New Algorithms: Linear, Nonlinear, and Integer Programming New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.om Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths

More information

8 THREE PHASE A.C. CIRCUITS

8 THREE PHASE A.C. CIRCUITS 8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the so-lled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Humidity Profiling with a VHF Wind Profiler and GPS Measurements

Humidity Profiling with a VHF Wind Profiler and GPS Measurements Humdty Proflng wth VHF Wnd Profler nd GPS esurements Vldslv Klus, Joël Vn Belen*, nd Yves Pontn* ( ) entre Ntonl de Reherhes étéorologues (NR), étéo Frne, Toulouse, Frne (*) Lortore de étéorologe Physue

More information

AB INITIO DENSITY FUNCTIONAL THEORY FOR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES

AB INITIO DENSITY FUNCTIONAL THEORY FOR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES AB INITIO DENSITY UNCTIONAL THEORY OR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES By DENIS BOKHAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL O THE UNIVERSITY O LORIDA IN PARTIAL ULILLMENT

More information

Rational Numbers as an Infinite Field

Rational Numbers as an Infinite Field Pure Mtemtl Senes, Vol. 4, 205, no., 29-36 HIKARI Ltd, www.m-kr.om ttp://dx.do.org/0.2988/pms.205.4028 Loue re Mg Squres over Mult Set o Rtonl Numers s n Innte Feld A. M. Byo Deprtment o Mtemts nd Computer

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

NazatulsyimaMohdYazid a, Kim GaikTay b, Wei King Tiong c, Yan Yee Choy d, AzilaMdSudin e &CheeTiongOng f

NazatulsyimaMohdYazid a, Kim GaikTay b, Wei King Tiong c, Yan Yee Choy d, AzilaMdSudin e &CheeTiongOng f The Method o Lnes solton o the ored Kortewe-de Vres-Brers Eqton (KdVB) NtlsymMohdYd Km kty We Kn Ton Yn Yee Choy d AlMdSdn e &CheeTonOn lty o Sene Tehnoloy nd Hmn Development UnverstTn Hssen Onn Mlys 8

More information

Shuai Dong. Using Math and Science to improve your game

Shuai Dong. Using Math and Science to improve your game Computtonl phscs Shu Dong Usng Mth nd Sene to mprove our gme Appromton of funtons Lner nterpolton Lgrnge nterpolton Newton nterpolton Lner sstem method Lest-squres ppromton Mllkn eperment Wht s nterpolton?

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS 6 ORDINARY DIFFERENTIAL EQUATIONS Introducton Runge-Kutt Metods Mult-step Metods Sstem o Equtons Boundr Vlue Problems Crcterstc Vlue Problems Cpter 6 Ordnr Derentl Equtons / 6. Introducton In mn engneerng

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

An Adaptive Control Algorithm for Multiple-Input Multiple-Output Systems Using Neural Networks

An Adaptive Control Algorithm for Multiple-Input Multiple-Output Systems Using Neural Networks An Adptve Control Algorthm for Multple-Input Multple-Output Systems Usng Neurl Networks JOSE NORIEGA Deprtmento de Investgón en Fís Unversdd de Sonor Rosles y Blvd. Lus Enns, Col. Centro, CP, Hllo, Son.

More information

Issues in Information Systems Volume 14, Issue 1, pp , 2013

Issues in Information Systems Volume 14, Issue 1, pp , 2013 Issues n Informton Systems Volume 4, Issue, pp.58-65, 0 RITI REVIEW OF POPUR MUTI-RITERI DEISION MKING METHODOGIES Yong. Shn, Frns Mron Unversty, yshn@fmron.edu Seungho. ee, Ulsn ollege, shlee@u. Sun G

More information

On Generalized Fractional Hankel Transform

On Generalized Fractional Hankel Transform Int. ournal o Math. nalss Vol. 6 no. 8 883-896 On Generaled Fratonal ankel Transorm R. D. Tawade Pro.Ram Meghe Insttute o Tehnolog & Researh Badnera Inda rajendratawade@redmal.om. S. Gudadhe Dept.o Mathemats

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

Part 4. Integration (with Proofs)

Part 4. Integration (with Proofs) Prt 4. Integrtion (with Proofs) 4.1 Definition Definition A prtition P of [, b] is finite set of points {x 0, x 1,..., x n } with = x 0 < x 1

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundgl, Hyderbd - 5 3 FRESHMAN ENGINEERING TUTORIAL QUESTION BANK Nme : MATHEMATICS II Code : A6 Clss : II B. Te II Semester Brn : FRESHMAN ENGINEERING Yer : 5 Fulty

More information

Introduction to Nuclear and Particle Physics Part 2 2

Introduction to Nuclear and Particle Physics Part 2 2 SS011: Introduton to Nuler nd Prtle Physs Prt Letures: Elen Brtkovsky Wednesdy, 14:00-16:30 16:30 Room: Phys. 101 Offe: FIAS 3.401; Phone: 069-798 798-4753 E-ml: Elen.Brtkovsky@th.physk.un-frnkfurt.de

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Spacetime and the Quantum World Questions Fall 2010

Spacetime and the Quantum World Questions Fall 2010 Spetime nd the Quntum World Questions Fll 2010 1. Cliker Questions from Clss: (1) In toss of two die, wht is the proility tht the sum of the outomes is 6? () P (x 1 + x 2 = 6) = 1 36 - out 3% () P (x 1

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Comparing the Pre-image and Image of a Dilation

Comparing the Pre-image and Image of a Dilation hpter Summry Key Terms Postultes nd Theorems similr tringles (.1) inluded ngle (.2) inluded side (.2) geometri men (.) indiret mesurement (.6) ngle-ngle Similrity Theorem (.2) Side-Side-Side Similrity

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

University of Groningen. Electrodialytic recovery of acids and bases Visser, Cornelis

University of Groningen. Electrodialytic recovery of acids and bases Visser, Cornelis Unversty of Gronngen Eletrodlyt reovery of ds nd bses Vsser, Cornels IMPORTANT NOTE: You re dvsed to onsult the publsher's verson (publsher's PDF) f you wsh to te from t. Plese hek the doument verson below.

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Individual Contest. English Version. Time limit: 90 minutes. Instructions:

Individual Contest. English Version. Time limit: 90 minutes. Instructions: Elementry Mthemtics Interntionl Contest Instructions: Individul Contest Time limit: 90 minutes Do not turn to the first pge until you re told to do so. Write down your nme, your contestnt numer nd your

More information

LESSON 11: TRIANGLE FORMULAE

LESSON 11: TRIANGLE FORMULAE . THE SEMIPERIMETER OF TRINGLE LESSON : TRINGLE FORMULE In wht follows, will hve sides, nd, nd these will e opposite ngles, nd respetively. y the tringle inequlity, nd..() So ll of, & re positive rel numers.

More information

] dx (3) = [15x] 2 0

] dx (3) = [15x] 2 0 Leture 6. Double Integrls nd Volume on etngle Welome to Cl IV!!!! These notes re designed to be redble nd desribe the w I will eplin the mteril in lss. Hopefull the re thorough, but it s good ide to hve

More information

Strong Gravity and the BKL Conjecture

Strong Gravity and the BKL Conjecture Introducton Strong Grvty nd the BKL Conecture Dvd Slon Penn Stte October 16, 2007 Dvd Slon Strong Grvty nd the BKL Conecture Introducton Outlne The BKL Conecture Ashtekr Vrbles Ksner Sngulrty 1 Introducton

More information

The Ellipse. is larger than the other.

The Ellipse. is larger than the other. The Ellipse Appolonius of Perg (5 B.C.) disovered tht interseting right irulr one ll the w through with plne slnted ut is not perpendiulr to the is, the intersetion provides resulting urve (oni setion)

More information

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Censored Models. Li Gan. April, Examples of censored regression: (1) stadium attendance= min(attendance *, capacity)

Censored Models. Li Gan. April, Examples of censored regression: (1) stadium attendance= min(attendance *, capacity) Censore Moels L Gn Aprl 8 mples o ensore regresson: stm ttenne mn(ttenne pt) Here gropng (those oservtons wth ttenne rtes less thn one vs those oservtons wth ttenne rtes t one) re lerl se on oserve tors.

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

12.4 Similarity in Right Triangles

12.4 Similarity in Right Triangles Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Phscs for Scentsts nd Engneers I PHY 48, Secton 4 Dr. Betr Roldán Cuen Unverst of Centrl Flord, Phscs Deprtment, Orlndo, FL Chpter - Introducton I. Generl II. Interntonl Sstem of Unts III. Converson of

More information

Traffic Behavior and Jams Induced by Slow-down Sections

Traffic Behavior and Jams Induced by Slow-down Sections 55 * * * Trff Behvor nd Jms Indued y Slow-down Setons Shuh MASUKURA, Fulty of Engneerng, Shzuok Unversty Hrotosh HANAURA, Fulty of Engneerng, Shzuok Unversty Tksh NAGATANI, Fulty of Engneerng, Shzuok Unversty

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

Abstraction of Nondeterministic Automata Rong Su

Abstraction of Nondeterministic Automata Rong Su Astrtion of Nondeterministi Automt Rong Su My 6, 2010 TU/e Mehnil Engineering, Systems Engineering Group 1 Outline Motivtion Automton Astrtion Relevnt Properties Conlusions My 6, 2010 TU/e Mehnil Engineering,

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

represents the amplitude of the signal after modulation and (t) is the phase of the carrier wave.

represents the amplitude of the signal after modulation and (t) is the phase of the carrier wave. 1 IQ Sgnals general overvew 2 IQ reevers IQ Sgnals general overvew Rado waves are used to arry a message over a dstane determned by the ln budget The rado wave (alled a arrer wave) s modulated (moded)

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F 0 E 0 F E Q W

More information

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping consder n the cse o nternl resonnce nd externl resonnce Ω nd smll dmpng recll rom "Two_Degs_Frdm_.ppt" tht θ + μ θ + θ = θφ + cos Ω t + τ where = k α α nd φ + μ φ + φ = θ + cos Ω t where = α τ s constnt

More information

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL: PYTHAGORAS THEOREM 1 WHAT S IN CHAPTER 1? 1 01 Squres, squre roots nd surds 1 02 Pythgors theorem 1 03 Finding the hypotenuse 1 04 Finding shorter side 1 05 Mixed prolems 1 06 Testing for right-ngled tringles

More information

1.3 SCALARS AND VECTORS

1.3 SCALARS AND VECTORS Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd

More information

Appendix C Partial discharges. 1. Relationship Between Measured and Actual Discharge Quantities

Appendix C Partial discharges. 1. Relationship Between Measured and Actual Discharge Quantities Appendi Prtil dishrges. Reltionship Between Mesured nd Atul Dishrge Quntities A dishrging smple my e simply represented y the euilent iruit in Figure. The pplied lternting oltge V is inresed until the

More information

Alpha Algorithm: Limitations

Alpha Algorithm: Limitations Proess Mining: Dt Siene in Ation Alph Algorithm: Limittions prof.dr.ir. Wil vn der Alst www.proessmining.org Let L e n event log over T. α(l) is defined s follows. 1. T L = { t T σ L t σ}, 2. T I = { t

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

On the Scale factor of the Universe and Redshift.

On the Scale factor of the Universe and Redshift. On the Sle ftor of the Universe nd Redshift. J. M. unter. john@grvity.uk.om ABSTRACT It is proposed tht there hs been longstnding misunderstnding of the reltionship between sle ftor of the universe nd

More information

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272. Geometry of the irle - hords nd ngles Geometry of the irle hord nd ngles urriulum Redy MMG: 272 www.mthletis.om hords nd ngles HRS N NGLES The irle is si shpe nd so it n e found lmost nywhere. This setion

More information

Linear Algebra Introduction

Linear Algebra Introduction Introdution Wht is Liner Alger out? Liner Alger is rnh of mthemtis whih emerged yers k nd ws one of the pioneer rnhes of mthemtis Though, initilly it strted with solving of the simple liner eqution x +

More information