REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

Size: px
Start display at page:

Download "REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY"

Transcription

1 THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro Gh. Ash Tehnl Unversty, Deprtment of Physs, Iº, Romn E-ml: gzet@phys.tus.ro Reeved Otoer 10, 008 We study the regulrzton of the guge theory of grvtton usng the de Stter group s symmetry of the model. The method of generlzed zet-funton s used to relze the regulrzton nd the guge group s onsdered s n nternl symmetry. An effetve ntegrl of ton s otned nd omprson wth other results s gven. 1. INTRODUCTION Most of the exstng guge theores of grvtton dopt geometrl desrpton of grvty. Nmely, the Ponré group s onsdered prtly s spe-tme prtly s n nternl symmetry group. The lol extenson of ts spe-tme prt eomes then the dffeomorphsm group nd the guge theory s nvrnt under generl oordnte trnsformtons nd lol Lorentz frme rottons. Therefore, ths lol symmetry group s onneted wth the geometry of the spe-tme. It s possle lso to onsder spe-tme symmetres (for exmple Ponré or de Stter n ths pper) s purely nner symmetres [1, ]. Ths leds to desrpton of the guge theory of grvtton whh s n omplete nlogy wth the desrpton of nner symmetres s groups of generlzed rottons n feld spe. In ths pper we onsder the group de Stter (DS) s purely nner symmetry nd develop guge theory of grvtton. We otn n effetve ntegrl of ton whh utomtlly nludes the osmologl onstnt. The method of generlzed zet-funton s used to study the regulrzton of the theory. Pper presented t the Ntonl Conferene of Physs, Septemer 10 13, 008, Buhrest Mãgurele, Romn. Rom. Journ. Phys., Vol. 5, Nos. 9 10, P , Buhrest, 009

2 790 V. Chrþou, G. Zet In Seton we ntrodue the DS guge group nd gve n n expltly form ts equton of strutures. The guge ovrnt dervtve s ntrodued s usully, onsderng the DS group s n nternl symmetry nd ntrodung the orrespondng guge felds. The strength feld s defned s the ommuttor of two guge ovrnt dervtves. The regulrzton of the theory s studed n Seton 3, usng the method of generlzed zet funton. The hnge of the prtton funton wth respet to sle trnsform s lulted for the se of spnor Dr feld ntertng wth the grvttonl feld desred y the guge potentls. Then, mnml feld guge ton, omptle wth regulrzton requrements nd nludng the osmologl onstnt, s determned. Fnlly, some onludng remrks re gven n the Seton. It s emphszed tht n our model there s no ny dret nterrelton etween grvty nd the struture of spe-tme. At quntum level t my oneptully e eser to del wth feld theoretl desrpton of grvtton free of ny geometrl spets.. DE SITTER GAUGE THEORY We onsder guge theory of grvtton hvng de Stter (DS) group s lol symmetry. Let X A, A = 1,,, 10, e ss of DS Le lger wth the orrespondng equtons of struture gven y [1] where C A B AB C X X f X (1) f C AB re the onstnts of struture whose expressons wll e gven elow [see Eq. (3)]. In order to wrte the onstnt of strutures the followng nottons for the ndex A: f C AB n ompt form, we use A () Ths mens tht A n stnd for sngle ndex lke s well s for pr of ndes lke [01], [1], et. The nfntesml genertors X A re nterpreted s: X A = P (energy-momentum opertors) nd X M (ngulr momentum opertors) wth the property M M. The onstnts of struture f C AB hve then the followng expressons:

3 3 Grvtton wth de Stter nner symmetry 791 f f f 0 de de fd d d (3) 1 fd f d d d ef 1 e f e f e f e f f d d d d d e f where s rel prmeter, nd dg s the Mnkowsk metr of the spe-tme. In ft, here we hve deformton of the de-stter Le lger hvng s prmeter. Consderng the ontrton 0 we otn the Ponré Le lger,.e., the group DS ontrts to the Ponré group. Now we ntrodue the lol DS guge trnsformton nd the orrespondng guge ovrnt dervtve, onsderng DS s n nternl group of symmetry. As usully n ny guge theory, we hve B () together wth the followng deomposton of B wth respet to the nfntesml genertors P nd M B B P B M (5) The orrespondng genertors of the DS group n the feld spe hve the expressons: 1 P K M x x (6) where K re the trnslton de Stter genertors nd the spn ngulr momentum opertors. The lst one stsfy ommutton reltons of the sme form s M nd K hve the expresson []: K x x x x (7) We n lso deompose B wth respet to nd s follows: B d B B dx x d B (8) Introdung (8) nto Eq. () nd denotng d d d e B x x B x (9)

4 79 V. Chrþou, G. Zet we otn e B (10) Beuse n our model the oordnte nd DS guge trnsformtons re strtly seprted, we emphsze tht the ntroduton of B, B nd guge felds hs no mpltons on the struture of the underlyng spe-tme, whh s ssumed to e (M, ) endowed wth the Mnkowsk metr. Arevtng e d e B B (11) where must e onsdered nto the Lorentz group representton t ts on, we n wrte the guge ovrnt dervtve (10) under the smple form: d B (1) The dervtve d n e just onsdered s trnslton guge ovrnt dervtve [3]. In order to otn the tensor (feld strength opertor) F of the guge felds, we ntrodue the non-ovrnt deomposton The quntty d d H d (13) H s expressed n terms of e s: d m d m m d d H e e e e e (1) n n n where e m s the mtrx nverse of e,.e. em e m. Usng the defnton of the feld strength opertor n guge theory, we hve: F H d B B d d B d B B B (15) If we ntrodue the tensor then we n rewrte F s where R d hs the expresson T B B H (16) F d T R d (17) d d d de de e d e e e R d B d B B B B B H B (18)

5 5 Grvtton wth de Stter nner symmetry 793 In wht follows we wll use the shorthnd notton R (19) R d As F n (17) hs deomposton wth respet to nd d t ts n generl not only s mtrx ut lso s frst order dfferentl opertor n feld spe. But, f we suppose tht d H B B (0) tht s we tke T 0, then we n wrte Eq. (15) under the form: F R R (1) d d We n verfy tht T nd R d trnsform homogeneous under nfntesml lol DS guge trnsformtons. Then, s onsequene, the hoe T 0 s ndeed guge ovrnt sttement s mpltly ssumed ove. 3. REGULARIZATION In order to nlyze the regulrzton of our DS guge theory, we wll onsder frst the glolly DS nvrnt ton for Dr spnor feld (mtter feld): S D d x m () Then, f we wnt to otn guge (lol) nvrnt ton, we hve to hnge the usul dervtve n () y the guge ovrnt dervtve defned n Eq. (1): S 1 D d xe m (3) nd to use the new volume element 1, prtlly ntegrtng the Dr ton: where we used the hoe T 0. d xe where e e 1 det. Then, n the seond term of (3), we otn the usul form of D 1 () S d xe m

6 79 V. Chrþou, G. Zet 6 The ssumpton tht the nterton of the DS guge felds wth the mtter felds (n our se wth the Dr feld) n e regulrzed, mposes strong ondtons on the lssl guge feld dynms. Nmely, we know tht the hnge of the prtton funton of the whole system under reslng n e sored n ts lssl ton yeldng t most nontrvl sle dependene of the dfferent ouplngs, msses nd wve funton regulrztons. As onsequene, the hnge of one-loop mtter prtton under reslng wll llow us to onstrn the lssl guge feld dynms. The ontruton of the Dr feld to the prtton funton s gven y the followng funtonl ntegrl []: where Z eb DDe (5) S D eb Then, we my perform forml Grssmnn ntegrl n (5) nd otn: Here, M e B 1 ln det M e B Z e B e (6) M ebdd R m (7) s nmed hyperol flututon opertor nd ts expresson n (7) s otn s usully [] y squrng the Dr opertor ntrodued n Eq. (). For the se T 0 we onsder here, the opertor D n Eq. (7) s gven y the formul: D B (8) The guge feld (Le lger vlued) shll only t on the spnor ndes nd the ovrnt dervtve only on vetor ndes. The spnor ontruton to the prtton funton regulrzed t sle s gven then y [5]: 1 0 M e B Z e B e (9) where s M e B to the hyperol flututon opertor M e B nd 0 M e B s the generlzed zet funton of prmeter s ssoted s the dervtve of the generlzed zet funton wth respet to s tken for s = 0. We onsder now new sle nd determne the orrespondng hnge of Z e B. To end ths, we use the very well known property [5]

7 7 Grvtton wth de Stter nner symmetry M e B 0 M e B ln 0 M e B (30) equton Then, we otn: ln 0M eb Z e B Z e B e (31) In order to otn zet funton 0 M e B s x we strt wth het kernel M K sxy (3) together wth n symptotlly s-expnson for the het kernel Ksx y of the form r x y k exp d k s s (33) k0 K sxy s xy In eq. (3) the dfferentl opertor M ts on het kernel K nd the ndex x denotes the dervtve of het kernel wth respet to x. We rememer the ft tht zet funton n four dmensons s gven y 0M eb d xdete tr x nd the oeffent funton form 1 (3) x for the Dr feld n the se T = 0 hs the 1 1 d tr D R 30 R 7 Rd 7 d 1 d Rd R R d R 1 m R 3 m Usng equtons (3) nd (35) we otn the vlue of 0 M e B tr Next, ntrodung the vlue of 0 M e B n ntegrl over. D (35) s n the prtton funton (31) llow us to otn the nomlous terms n the spnorl se nd then to determne mnml feld guge ton omptle wth regulrzton requrements. Regulrzton of ny theory, nludng dynml guge felds, requres tht these ontrutons to the prtton funton lke (31) e expressed s lol DS guge nvrnt polynomls n the felds e nd

8 796 V. Chrþou, G. Zet 8 B. In our se, under the onstrnt T 0, we otn s mnml lssl ton for the guge felds: S guge eb 1 d d xe R R R R R Rd 1 16 G d d (36) Here, G s the grvttonl onstnt nd,, re the ouplng onstnts. We n see tht the DS guge group utomtlly enfores osmologl onstnt whh n our model s equl to 1, where s the deformton prmeter of the de Stter Le lger. We emphsze tht S guge n (36) s n ton for guge felds defned on the Mnkowsk spe-tme (M, ) nd s nvrnt on one hnd under lol DS guge trnsformtons, on the other hnd under glol Ponré symmetry refletng the symmetry of the underlyng spe-tme.. CONCLUSION Bsed on the hypothess tht DS s purely nner symmetry we hve developed guge theory of grvtton wth the onstnt osmologl utomtlly nluded. When the deformton prmeter 0, we otn the Ponré guge theory on the Mnkowsk spe-tme whh do not nlude the osmologl onstnt. The grvttonl nterton s medted y guge felds defned on fxed Mnkowsk spe-tme. Ther dynms hs een determned mposng onssteny requrements wth regulrzton propertes of mtter felds n the grvttonl kgrounds. In our model there s no ny dret nterrelton etween grvty nd the struture of spetme. At quntum level t my oneptully e eser to del wth feld theoretl desrpton of grvtton free of ny geometrl spets. Aknowledgments. The uthors knowledge the support of CNCSIS UEFISCSU Grnt ID-60 of the Mnstry of Eduton nd Reserh of Romn. REFERENCES 1. G. Zet, C. D. Oprºn, S. Beþ, Int. J. Mod. Phys. 15 C, (00).. R. Aldrovnd, R. Beltrn Almed, J. P. Pererr, Clss. Qunt. Grv., (006). 3. C. Wesendnger, Clss. Qunt. Grv. 13, (1996).. D. Bln, A. Love, Introduton to guge feld theory, IOP Pulshng, Brstol, E. Frdkn, Introduton to quntum feld theory, Unversty of Illnos, 005.

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M NLELE ŞTIINŢIICE LE UNIERSITĂŢII L.I.CUZ IŞI Toul XLII, s.i, Mtetă, 2001, f.2. STRENGTH IELDS ND LGRNGINS ON GOs 2 M BY DRIN SNDOICI strt. In ths pper we stud the strength felds of the seond order on the

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Geometric coupling of scalar multiplets to D=4, N=1 pure supergravity

Geometric coupling of scalar multiplets to D=4, N=1 pure supergravity Interntonl eserh Journl of Engneerng nd Tehnology (IJET) e-issn: 395-0056 olue: 0 Issue: 09 De-05 www.ret.net p-issn: 395-007 eoetr ouplng of slr ultplets to D=, N= pure supergrvty Polo D S,,3 Adunt Professor,

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Graphical rules for SU(N)

Graphical rules for SU(N) M/FP/Prours of Physque Théorque Invrnes n physs nd group theory Grph rues for SU(N) In ths proem, we de wth grph nguge, whh turns out to e very usefu when omputng group ftors n Yng-Ms fed theory onstruted

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

 = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction Eletromgnet Induton nd Frdy s w Eletromgnet Induton Mhel Frdy (1791-1867) dsoered tht hngng mgnet feld ould produe n eletr urrent n ondutor pled n the mgnet feld. uh urrent s lled n ndued urrent. The phenomenon

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article:

Homework Math 180: Introduction to GR Temple-Winter (3) Summarize the article: Homework Math 80: Introduton to GR Temple-Wnter 208 (3) Summarze the artle: https://www.udas.edu/news/dongwthout-dark-energy/ (4) Assume only the transformaton laws for etors. Let X P = a = a α y = Y α

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods Engneerng Prt I 009-0, Pper 4, Mthemtl Methods, Fst Course, J.B.Young CMBRIDGE UNIVERSITY ENGINEERING DEPRTMENT PRT I (Frst Yer) 009-00 Pper 4 : Mthemtl Methods Leture ourse : Fst Mths Course, Letures

More information

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B] Conept of Atvty Equlbrum onstnt s thermodynm property of n equlbrum system. For heml reton t equlbrum; Conept of Atvty Thermodynm Equlbrum Constnts A + bb = C + dd d [C] [D] [A] [B] b Conentrton equlbrum

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

New Algorithms: Linear, Nonlinear, and Integer Programming

New Algorithms: Linear, Nonlinear, and Integer Programming New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.om Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths

More information

New Exact Solutions for Static Axially Symmetric Einstein Vacuum Equations

New Exact Solutions for Static Axially Symmetric Einstein Vacuum Equations The Arn Revew o Physs : 8 New Et Solutons or Stt Ally Symmetr Ensten Vuum Equtons Ahmd T. Al Froo Rhmn * nd Syeedul Islm Kng Adul A nversty Fulty o Sene Deprtment o Mthemts Jeddh Sud Ar nd Mthemts Deprtment

More information

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS ournl o Mthetl enes: dvnes nd ppltons Volue Nuer Pes 65-77 REGULR TURM-LIOUVILLE OPERTOR WITH TRNMIION CONDITION T INITE INTERIOR DICONTINUOU POINT XIOLING HO nd IONG UN hool o Mthetl enes Inner Monol

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundgl, Hyderbd - 5 3 FRESHMAN ENGINEERING TUTORIAL QUESTION BANK Nme : MATHEMATICS II Code : A6 Clss : II B. Te II Semester Brn : FRESHMAN ENGINEERING Yer : 5 Fulty

More information

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations Dynm o Lnke Herrhe Contrne ynm The Fethertone equton Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

perturbation theory and its applications

perturbation theory and its applications Second-order order guge-nvrnt perturton theory nd ts pplctons (Short revew of my poster presentton) Some detls cn e seen n my poster Kouj Nkmur (Grd. Unv. Adv. Stud. (NAOJ)) References : K.N. Prog. Theor.

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1.

DEFINITION The inner product of two functions f 1 and f 2 on an interval [a, b] is the number. ( f 1, f 2 ) b DEFINITION 11.1. 398 CHAPTER 11 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 11.1 ORTHOGONAL FUNCTIONS REVIEW MATERIAL The notions of generlized vectors nd vector spces cn e found in ny liner lger text. INTRODUCTION The concepts

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity Generlzed Lorentz Trnsformton Allowng the Relte Veloty of Inertl Referene Systems Greter Thn the Lght Veloty Yu-Kun Zheng Memer of the Chnese Soety of Grtton nd Reltst Astrophyss Eml:yzheng@puorgn Astrt:

More information

Strong Gravity and the BKL Conjecture

Strong Gravity and the BKL Conjecture Introducton Strong Grvty nd the BKL Conecture Dvd Slon Penn Stte October 16, 2007 Dvd Slon Strong Grvty nd the BKL Conecture Introducton Outlne The BKL Conecture Ashtekr Vrbles Ksner Sngulrty 1 Introducton

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

KULLBACK-LEIBLER DISTANCE BETWEEN COMPLEX GENERALIZED GAUSSIAN DISTRIBUTIONS

KULLBACK-LEIBLER DISTANCE BETWEEN COMPLEX GENERALIZED GAUSSIAN DISTRIBUTIONS 0th Europen Sgnl Proessng Conferene (EUSIPCO 0) uhrest, Romn, August 7-3, 0 KULLACK-LEILER DISTANCE ETWEEN COMPLEX GENERALIZED GAUSSIAN DISTRIUTIONS Corn Nfornt, Ynnk erthoumeu, Ion Nfornt, Alexndru Isr

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp: Results n Projetve Geometry PG( r,), r, Emd Bkr Al-Zngn* Deprtment of Mthemts, College of Sene, Al-Mustnsryh Unversty, Bghdd, Ir Abstrt In projetve plne over fnte feld F, on s the unue omplete ( ) r nd

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962). 005 Vectors nd Tensors R. Shnkr Subrmnn Good Sources R. rs, Vectors, Tensors, nd the Equtons of Flud Mechncs, Prentce Hll (96). nd ppendces n () R. B. Brd, W. E. Stewrt, nd E. N. Lghtfoot, Trnsport Phenomen,

More information

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp. MA123, Chpter 1: Formuls for integrls: integrls, ntiderivtives, nd the Fundmentl Theorem of Clculus (pp. 27-233, Gootmn) Chpter Gols: Assignments: Understnd the sttement of the Fundmentl Theorem of Clculus.

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

Interval Valued Neutrosophic Soft Topological Spaces

Interval Valued Neutrosophic Soft Topological Spaces 8 Interval Valued Neutrosoph Soft Topologal njan Mukherjee Mthun Datta Florentn Smarandah Department of Mathemats Trpura Unversty Suryamannagar gartala-7990 Trpura Indamal: anjan00_m@yahooon Department

More information

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences 548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Lner Coplexty Over nd Tre Representton of Lepel Cohn Estn Sequenes Tor Helleseth, Fellow, IEEE, Sng-Hyo K, Student Meer, IEEE, nd Jong-Seon

More information

Symmetries and Conservation Laws in Classical Mechanics

Symmetries and Conservation Laws in Classical Mechanics Symmetres nd Conservton Lws n Clsscl Mechncs Wllm Andrew Astll September 30, 0 Abstrct Ths pper wll provde detled explorton nd explnton of symmetres n clsscl mechncs nd how these symmetres relte to conservton

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

2.12 Pull Back, Push Forward and Lie Time Derivatives

2.12 Pull Back, Push Forward and Lie Time Derivatives Secton 2.2 2.2 Pull Bck Push Forwrd nd e me Dertes hs secton s n the mn concerned wth the follown ssue: n oserer ttched to fxed sy Crtesn coordnte system wll see mterl moe nd deform oer tme nd wll osere

More information

MCA-205: Mathematics II (Discrete Mathematical Structures)

MCA-205: Mathematics II (Discrete Mathematical Structures) MCA-05: Mthemts II (Dsrete Mthemtl Strutures) Lesson No: I Wrtten y Pnkj Kumr Lesson: Group theory - I Vette y Prof. Kulp Sngh STRUCTURE.0 OBJECTIVE. INTRODUCTION. SOME DEFINITIONS. GROUP.4 PERMUTATION

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx, MATH3403: Green s Funtions, Integrl Equtions nd the Clulus of Vritions 1 Exmples 5 Qu.1 Show tht the extreml funtion of the funtionl I[y] = 1 0 [(y ) + yy + y ] dx, where y(0) = 0 nd y(1) = 1, is y(x)

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potentl nd the Grnd Prtton Functon ome Mth Fcts (see ppendx E for detls) If F() s n nlytc functon of stte vrles nd such tht df d pd then t follows: F F p lso snce F p F we cn conclude: p In other

More information

The Evaluation Theorem

The Evaluation Theorem These notes closely follow the presenttion of the mteril given in Jmes Stewrt s textook Clculus, Concepts nd Contexts (2nd edition) These notes re intended primrily for in-clss presenttion nd should not

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

GAUGE THEORY ON A SPACE-TIME WITH TORSION

GAUGE THEORY ON A SPACE-TIME WITH TORSION GAUGE THEORY ON A SPACE-TIME WITH TORSION C. D. OPRISAN, G. ZET Fculty of Physics, Al. I. Cuz University, Isi, Romni Deprtment of Physics, Gh. Aschi Technicl University, Isi 700050, Romni Received September

More information

Nonabelian Dualization of Plane Wave Backgrounds

Nonabelian Dualization of Plane Wave Backgrounds Journl of Modern Physcs 88-95 http://dxdoorg/6/jmp9 Pulshed Onlne Septemer (http://wwwscrporg/journl/jmp) Noneln Dulzton of Plne Wve Bckgrounds Ldslv Hlvtý Mroslv Turek Fculty of Nucler Scences nd Physcl

More information

Effectiveness and Efficiency Analysis of Parallel Flow and Counter Flow Heat Exchangers

Effectiveness and Efficiency Analysis of Parallel Flow and Counter Flow Heat Exchangers Interntonl Journl of Applton or Innovton n Engneerng & Mngement (IJAIEM) Web Ste: www.jem.org Eml: edtor@jem.org Effetveness nd Effeny Anlyss of Prllel Flow nd Counter Flow Het Exngers oopes wr 1, Dr.Govnd

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

Torsion free biconformal spaces: Reducing the torsion field equations

Torsion free biconformal spaces: Reducing the torsion field equations Uth Stte University From the SelectedWorks of Jmes Thoms Wheeler Winter Jnury 20, 2015 Torsion free iconforml spces: Reducing the torsion field equtions Jmes Thoms Wheeler, Uth Stte University Aville t:

More information

HAMILTON-JACOBI TREATMENT OF LAGRANGIAN WITH FERMIONIC AND SCALAR FIELD

HAMILTON-JACOBI TREATMENT OF LAGRANGIAN WITH FERMIONIC AND SCALAR FIELD AMION-JACOBI REAMEN OF AGRANGIAN WI FERMIONIC AND SCAAR FIED W. I. ESRAIM 1, N. I. FARAA Dertment of Physcs, Islmc Unversty of Gz, P.O. Box 18, Gz, Plestne 1 wbrhm 7@hotml.com nfrht@ugz.edu.s Receved November,

More information

Magnetized Dust Fluid Tilted Universe for Perfect. Fluid Distribution in General Relativity

Magnetized Dust Fluid Tilted Universe for Perfect. Fluid Distribution in General Relativity Adv. Studes Theor. Phys., Vol., 008, no. 7, 87-8 Mgnetzed Dust Flud Tlted Unverse for Perfect Flud Dstruton n Generl Reltvty Ghnshym Sngh Rthore Deprtment of Mthemtcs nd Sttstcs, Unversty ollege of Scence,

More information

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES Mthemtics SKE: STRN J STRN J: TRNSFORMTIONS, VETORS nd MTRIES J3 Vectors Text ontents Section J3.1 Vectors nd Sclrs * J3. Vectors nd Geometry Mthemtics SKE: STRN J J3 Vectors J3.1 Vectors nd Sclrs Vectors

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

d 2 Area i K i0 ν 0 (S.2) d 3 x t 0ν

d 2 Area i K i0 ν 0 (S.2) d 3 x t 0ν PHY 396 K. Solutions for prolem set #. Prolem 1: Let T µν = λ K λµ ν. Regrdless of the specific form of the K λµ ν φ, φ tensor, its ntisymmetry with respect to its first two indices K λµ ν K µλ ν implies

More information

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities Int. J. Contemp. Mth. Sienes, Vol. 3, 008, no. 3, 557-567 Co-ordinted s-convex Funtion in the First Sense with Some Hdmrd-Type Inequlities Mohmmd Alomri nd Mslin Drus Shool o Mthemtil Sienes Fulty o Siene

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

Homework Solution - Set 5 Due: Friday 10/03/08

Homework Solution - Set 5 Due: Friday 10/03/08 CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

More information

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache INITE NEUTROSOPHIC COMPLEX NUMBERS W. B. Vsnth Kndsmy lorentn Smrndche ZIP PUBLISHING Oho 11 Ths book cn be ordered from: Zp Publshng 1313 Chespeke Ave. Columbus, Oho 31, USA Toll ree: (61) 85-71 E-ml:

More information

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0. STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

More information

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light. 1 This igrm represents the energy hnge tht ours when eletron in trnsition metl ion is exite y visile light. Give the eqution tht reltes the energy hnge ΔE to the Plnk onstnt, h, n the frequeny, v, of the

More information

TOPIC: LINEAR ALGEBRA MATRICES

TOPIC: LINEAR ALGEBRA MATRICES Interntionl Blurete LECTUE NOTES for FUTHE MATHEMATICS Dr TOPIC: LINEA ALGEBA MATICES. DEFINITION OF A MATIX MATIX OPEATIONS.. THE DETEMINANT deta THE INVESE A -... SYSTEMS OF LINEA EQUATIONS. 8. THE AUGMENTED

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

AB INITIO DENSITY FUNCTIONAL THEORY FOR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES

AB INITIO DENSITY FUNCTIONAL THEORY FOR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES AB INITIO DENSITY UNCTIONAL THEORY OR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES By DENIS BOKHAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL O THE UNIVERSITY O LORIDA IN PARTIAL ULILLMENT

More information

Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues MTB 050 1 ORIGIN 1 Eigenvets n Eigenvlues This wksheet esries the lger use to lulte "prinipl" "hrteristi" iretions lle Eigenvets n the "prinipl" "hrteristi" vlues lle Eigenvlues ssoite with these iretions.

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Clculus Module C Ares Integrtion Copright This puliction The Northern Alert Institute of Technolog 7. All Rights Reserved. LAST REVISED Mrch, 9 Introduction to Ares Integrtion Sttement of Prerequisite

More information

arxiv:gr-qc/ v1 14 Mar 2000

arxiv:gr-qc/ v1 14 Mar 2000 The binry blck-hole dynmics t the third post-newtonin order in the orbitl motion Piotr Jrnowski Institute of Theoreticl Physics, University of Bi lystok, Lipow 1, 15-2 Bi lystok, Polnd Gerhrd Schäfer Theoretisch-Physiklisches

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Lecture 3: Equivalence Relations

Lecture 3: Equivalence Relations Mthcmp Crsh Course Instructor: Pdric Brtlett Lecture 3: Equivlence Reltions Week 1 Mthcmp 2014 In our lst three tlks of this clss, we shift the focus of our tlks from proof techniques to proof concepts

More information

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION Advnes n Fuzzy ets nd ystems 05 Pushp Pulshng House Allhd nd Pulshed Onlne: Novemer 05 http://dx.do.org/0.7654/afde05_097_3 Volume 0 Numer 05 Pges 97-3 N: 0973-4X REGUAR CUBC ANGUAGE AND REGUAR CUBC EXPREON

More information

Proportions: A ratio is the quotient of two numbers. For example, 2 3

Proportions: A ratio is the quotient of two numbers. For example, 2 3 Proportions: rtio is the quotient of two numers. For exmple, 2 3 is rtio of 2 n 3. n equlity of two rtios is proportion. For exmple, 3 7 = 15 is proportion. 45 If two sets of numers (none of whih is 0)

More information