Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences

Size: px
Start display at page:

Download "Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences"

Transcription

1 548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Lner Coplexty Over nd Tre Representton of Lepel Cohn Estn Sequenes Tor Helleseth, Fellow, IEEE, Sng-Hyo K, Student Meer, IEEE, nd Jong-Seon No, Meer, IEEE Astrt In ths orrespondene, the lner oplexty over of Lepel Cohn Estn (LCE) sequenes of perod for n odd pre s deterned. For 3 5 nd 7, the ext losed-for expressons for the lner oplexty over of LCE sequenes of perod re derved. Further, the tre representtons for LCE sequenes of perod for 3nd 5 re found y oputng the vlues of ll Fourer oeffents n for the sequenes. Index Ters Lepel Cohn Estn (LCE) sequenes, lner oplexty, sequenes. I. INTRODUCTION Aong propertes of perod sequenes [], [8], the lner oplexty [5], [6], [0], [4], lne, nd orrelton propertes re portnt for the pplton of stre phers nd ode-dvson ultple-ess (CDMA) ounton systes []. A nry sequene s sd to hve the lne property f the dfferene etween the nuer of s nd 0 s n perod of the sequene s t ost one. Let s(t) e nry sequene of perod n. The utoorrelton funton of nry sequene of perod n s defned s (0) s(t)s(t ) : A sequene s defned to hve del utoorrelton f n; f 0odn 0; otherwse. A lot of ttenton [7], [8], [7], [9] hs een devoted to nry sequenes of perod 0 wth del utoorrelton. A nry sequene of even perod n wth the lne property s sd to hve optl utoorrelton f 0 or 04; f n 0od4 or 0; f n od4. Let p e pre nd e postve nteger. Let F p e the fnte feld wth p eleents nd Fp 3 F p nf0g. Let S e nonepty suset of Fp 3 nd prtve eleent of F p. Then the hrterst sequene of perod p 0 of the set S s defned s [9] ; f t S 0; otherwse. Let S e set defned s [9], [] S 0 0 p 0 0 where p s n odd pre nd s prtve eleent of F p. Then, the hrterst sequene of ths set S s referred to s () Lepel Cohn Estn (LCE) sequene [], [], whh s 0- nry sequene of perod p 0,.e., of even length. It hs een shown tht LCE sequenes hve the optl utoorrelton nd lne property. No et l.[5] lso ntrodued nry sequenes of perod p 0 wth optl utoorrelton property y usng the ge of the polynol (z ) d z d over F p, whh turned out to e LCE sequenes. Let (x) denote the qudrt hrter of x defned y (x) ; f x s qudrt resdue 0; f x 0 0; f x s qudrt nonresdue. Helleseth nd Yng [9] desred LCE sequenes y usng the ndtor funton nd the qudrt hrter gven y () ( 0 I(t )0 ( t )) (3) where the ndtor funton I(x) f x 0nd I(x) 0otherwse. Helleseth nd Yng [9] studed the lner oplexty over F of LCE sequenes. Even though LCE sequenes re nry sequenes, they re onstruted sed on the fnte feld F p nd, thus, t s ore nturl to fnd the lner oplexty over F p for LCE sequenes. The tre representton of sequenes s useful for pleentng the genertor of sequenes nd nlyzng ther propertes [6], [], [8]. Thus, t s of gret nterest to represent LCE sequenes y usng the tre funtons. In ths orrespondene, the lner oplexty over F p of LCE sequenes of perod p 0 for n odd pre p s deterned. For p 3; 5; nd 7; the ext losed-for expressons for the lner oplexty over F p of LCE sequenes of perod p 0 re derved. Further, the tre representtons for LCE sequenes of perod p 0 for p 3 nd 5 re found y oputng the vlues of ll Fourer oeffents n F p for the sequenes. II. LINEAR COMPLEXITY OVER F p OF LCE SEQUENCES OF PERIOD p 0 It s well known tht the Fourer trnsfor of p-ry sequene s(t) of perod n p 0 n the fnte feld F p s gven s A n nd ts nverse Fourer trnsfor s 0 s(t) 0t (4) A t (5) where s prtve eleent of F p nd A F p. Usng the Fourer trnsfor of the sequenes, we frst fnd n expresson for A 0, 0 n 0 of LCE sequenes s n the followng le. Le : Let the p-d expnson of e gven s Mnusrpt reeved August 4, 00; revsed Jnury, 003. Ths work ws supported n prt y BK, ITRC, nd The Norwegn Reserh Counl. T. Helleseth s wth the Deprtent of Inforts, Unversty of Bergen, N-500 Bergen, Norwy (e-l: Tor.Helleseth@.u.no). S.-H. K nd J.-S. No re wth the Shool of Eletrl Engneerng nd Coputer Sene, Seoul Ntonl Unversty, Seoul, Kore (e-l: ksh@l.snu..kr; jsno@snu..kr). Counted y A. M. Klpper, Assote Edtor for Sequenes. Dgtl Ojet Identfer 0.09/TIT /03$ IEEE p (6) where 0 p 0. Then, A 0 of the LCE sequenes defned n (3) s gven s (p0)a 0 0(0) (0) 0 p 0 od p: (7)

2 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE Proof: Usng the Fourer trnsfor of the sequenes n (4), the relton for A0 n e derved s follows: na0 s(t) t ( 0 I( t )0 ( t )) t t 0 (0) 0 ( t ) t : (8) For 0, (8) n e gven s n na0 p ( t ) n p 0 0 ( t )() p odp: Thus, we hve proved tht the le holds for 0. For nonzero, (8) n e rewrtten s na0 0(0) 0 0(0) 0 xf yf (x )x 0 () (y)(y 0 ) : (9) As z vres over F p, z tkes ll the qudrt resdues n F p extly twe nd the zero eleent one. Slrly, z tkes ll the qudrt nonresdues n F p s vlues extly twe nd the zero eleent one. It s ler tht ll the qudrt resdues nd nonresdues together wth the eleent 0 over ll eleents n F p. Usng the defnton of the qudrt hrter () n (), (9) s odfed s na 0 0(0) 0 zf [(z )(z 0 ) (z )(z 0 ) ] 0(0) 0 zf [(z 0 ) 0 (z 0 ) ] 0(0) 0 l0 l (0) 0l ( 0 l ) zf z l : The nner su only ontrutes when l p 0, n ths se l 0. Note tht when l 0then 0 l 0. Therefore, we otn na 0 0(0) 0 (p 0 ) p 0 Redung odulo p for oth sdes, we hve the relton (p 0 )A 0 0(0) p 0 Fro the result of Lus [] gven y (0) redues to (7). p 0 p 0 (0) 0 : (0) 0 od p: (0) od p It s lredy known fro Blhut s theore [3], [4] tht the lner oplexty of perod sequenes n e deterned y oputng the Hng weght of ther Fourer trnsfor. Thus, we need to deterne the rdnlty of the set f j A 0 60; 0 n 0 g, whh s lulted fro (7). We hve proved the followng result. Theore : Let C e the nuer of ntegers, 0 p 0 stsfyng the relton p 0 (0) od p () where the s re oeffents n the p-d expnson p of. Then the lner oplexty over F p of the LCE sequene of perod n p 0 defned n (3) equls L p n 0 C: () To deonstrte ths tehnque, we wll lulte the lner oplexty over F p of the LCE sequene of perod n p 0 n the se of p 3; 5; nd 7. But t s not esy to fnd the lner oplexty over F p of LCE sequenes for p>7. A. Lner Coplexty Over F3 of LCE Sequenes of Perod 3 0 Usng the result of Theore, the lner oplexty over F3 of LCE sequenes of perod n 3 0 s derved n the followng theore. Theore 3: The lner oplexty over F3 of the LCE sequene of perod n 3 0 s gven s nd L3 3 0 : Proof: For p 3, t s ler tht 0 0; 3 0 ; even; f even odd; f odd. Then () s rewrtten s (0) od 3: (3) Thus, ll the s n the 3-d expnson of should e or. The nuer of solutons of ths syste s sne seletng 0; ;...; 0 unquely deternes. However, even though t stsfes (3), the soluton orrespondng to 0 0 ust e exluded sne t orresponds to 3 0. We onlude tht C 0 nd the lner oplexty over F3 of the LCE sequene of perod 3 0 equls L3 3 0 : B. Lner Coplexty Over F5 of LCE Sequenes of Perod 5 0 In ths se, the lner oplexty over F5 of LCE sequenes of perod 5 0 s derved y ountng nonzero Fourer oeffents of the sequenes s n the followng theore. Theore 4: The lner oplexty over F5 of the LCE sequene of perod n 5 0 s gven s L where d s the lrgest nteger less thn or equl to d.

3 550 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Proof: Sne 5 0 s n even nteger for ny nteger, () for p 5n e rewrtten s od5 (4) where the s re oeffents n the 5-d expnson 5 of, 0 5 0, nd F5. It n e esly derved tht 0 0; 0; ; 3 3; 4 od 5: In order to stsfy (4), ll the s re lrger thn or equl to for 0 0 nd the nuer of ourrenes 3n the 5-d expnson of should e ultple of 4 euse the order of eleent 3 n F5 s 4, tht s, 3 4 od5. Tht s, 3ours tes nd or 4 ours 0 tes n the 5-d expnson of. For 0 5 0, the nuer of ntegers stsfyng (4) n e ounted s C 0 0 where 5 0 (4; 4; 4;...; 4) s exluded even though the nuer of ourrenes 3n the 5-d expnson of s 0od4, euse >5 0. Therefore, the lner oplexty over F5 of the LCE sequene of perod 5 0 s gven s L C : C. Lner Coplexty Over F7 of LCE Sequenes of Perod 7 0 Slrly to the prevous two ses of p 3nd 5, the lner oplexty over F7 of the LCE sequene of perod 7 0 s derved y ountng nonzero Fourer oeffents of the sequenes s n the followng theore. Theore 5: The lner oplexty over F7 of the LCE sequene of perod n 7 0 s gven s L u0 w0 v0 u ; 3v j; 6w k; D where d s the lrgest nteger less thn or equl to d nd D 0 u 0 0 3v 0 j 0 6w 0 k nd k; 0 k 5 s postve nteger stsfyng 0 od 6; f s even 3 k 3 od 6; f s odd. Proof: Usng the relton 7 0 even; f s even odd; f s odd () for p 7n e expressed s (5) (0) od 7 (6) where F7. Usng (6), the theore n e proved n slr nner to tht of the prevous theore. III. TRACE REPRESENTATION OF LCE SEQUENCES OF PERIOD p 0 In ths seton, the tre representton of LCE sequenes of perod p 0 for p 3nd 5 s derved y usng the tre funtons fro F p to F p, where kj, even though they re nry sequenes. For our sequenes, the A s n (5) re n F p. If the Fourer oeffents A s for ll eleents n oset orrespondng to the eleent hve the se vlue, then the suton of ll eleents n the oset kes the tre funton A tr( t ). Further, f A s hve the se vlues for ll eleents wthn the se osets of F p, (5) n e expressed s lner onton of the tre funtons over F p gven y A tr k (t ) (7) L where L s set of oset leders for the set of yloto osets odulo p 0, nd for eh L, F p s the sllest sufeld of F p ontnng. Thus, t s enough to fnd the Fourer oeffents A s for ll oset leders for the set of yloto osets odulo p 0 f A s hve the se vlues for ll eleents wthn the se oset. Let (0; ; ;...; ) e vetor orrespondng to the oeffents n the p-d expnson p of ; 0 p 0. It s ler tht ll ntegers orrespondng to the yl shft of vetor (0; ; ;...; ) elong to the se yloto oset of F p. The tre representton of the sequenes of perod p 0 s derved y oputng ll the A oeffents, 0 p 0 n (7) for the LCE sequenes n (3). A. Tre Representton of LCE Sequenes of Perod 3 0 In order to fnd the tre representton of LCE sequenes of perod 3 0, let e prtve eleent of the fnte feld F3. Let tr k (t ) denote the tre funton fro F3 to F3, where k j nd F3 s the sllest sufeld of F3 suh tht F3. We n lssfy the oset leders for the set of yloto osets odulo 3 0 s follows. I o : Set of odd oset leders, where every dgt n the 3-d expnson of oset leder only tkes the vlues or 0; for exple, 339(; ; ). I e : Set of even oset leders exludng the oset leder 0, where every dgt n the 3-d expnson of oset leder only tkes the vlues or 0; for exple, 0 9 (; 0; ). I o : Set of odd oset leders nludng I o. I e : Set of even oset leders nludng I e. Usng the ove notton, the tre representton of the LCE sequene of perod 3 0 s gven n the followng theore. Theore 6: The tre representton of the LCE sequene of perod n 3 0 s gven y I ni tr k ( t ) I ni tr k ( t ) I tr k ( t ): Proof: For the LCE sequenes of perod 3 0, the oeffents A F3, defned n (7) n e rewrtten s A 0 0(0) (0) 0 od 3: (8) Now, we hve to fnd ll A s, for the tre representton of the LCE sequenes of perod 3 0.For 0, t s esy

4 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE to fnd tht A0. Clerly, for odd, 3 0 odnd for even, 3 0 0od. Then (8) n e odfed s follows: (A0 (0) )(0) 0 od 3: (9) Note tht j 0 n 0, j 3 0, where A0 for j 0s lredy found. In the 3-d expnson of 3 nd j j 3, t s ler tht j p for ll, 0 0. Let us onsder three ses s follows. Cse : A0 A j 0: We hve to fnd ll j n 0, j 3 0 suh tht A0 0 n (9), whh s rewrtten s (0) od 3: (0) A neessry ondton for (0) s tht the s n the 3-d expnson 3 of only tke the vlues or, whh ens tht the j s only tke the vlues 0 or. Sne 0 od3nd od3, the nuer of ourrenes, 0 0 n the 3-d expnson of stsfyng (0) should e odd for odd nd even for even nd, thus, the nuer of ourrenes should e even for ny nteger. Therefore, the nuer of ourrenes of n the lst of j ; 0 0 should e even for ny nteger nd, thus, j s even. Therefore, the oset leder of j suh tht A j 0elongs to the set I e, where j 0s exluded. Cse : A0 A j : In ths se, we hve to fnd ll j n 0 ; j 3 0 suh tht A j n (9). The followng two suses re onsdered. ) Cse of even nteger (.e., j even nteger): We n rewrte (9) s 0(0) od 3 () where ll s n the 3-d expnson of hve to tke the vlues or. The nuer of ourrenes n the 3-d expnson of should e odd for even nd even for odd, whh ens tht the nuer of ourrenes, 0 0 n the 3-d expnson of should e odd for ny nteger. Therefore, ll j s only tke the vlue 0 or nd the nuer of ourrenes of j n the 3-d expnson of j should e odd for ny nteger, whh ens tht j s odd. Ths ontrdts the ssupton tht j s n even nteger. Therefore, there s no even nteger j whh kes A j. ) Cse of odd nteger (.e., j odd nteger): Equton (9) n e wrtten s 0 od3: () Equton () ens tht t lest one of s n the 3-d expnson of hs to tke the vlue 0, whh ens tht t lest one of j s n the 3-d expnson of j hs to tke the vlue. Therefore, the oset leder of j elongs to the set I o ni o. Cse 3: A0 A j : In ths se, ll j n 0, j 3 0 suh tht A j n (9), hve to e deterned, whh n e esly found euse we hve lredy found ll j s suh tht A j 0or. Clerly, the renng sets of oset leders for the set of yloto osets odulo 3 0 re I e ni e nd I o. For p 3, the tre representton for LCE sequene of perod 80 s gven n the followng exple, where the tre funton s defned n Theore 6. Exple 7: For n nd 4, the LCE sequene s(t) of perod 80 s otned s : The oset leders for the set of yloto osets odulo n e lssfed s I o f; 3g I e f4; 0; 40g I o ni o f5; 7; ; 7; 3; 5; 4; 53g I e ni e f0; ; 8; 4; 6; 0; ; 6; 44; 50g: Then the LCE sequene s(t) of perod 80 n e expressed s lner onton of tre funtons over F3 s follows: ftr( 4 5t )tr( 4 7t )tr( 4 t )tr( 4 7t ) tr( 4 3t )tr( 4 5t )tr( 4 4t )tr( 4 53t )g ftr( 0t )tr( 4 t )tr( 4 8t )tr( 4 4t ) tr( 4 6t )tr( 0t )tr( 4 t )tr( 4 6t ) tr( 4 44t )tr( 50t )g ftr( 4 t )tr( 4 3t )g where s prtve eleent of F3. B. Tre Representton of LCE Sequenes of Perod 5 0 For the perod 5 0, the tre representton of LCE sequenes s derved slrly to the se of perod 3 0. Let e prtve eleent of the fnte feld F5. Let tr k (t ) denote the tre funton fro F5 to F5, where k j nd F 5 s the sllest sufeld of F5 suh tht F5. The oset leders for the set of yloto osets odulo 5 0 n e lssfed s follows. I o : Set of odd oset leders, where every dgt n the 5-d expnson of oset leder only tkes the vlues 0,, or nd the nuer of ourrenes of n the 5-d expnson of oset leder s od4. I o 3 : Set of odd oset leders, where every dgt n the 5-d expnson of oset leder only tkes the vlues 0,, or nd the nuer of ourrenes of n the 5-d expnson of oset leder s 3od4. I e 0 : Set of even oset leders exludng oset leder 0, where every dgt n the 5-d expnson of oset leder only tkes the vlues 0,,or nd the nuer of ourrenes of n the 5-d expnson of oset leder s 0od4. I e : Set of even oset leders, where every dgt n the 5-d expnson of oset leder only tkes the vlues 0,, or nd the nuer of ourrenes of n the 5-d expnson of oset leder s od4. I o : Set of odd oset leders nludng I o nd I o 3. I e : Set of even oset leders nludng I e 0 nd I o. Usng the preedng notton, the tre representton of LCE sequene of perod 5 0 s gven n the followng theore.

5 55 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Theore 8: The tre representton of LCE sequene of perod n 5 0 s gven s I nfi [I g I nfi [I g I I tr k ( t ) tr k ( t ) tr k ( t ): 3 tr k ( t ) I 3 tr k ( t ) Proof: For the LCE sequenes of perod 5 0, the oeffents A F5, defned n (7) n e rewrtten s 3A 0 0(0) (0) 0 od 5: (3) Usng (3), the theore n e proved n the se nner s n the prevous theore. For p 5, the tre representton for LCE sequene of perod 4 s gven n the followng exple, where the tre funton s defned n Theore 8. Exple 9: For n nd 3, the LCE sequene s(t) s gven s : The oset leders for the set of yloto osets odulo n e lssfed s follows: I o f; 7; ; 37g I3 o f3g I0 e f; ; 6g I e f6; 3g I o nfi o [ I3 o g f3; 9; 3; 7; 9; ; 3; 33; 39; 43; 47; 49; 63; 69; 73; 93; 99g I e nfi e [ I3 e g f0; 4; 8; 4; 6; 8; ; 4; 34; 38; 4; 44; 48; 64; 68; 74; 94g: Then, the LCE sequene s(t) of perod 4 n e expressed s lner onton of tre funtons over F5 s follows: I nfi [I g I nfi [I g tr k ( t ) 3 tr k ( t ) REFERENCES [] L. D. Buert, Cyl Dfferene Sets (Leture Notes n Mthets). New York: Sprnger-Verlg, 97. [] E. R. Berlekp, Alger Codng Theory, revsed ed. Lgun Hlls, CA: Aegen Prk, 984. [3] R. E. Blhut, Trnsfor tehnques for error ontrol odes, IBM J. Res. Develop., vol. 3, pp , 979. [4], Theory nd Prte of Error Control Codes. New York: Addson-Wesley, 983. [5] H. Chung nd J.-S. No, Lner spn of extended sequenes nd sded GMW sequenes, IEEE Trns. Infor. Theory, vol. 45, pp , Sept [6] C. Dng, T. Helleseth, nd W. Shn, On the lner oplexty of Legendre sequenes, IEEE Trns. Infor. Theory, vol. 44, pp , My 998. [7] H. Doertn, Ks power funtons, perutton polynols nd yl dfferene sets, n Pro. NATO Advned Study Insttute Workshop on Dfferene Sets, Sequenes nd Ther Correlton Propertes,, Bd Wndshe, Gerny, Aug. 3 4, 998. [8] S. W. Golo, Shft-Regster Sequenes. Sn Frnso/Lgun Hlls, CA: Holden- Dy/Aegen Prk, 967/98. [9] T. Helleseth nd K. Yng, On nry sequenes of perod wth optl utoorrelton, n Pro. 00 Conf. Sequenes nd Ther Appltons (SETA 0), Bergen, Norwy, My 3 7, 00, pp [0] D. Jungnkel, Fnte Felds. Mnnhe, Gerny: B. I. Wssenshftsverlg, 993. [] J.-H. K nd H.-Y. Song, Chrterst polynol nd lner oplexty of Hll s sext resdue sequenes, n Pro. 00 Conf. Sequenes nd Ther Appltons (SETA 0), Bergen, Norwy, My 3 7, 00, pp [] A. Lepel, M. Cohn, nd W. L. Estn, A lss of nry sequenes wth optl utoorrelton propertes, IEEE Trns. Infor. Theory, vol. IT 3, pp. 38 4, Jn [3] R. Ldl nd H. Nederreter, Fnte felds, n Enyloped of Mthets nd Its Appltons. Redng, MA: Addson-Wesley, 983, vol. 0. [4] F. J. MWlls nd N. J. A. Slone, The Theory of Error-Corretng Codes. Asterd, The Netherlnds: North-Hollnd, 977. [5] J.-S. No, H. Chung, H.-Y. Song, K. Yng, J.-D. Lee, nd T. Helleseth, New onstruton for nry sequenes of perod wth optl utoorrelton usng ( ), IEEE Trns. Infor. Theory, vol. 47, pp , My 00. [6] J.-S. No, H. Chung, nd M.-S. Yun, Bnry pseudorndo sequenes of perod wth del utoorrelton generted y the polynol ( ), IEEE Trns. Infor. Theory, vol. 45, pp. 78 8, My 999. [7] J.-S. No, S. W. Golo, G. Gong, H.-K. Lee, nd P. Gl, Bnry pseudorndo sequenes of perod wth del utoorrelton, IEEE Trns. Infor. Theory, vol. 44, pp , Mr [8] J.-S. No, H.-K. Lee, H. Chung, H.-Y. Song, nd K. Yng, Tre representton of Legendre sequene of Mersenne pre perod, IEEE Trns. Infor. Theory, vol. 4, pp , Nov [9] J.-S. No, K. Yng, H. Chung, nd H.-Y. Song, On the onstruton of nry sequenes wth del utoorrelton property, n Pro. 996 IEEE Int. Syp. Inforton Theory nd Its Appltons (ISITA 96), Vtor, BC, Cnd, Sept. 7 0, 996, pp [0] R. A. Sholtz nd L. R. Welh, GMW sequenes, IEEE Trns. Infor. Theory, vol. IT 30, pp , My 984. [] V. M. Sdelnkov, Soe -vlued pseudo-rndo nd nerly equdstnt odes, Prol. Pered. Infor., vol. 5, no., pp. 6, 969. [] M. K. Son, J. K. Our, R. A. Sholtz, nd B. K. Levtt, Spred Spetru Countons, revsed ed. Rokvlle, MD/New York: Coputer Sene/MGrw-Hll, 985/994, vol.. [3] T. Storer, Cylotoy nd Dfferene Sets (Leture Notes n Advned Mthets). Chgo, IL: Mrkh, 967. [4] R. Turyn, The lner generton of the Legendre sequenes, J. So. Ind. Appl. Mth, vol., no., pp. 5 7, 964. I I tr k ( t ) tr k ( t ) I 3 tr k ( t ) where s prtve eleent of F5.

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M NLELE ŞTIINŢIICE LE UNIERSITĂŢII L.I.CUZ IŞI Toul XLII, s.i, Mtetă, 2001, f.2. STRENGTH IELDS ND LGRNGINS ON GOs 2 M BY DRIN SNDOICI strt. In ths pper we stud the strength felds of the seond order on the

More information

Finite Fields and Their Applications

Finite Fields and Their Applications Fnte Felds and Ther Applcatons 5 009 796 807 Contents lsts avalable at ScenceDrect Fnte Felds and Ther Applcatons www.elsever.co/locate/ffa Typcal prtve polynoals over nteger resdue rngs Tan Tan a, Wen-Feng

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions II The Z Trnsfor Tocs o e covered. Inroducon. The Z rnsfor 3. Z rnsfors of eleenry funcons 4. Proeres nd Theory of rnsfor 5. The nverse rnsfor 6. Z rnsfor for solvng dfference equons II. Inroducon The

More information

Solubilities and Thermodynamic Properties of SO 2 in Ionic

Solubilities and Thermodynamic Properties of SO 2 in Ionic Solubltes nd Therodync Propertes of SO n Ionc Lquds Men Jn, Yucu Hou, b Weze Wu, *, Shuhng Ren nd Shdong Tn, L Xo, nd Zhgng Le Stte Key Lbortory of Checl Resource Engneerng, Beng Unversty of Checl Technology,

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

The Parity of the Number of Irreducible Factors for Some Pentanomials

The Parity of the Number of Irreducible Factors for Some Pentanomials The Party of the Nuber of Irreducble Factors for Soe Pentanoals Wolfra Koepf 1, Ryul K 1 Departent of Matheatcs Unversty of Kassel, Kassel, F. R. Gerany Faculty of Matheatcs and Mechancs K Il Sung Unversty,

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays Appled Mehans and Materals Onlne: 03-0- ISSN: 66-748, Vols. 78-80, pp 60-604 do:0.408/www.sentf.net/amm.78-80.60 03 rans eh Publatons, Swtzerland H Controller Desgn for Networed Control Systems n Multple-paet

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

Slobodan Lakić. Communicated by R. Van Keer

Slobodan Lakić. Communicated by R. Van Keer Serdca Math. J. 21 (1995), 335-344 AN ITERATIVE METHOD FOR THE MATRIX PRINCIPAL n-th ROOT Slobodan Lakć Councated by R. Van Keer In ths paper we gve an teratve ethod to copute the prncpal n-th root and

More information

Applied Mathematics Letters

Applied Mathematics Letters Appled Matheatcs Letters 2 (2) 46 5 Contents lsts avalable at ScenceDrect Appled Matheatcs Letters journal hoepage: wwwelseverco/locate/al Calculaton of coeffcents of a cardnal B-splne Gradr V Mlovanovć

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

Numbers Related to Bernoulli-Goss Numbers

Numbers Related to Bernoulli-Goss Numbers ursh Journl of Anlyss n Nuber heory, 4, Vol., No., -8 Avlble onlne t htt://ubs.sceub.co/tnt///4 Scence n Eucton Publshng OI:.69/tnt---4 Nubers Relte to Bernoull-Goss Nubers Mohe Oul ouh Benough * érteent

More information

MCA-205: Mathematics II (Discrete Mathematical Structures)

MCA-205: Mathematics II (Discrete Mathematical Structures) MCA-05: Mthemts II (Dsrete Mthemtl Strutures) Lesson No: I Wrtten y Pnkj Kumr Lesson: Group theory - I Vette y Prof. Kulp Sngh STRUCTURE.0 OBJECTIVE. INTRODUCTION. SOME DEFINITIONS. GROUP.4 PERMUTATION

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem Journal of Engneerng and Appled Senes Volue: Edton: Year: 4 Pages: 7 4 Ultraspheral Integraton Method for Solvng Bea Bendng Boundary Value Proble M El-Kady Matheats Departent Faulty of Sene Helwan UnverstyEgypt

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Graphical rules for SU(N)

Graphical rules for SU(N) M/FP/Prours of Physque Théorque Invrnes n physs nd group theory Grph rues for SU(N) In ths proem, we de wth grph nguge, whh turns out to e very usefu when omputng group ftors n Yng-Ms fed theory onstruted

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Second degree generalized gauss-seidel iteration method for solving linear system of equations. ABSTRACT

Second degree generalized gauss-seidel iteration method for solving linear system of equations. ABSTRACT Ethiop. J. Sci. & Technol. 7( 5-, 0 5 Second degree generlized guss-seidel itertion ethod for solving liner syste of equtions Tesfye Keede Bhir Dr University, College of Science, Deprtent of Mthetics tk_ke@yhoo.co

More information

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro

More information

Automated Selection of Optimal Gaussian Fits to Arbitrary Functions in Electronic Structure Theory

Automated Selection of Optimal Gaussian Fits to Arbitrary Functions in Electronic Structure Theory Autoted Seleton of Optl Gussn Fts to Artrry Funtons n Eletron Struture Theory CLAUDINE C. TAZARTES, 1 CHRISTOPHER R. ANDERSON, 1 EMILY A. CARTER 2 1 Deprtent of Mthets, Unversty of Clforn, Los Angeles,

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION Advnes n Fuzzy ets nd ystems 05 Pushp Pulshng House Allhd nd Pulshed Onlne: Novemer 05 http://dx.do.org/0.7654/afde05_097_3 Volume 0 Numer 05 Pges 97-3 N: 0973-4X REGUAR CUBC ANGUAGE AND REGUAR CUBC EXPREON

More information

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS ournl o Mthetl enes: dvnes nd ppltons Volue Nuer Pes 65-77 REGULR TURM-LIOUVILLE OPERTOR WITH TRNMIION CONDITION T INITE INTERIOR DICONTINUOU POINT XIOLING HO nd IONG UN hool o Mthetl enes Inner Monol

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Convolutional Data Transmission System Using Real-Valued Self-Orthogonal Finite-Length Sequences

Convolutional Data Transmission System Using Real-Valued Self-Orthogonal Finite-Length Sequences Poeengs of the 5th WSEAS Intentonl Confeene on Sgnl Poessng Istnbul Tukey y 7-9 6 (pp73-78 Convolutonl Dt Tnssson Syste Usng Rel-Vlue Self-Othogonl Fnte-Length Sequenes Jong LE n Yoshho TANADA Gute Shool

More information

Interval Valued Neutrosophic Soft Topological Spaces

Interval Valued Neutrosophic Soft Topological Spaces 8 Interval Valued Neutrosoph Soft Topologal njan Mukherjee Mthun Datta Florentn Smarandah Department of Mathemats Trpura Unversty Suryamannagar gartala-7990 Trpura Indamal: anjan00_m@yahooon Department

More information

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp: Results n Projetve Geometry PG( r,), r, Emd Bkr Al-Zngn* Deprtment of Mthemts, College of Sene, Al-Mustnsryh Unversty, Bghdd, Ir Abstrt In projetve plne over fnte feld F, on s the unue omplete ( ) r nd

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES

ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES Journal of Algebra, Nuber Theory: Advances and Applcatons Volue 3, Nuber, 05, Pages 3-8 ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES Feldstrasse 45 CH-8004, Zürch Swtzerland e-al: whurlann@bluewn.ch

More information

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method Aled Mthetcs 3 4 4-9 htt://ddoorg/436/34a3 Pulshed Onlne Jnury 3 (htt://wwwscrorg/ournl/) uercl Soluton of Frehol-Volterr Integrl Equtons y Usng Sclng Functon Interolton Method Yousef Al-Jrrh En-Bng Ln

More information

An Ising model on 2-D image

An Ising model on 2-D image School o Coputer Scence Approte Inerence: Loopy Bele Propgton nd vrnts Prolstc Grphcl Models 0-708 Lecture 4, ov 7, 007 Receptor A Knse C Gene G Receptor B Knse D Knse E 3 4 5 TF F 6 Gene H 7 8 Hetunndn

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

= m 1. sin π( ai z ) )

= m 1. sin π( ai z ) ) EXACT COVERING SYSTEMS AND THE GAUSS-LEGENDRE MULTIPLICATION FORMULA FOR THE GAMMA FUNCTION John Beeee Unversty of Alaska Anchorage July 0 199 The Gauss-Legendre ultplcaton forula for the gaa functon s

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

Proving the Pythagorean Theorem

Proving the Pythagorean Theorem Proving the Pythgoren Theorem W. Bline Dowler June 30, 2010 Astrt Most people re fmilir with the formul 2 + 2 = 2. However, in most ses, this ws presented in lssroom s n solute with no ttempt t proof or

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

Physics Dynamics: Atwood Machine

Physics Dynamics: Atwood Machine plce of ind F A C U L Y O F E D U C A I O N Deprtent of Curriculu nd Pedoy Physics Dynics: Atwood Mchine Science nd Mthetics Eduction Reserch Group Supported by UBC echin nd Lernin Enhnceent Fund 0-04

More information

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if SK300 and SK400 Lnk funtons for bnomal GLMs Autumn 08 We motvate the dsusson by the beetle eample GLMs for bnomal and multnomal data Covers the followng materal from hapters 5 and 6: Seton 5.6., 5.6.3,

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Nil Elements and Even Square Rings

Nil Elements and Even Square Rings Interntionl Journl of Alger Vol. 7 no. - 7 HIKAI Ltd www.-hikri.co http://dx.doi.org/.988/ij.7.75 Nil Eleents nd Even Squre ings S. K. Pndey Deprtent of Mthetics Srdr Ptel University of Police Security

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

New Algorithms: Linear, Nonlinear, and Integer Programming

New Algorithms: Linear, Nonlinear, and Integer Programming New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.om Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths

More information

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences Tutoral Letter 06//018 Specal Relatvty and Reannan Geoetry APM3713 Seester Departent of Matheatcal Scences IMPORTANT INFORMATION: Ths tutoral letter contans the solutons to Assgnent 06. BAR CODE Learn

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

4.5. QUANTIZED RADIATION FIELD

4.5. QUANTIZED RADIATION FIELD 4-1 4.5. QUANTIZED RADIATION FIELD Baground Our treatent of the vetor potental has drawn on the onohroat plane-wave soluton to the wave-euaton for A. The uantu treatent of lght as a partle desrbes the

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundgl, Hyderbd - 5 3 FRESHMAN ENGINEERING TUTORIAL QUESTION BANK Nme : MATHEMATICS II Code : A6 Clss : II B. Te II Semester Brn : FRESHMAN ENGINEERING Yer : 5 Fulty

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

Complement of an Extended Fuzzy Set

Complement of an Extended Fuzzy Set Internatonal Journal of Computer pplatons (0975 8887) Complement of an Extended Fuzzy Set Trdv Jyot Neog Researh Sholar epartment of Mathemats CMJ Unversty, Shllong, Meghalaya usmanta Kumar Sut ssstant

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

EXACT TRAVELLING WAVE SOLUTIONS FOR THREE NONLINEAR EVOLUTION EQUATIONS BY A BERNOULLI SUB-ODE METHOD

EXACT TRAVELLING WAVE SOLUTIONS FOR THREE NONLINEAR EVOLUTION EQUATIONS BY A BERNOULLI SUB-ODE METHOD www.arpapress.co/volues/vol16issue/ijrras_16 10.pdf EXACT TRAVELLING WAVE SOLUTIONS FOR THREE NONLINEAR EVOLUTION EQUATIONS BY A BERNOULLI SUB-ODE METHOD Chengbo Tan & Qnghua Feng * School of Scence, Shandong

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES COMPUTATIONAL FLUID DYNAMICS: FDM: Appromaton of Second Order Dervatves Lecture APPROXIMATION OF SECOMD ORDER DERIVATIVES. APPROXIMATION OF SECOND ORDER DERIVATIVES Second order dervatves appear n dffusve

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab Lecture Cer Models Cer Clbrton rofessor Slvo Svrese Coputtonl Vson nd Geoetry Lb Slvo Svrese Lecture - Jn 7 th, 8 Lecture Cer Models Cer Clbrton Recp of cer odels Cer clbrton proble Cer clbrton wth rdl

More information

Gradient Descent Learning and Backpropagation

Gradient Descent Learning and Backpropagation Artfcal Neural Networks (art 2) Chrstan Jacob Gradent Descent Learnng and Backpropagaton CSC 533 Wnter 200 Learnng by Gradent Descent Defnton of the Learnng roble Let us start wth the sple case of lnear

More information

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate The Frst Internatonal Senar on Scence and Technology, Islac Unversty of Indonesa, 4-5 January 009. Desgnng Fuzzy Te Seres odel Usng Generalzed Wang s ethod and Its applcaton to Forecastng Interest Rate

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

Abstract tensor systems and diagrammatic representations

Abstract tensor systems and diagrammatic representations Astrt tensor systes n grt representtons Jāns Lzovss Septeer 28, 2012 Astrt The grt tensor lulus use y Roger Penrose ost notly n [7]) s ntroue wthout sol thetl grounng. We wll ttept to erve the tools of

More information

Fermi-Dirac statistics

Fermi-Dirac statistics UCC/Physcs/MK/EM/October 8, 205 Fer-Drac statstcs Fer-Drac dstrbuton Matter partcles that are eleentary ostly have a type of angular oentu called spn. hese partcles are known to have a agnetc oent whch

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

A combinatorial proof of multiple angle formulas involving Fibonacci and Lucas numbers

A combinatorial proof of multiple angle formulas involving Fibonacci and Lucas numbers Notes on Number Theory and Dscrete Mathematcs ISSN 1310 5132 Vol. 20, 2014, No. 5, 35 39 A combnatoral proof of multple angle formulas nvolvng Fbonacc and Lucas numbers Fernando Córes 1 and Dego Marques

More information

The calculation of ternary vapor-liquid system equilibrium by using P-R equation of state

The calculation of ternary vapor-liquid system equilibrium by using P-R equation of state The alulaton of ternary vapor-lqud syste equlbru by usng P-R equaton of state Y Lu, Janzhong Yn *, Rune Lu, Wenhua Sh and We We Shool of Cheal Engneerng, Dalan Unversty of Tehnology, Dalan 11601, P.R.Chna

More information

First Midterm Examination

First Midterm Examination 24-25 Fll Semester First Midterm Exmintion ) Give the stte digrm of DFA tht recognizes the lnguge A over lphet Σ = {, } where A = {w w contins or } 2) The following DFA recognizes the lnguge B over lphet

More information

Xiangwen Li. March 8th and March 13th, 2001

Xiangwen Li. March 8th and March 13th, 2001 CS49I Approxaton Algorths The Vertex-Cover Proble Lecture Notes Xangwen L March 8th and March 3th, 00 Absolute Approxaton Gven an optzaton proble P, an algorth A s an approxaton algorth for P f, for an

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Valuated Binary Tree: A New Approach in Study of Integers

Valuated Binary Tree: A New Approach in Study of Integers Internatonal Journal of Scentfc Innovatve Mathematcal Research (IJSIMR) Volume 4, Issue 3, March 6, PP 63-67 ISS 347-37X (Prnt) & ISS 347-34 (Onlne) wwwarcournalsorg Valuated Bnary Tree: A ew Approach

More information

6 Random Errors in Chemical Analysis

6 Random Errors in Chemical Analysis 6 Rndom Error n Cheml Anl 6A The ture of Rndom Error 6A- Rndom Error Soure? Fg. 6- Three-dmenonl plot howng olute error n Kjeldhl ntrogen determnton for four dfferent nlt. Anlt Pree Aurte 4 Tle 6- Pole

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

On Syndrome Decoding of Punctured Reed-Solomon and Gabidulin Codes 1

On Syndrome Decoding of Punctured Reed-Solomon and Gabidulin Codes 1 Ffteenth Internatonal Workshop on Algebrac and Cobnatoral Codng Theory June 18-24, 2016, Albena, Bulgara pp. 35 40 On Syndroe Decodng of Punctured Reed-Soloon and Gabduln Codes 1 Hannes Bartz hannes.bartz@tu.de

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information