AB INITIO DENSITY FUNCTIONAL THEORY FOR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES

Size: px
Start display at page:

Download "AB INITIO DENSITY FUNCTIONAL THEORY FOR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES"

Transcription

1 AB INITIO DENSITY UNCTIONAL THEORY OR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES By DENIS BOKHAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL O THE UNIVERSITY O LORIDA IN PARTIAL ULILLMENT O THE REQUIREMENTS OR THE DEGREE O DOCTOR O PHILOSOPHY UNIVERSITY O LORIDA 007

2 007 Dens Bohn

3 ACKNOWLEDGMENTS I would le to thn professors Hen Monhorst nd So Hrt for helpfull dsussons. I wnt to thn lso Dr. Igor Shwegert nd Dr. Norert loe for the helpng me to wrte OEP ode. My spel thns to Ttyn nd Thoms Alert for help wth the preprton of the dssertton text. 3

4 TABLE O CONTENTS pge ACKNOWLEDGMENTS LIST O TABLES LIST O IGURES ABSTRACT CHAPTER INTRODUCTION A Into Wvefunton-Bsed Methods Hrtree-o Method Eletron-Correlton Methods Kohn-Shm Densty untonl Theory Tme-Dependent Densty untonl Theory Tme-Dependent Densty untonl Theory Lner Response Theory 3..3 Prolems wth Conventonl untonls Ortl-Dependent untonls A Into Densty untonl Theory INTERCONNECTION BETWEEN UNCTIONAL DERIVATIVE AND E- ECTIVE OPERATOR APPROACHES TO AB INITIO DENSITY UNC- TIONAL THEORY Equtons for the Exhnge-Correlton Potentl n the untonl Dervtve Approh Equtons for the Exhnge-Correlton Potentl n n Effetve Opertor Approh Interonneton n Artrry Order Dgrmmt untonl Dervtves Dgrmmt untonl Dervtves n Seond-Order Mny-Body Perturton Theory Interonneton n Hgher Orders Interonneton n Infnte Order AB INITIO TIME-DEPENDENT DENSITY UNCTIONAL THEORY EM- PLOYING SECOND-ORDER MANY-BODY PERTURBATION OPTIMIZED EECTIVE POTENTIAL Dgrmmt Construton of the Exhnge-Correlton Kernels ormlsm An Exmple: Dgrmmt Dervton of Exhnge-Only Kernel.. 5 4

5 3. Kernel for the Seond-Order Optmzed Effetve Potentl Mny-Body Perturton Theory Correlton Potentl Propertes of the Correlton Kernel Numerl Testng Conlusons AB INITIO DENSITY UNCTIONAL THEORY OR SPIN-POLARIZED SYSTEMS Theory Results nd Dsusson Totl Energes Ionzton Potentls Dssoton Energes Snglet-Trplet Seprton n Methylene Conlusons EXACT-EXCHANGE TIME-DEPENDENT DENSITY UNCTIONAL THE- ORY OR OPEN-SHELL SYSTEMS Ext-Exhnge Densty untonl Theory Tme-Dependent Optmzed Effetve Potentl Theory nd Implementton Numerl Results Chrge-Trnsfer Exted Sttes Conlusons EXACT EXCHANGE TIME-DEPENDENT DENSITY UNCTIONAL THE- ORY OR HYPERPOLARIZABILITIES Theory Tme-Dependent Densty untonl Theory Response Propertes Dgrmmt Dervton of the Seond Ext-Exhnge Kernel Propertes of the Seond Ext-Exhnge Kernel Numerl Results Conlusons APPENDIX A B INTERPRETATION O DIAGRAMS O THE SECOND-ORDER MANY- BODY PERTURBATION THEORY OPTIMIZED EECTIVE POTENTIAL CORRELATION KERNEL INTERPRETATION O DIAGRAMS O EXACT-EXCHANGE SECOND KERNEL REERENCES

6 BIOGRAPHICAL SKETCH

7 Tle LIST O TABLES pge 3- Ortl energes nd zero-order pproxmtons to extton energes Extton energes of Ne tom usng OEP-MBPT( Kohn-Shm ortl energes Extton energes of Ne tom usng exhnge-only ortl energes Extton energes of Ne tom usng ortl energes nd ortls from OEP(s. All equtons for TDDT re the sme Totl energes Ionzton potentls (n e. v Dssoton energes (n J/mol Snglet nd trplet energes of methylene Totl (n. u. nd ortl (n e. v. energes of Ne tom Totl nd ortl energes of He tom Extton energes (V - vlene stte, R - Ryderg Ortl energes (n e. v. of Ne tom Ionzton energes (n e. v Stt polrzltes (n. u Isotrop C 6 oeffents (n. u Hyperpolrzltes of severl moleules (n. u

8 gure LIST O IGURES pge 4- Exhnge nd orrelton potentls of L tom (rdl prt. A Exhnge potentl. B Correlton potentl Exhnge nd orrelton potentls of O moleule ross the moleulr xs. A Exhnge potentl. B Correlton potentl LH potentl energy urve OH potentl energy urve H potentl energy urve Exhnge potentls of Ne tom, otned n dfferend ss sets A Π hrge-trnsfered exted stte of He... Be LUMO-HOMO ortl energy dfferene

9 Astrt of Dssertton Presented to the Grdute Shool of the Unversty of lord n Prtl ulfllment of the Requrements for the Degree of Dotor of Phlosophy AB INITIO DENSITY UNCTIONAL THEORY OR OPEN - SHELL SYSTEMS, EXCITED STATES AND RESPONSE PROPERTIES Chr: Rodney J. Brtlett Mor: Chemstry By Dens Bohn August 007 A nto densty funtonl theory (DT sed on the optmzed effetve potentl (OEP method s new pproh to study the eletron struture of tom, moleulr nd sold stte systems. It ontns elements of oth wve funton nd densty funtonl theores nd s free from lmttons of onventonl DT euse of usng ortldependent funtonls derved from systemt pproxmtons of the wve funton theory. A nto DT methods wth exhnge-orrelton funtonls sed on mny - ody perturton theory (MBPT hve een derved nd mplemented reently. The exhnge-orrelton potentls derved from MBPT hve omplted struture nd ther dervton n hgher-order of MBPT y the use of the hn-rule for funtonl dfferentton requres sgnfnt effort. To fltte suh dervtons, I developed spel dgrmmt formlsm for tng funtonl dervtves. An lterntve wy to onstrut OEP MBPT exhnge-orrelton potentls s to use the densty ondton. It mes t possle to otn potentls for dfferent prttonngs of the full moleulr Hmltonn wth MBPT. Usng the dgrmmt formlsm developed for tng funtonl dervtves, we show n order-y-order equvlene etween the funtonl dervtve nd the densty ondton pprohes to OEP MBPT for the se of the Kohn- Shm prttonng of the moleulr Hmltonn. or ny other prttonngs, dfferent 9

10 exhnge-orrelton potentls re produed y the funtonl dervtve nd densty ondton pprohes. The tme-dependent extenson of OEP n the dt pproxmton wth exhnge-only potentls nd ernels ws reently mplemented nd ppled to some moleulr systems. The orrespondng extton energes nd polrzltes re n good greement wth tme-dependent Hrtree-o results. However, suh results nnot e used for omprson wth expermentl vlues due to l of desrpton of eletron orrelton effets. In order to ount for orrelton effets, orrelton ernel orrespondng to the MBPT( potentls hs een derved. Its struture nd propertes re desred n detl. The frst numerl results for extton energes wth pure nto potentls nd ernels re presented. The reently mplemented OEP MBPT( method hs een extended to the se of spn-polrzed open-shell systems. The totl energes otned for severl open-shell systems re very lose to the orrespondng vlues otned wth the hghly-orrelted oupled luster sngles nd doules wth perturtve trples (CCSD(T method. Comprson wth results otned wth the OEP MBPT( exhnge-orrelton potentls nd some densty funtonls hs shown qulttvely norret shpe for some wdely used exhnge-orrelton potentls. Hgher-order response propertes, suh s hyperpolrzltes, re desred very poorly wth onventonl funtonls. The typl reltve errors desred n the lterture re out 00 perent. The reson for the poor desrpton s n norret long-rnge symptot ehvor nd n nomplete nellton of the oulom selfnterton. The OEP method s free from those drws nd lulted vlues of stt hyperpolrzltes wth the exhnge-only potentl re lose to those derved from Hrtree-o theory. The seond ernel requred for lultons of hyperpolrzltes wthn the DT frmewor hs een derved for OEP potentls y usng the developed 0

11 dgrmmt tehnque. The struture nd propertes of the seond OEP ernel re dsussed.

12 CHAPTER INTRODUCTION The defnton of heml reton s trnsformton of one sustne to nother t the moleulr level mens regroupng of nule nd eletrons. In the dt pproxmton, suh nuler regroupngs n e presented s moton n the feld of some potentl, lso nown s potentl energy surfe. Potentl energy surfes n e otned y solvng the egenvlue prolem wth the so lled eletron Hmltonn ˆ H el = ele ele = = Nul A= ele Z A r R A + < r r ( Whole nuler oordntes re treted s set of prmeters. If there re more thn two prtles n the system, the egenvlue prolem ˆ H el (R...R M Ψ(r...r N, R...R M = E(R...R M Ψ(r...r N, R...R M ( n not e solved nlytlly. or the lulton of eletron energy levels, some pproxmtons hve to e used. Modern quntum hemstry nludes three lsses of methods for the soluton of the eletron prolem. The frst one, lled wve funton theory, uses dfferent pproxmtons for the lulton of the wve funton Ψ(r...r N, R...R M nd the orrespondng energy E(R...R M. The seond lss, nown s densty funtonl theory uses the densty s prmry oet. Wthn the DT pproh, the energy s wrtten s funtonl of densty, nd the onstruton of the wve funtons s not neessry. The thrd lss of methods uses whole densty mtrx. The densty mtrx renolmlzton group (DMRG nd the densty mtrx funtnl theory (DMT re typl methods of the thrd lss. A nto DT ontns elements of the frst two lsses. It uses lol multpltve potentl, typl for the DT pproh. However, the orrespondng exhnge-orrelton

13 potentls re derved from ortl-dependent energy funtonls, ten from wve funton theory. The mn dvntge of wve-funton sed methods s the posslty to otn systemtlly mprovle results. Ths mens tht wth the extenson of the ss set, t wll e possle to otn more urte energes nd wve funtons, nd n the omplete set t s possle to get the ext soluton of the Shrödnger equton. On the other hnd, rgorous nto methods usng wve funton methods re usully very ostly for omputtons on lrge moleules. A nto wve funton methods n usully e ppled only for systems wth 0-30 toms n resonle ss sets. The mn DT dvntge s smll omputtonl ost; t n hndle systems wth severl hundreds of toms. However, most of onventonl densty funtonls do not hve the pty to produe systemtlly mprovle results. A nto DT s ple of produng systemtlly mprovle results, ut t s omputtonlly more ostly thn DT wth onventonl funtonls. Despte ts omputtonl ost, nto DT n e used s method for the lrton of denstydependent funtonls. An lterntve wy of provdng suh nformton s Quntum Monte-Crlo (QMC method, however, QMC results re not vlle for moleules nd open-shell systems.. A Into Wvefunton-Bsed Methods.. Hrtree-o Method In the Hrtree-o method, wve funton s onsdered s Slter determnnt[] ϕ (r ϕ (r N Ψ H =.. ( 3 ϕ N (r ϕ N (r N The sngle-eletron wve funtons ϕ (r (or ortls re determned y the ondton tht the orrespondng determnnt mnmzes the expetton vlue of the eletron 3

14 Hmltonn E H = mn < Ψ H Ĥ Ψ H > ( 4 suet to the ondton of orthonormlty on the ortls < ϕ ϕ >=. Susttutng the explt form of the wve funton from Equton ( 3 nto n expetton vlue, t s possle to wrte the Hrtree-o energy n terms of ortls E H = funtonl ele < ϕ Nul A Z A r R A ϕ > + ele (< ϕ ϕ ϕ ϕ > < ϕ ϕ ϕ ϕ > To derve the Hrtree-o equtons t s onvenent to mnmze the followng, ( 5 I = E H, ε < ϕ ϕ > ( 6 where ε - re Lgrnge multplers. Mnmzton of the funtonl from Equton ( 6 requres tht the funtonl dervtves of I wth respet to the ortls vnsh I ϕ = 0, I ϕ = 0 ( 7 Tng nto ount Equton ( 3 ondton ( 7 n e presented s fϕ = ε ϕ ( 8 The opertor f hs the struture f = + ˆv ext + ˆv H + ˆv nlx ( 9 4

15 where ˆv H (r = ele ˆv ext (r = ϕ (r ϕ (r dr = r r Nul A Z A r R A ρ(r r r dr ele ρ(r = ϕ (rϕ (r ( 0 The Hrtree-o exhnge opertor ˆv nlx s non-lol,. e. t nnot e presented s n nlytl funton of sptl vrles. However, t s possle to wrte ts ton on some ortl ϕ ˆvnlxϕ(r = ϕ (r ϕ (r ϕ (rdr ( r r Sne the o opertor ˆf s hermtn nd v H (r nd ˆv nlx ϕ (r re nvrnt wth respet to untry trnsformtons of ortls, Equton ( 8 n e rewrtten n the nonl form fϕ = ε ϕ ( Ths form of the Hrtree-o method s most ommon for prtl mplementtons. The Hrtree-o method s system of ntegro-dfferentl equtons, whh nnot e solved nlytlly. Itertve methods n e used for the pproxmte soluton of the Hrtree-o equtons wth gven ury. As frst step some guess of ortls should e ssumed nd susttuted nto the equtons. Durng the seond step the system of equtons s solved nd new guess for the ortls s otned. Then those new ortls should e susttuted nto the equtons gn, untl the totl energy nd densty t suessve tertons dffers less thn requred ury. Ths s nown s the self-onsstent feld (SC method. or prtl purposes moleulr ortls re usully presented s eng deomposed nto Gussn funtons, entered on the nule. In ths se the numer of solutons s muh lrger thn the numer of eletrons. To dede whh ortls should e nluded 5

16 nto the Slter determnnt, the Aufu prnple should e used. Consder the nresng ortl energes n the order ε < ε < ε 3... < ε N... < ε M ( 3 where N - numer of eletrons nd M - numer of solutons. Aordng to the Aufu prnple, the orrespondng frst N spn-ortls should onsttute the Slter determnnt. Suh ortls re lled ouped ortls nd the rest of the ortls lled vrtul ortls... Eletron-Correlton Methods The Hrtree-o method n reover up to 99% of the totl eletron energy. Yet, even the remnng error of % s too g from the pont of vew of hemstry nd n led to qulttvely wrong predtons of eletron struture. The dfferene etween the Hrtree-o nd the ext soluton s due to eletron - orrelton effets. The prmry onern of eletron-orrelton methods s to develop mny-ody tehnques for gong eyond the Hrtree-o pproxmton nd tng nto ount the smultneous eletron-eletron ntertons. These methods, ontrry to the reltvely smple Hrtree-o pproxmton, n e qute hllengng oneptully nd ostly, omputtonlly. The orrelton lmt n e otned from the ull Confgurton Interton (CI method. In ths pproh the totl eletron wve funton s expressed n the followng wy o vrt o vrt Ψ CI = Φ H + C Φ + C Φ +... ( 4 where Φ,Φ, et re Slter determnnts, formed y susttuton of ouped ortls,... y vrtul ortls,... wth the orrespondng reorderng of rows. The expnson oeffents re found from the vrtonl ondton on the expetton vlue of the Hmltonn E CI = < Ψ mn CI Ĥ Ψ CI > C,C,... < Ψ CI Ψ CI > ( 5 6

17 However, the numer of possle exted determnnts grows rpdly wth the numer of eletrons nd ss funtons n the system. Therefore, the full CI method s omputtonlly ntrtle for ny ut very smll systems. Among the pproxmte eletron-orrelton pprohes, the most ommon re the Coupled Cluster method[] nd Mny - Body Perturton Theory[3]. Any trunted verson of the CI method hs qulttvely wrong ehvor of the energes nd wve funtons whle nresng the numer of prtles n the system. Therefore, the CI methods wth lmted level of exttons nnot e used for hghly-orrelted systems. The Coupled Cluster method nd Mny - Body Perturton theores re free from ths l of extensvty flure nd re very ommon for the moleulr omputtons. In some ses perturton theory n provde n urte desrpton of eletron-orrelton effets t muh lower ost thn neessry for the Coupled Cluster method. The seond-order Rylegh-Shrödnger perturton theory s the smplest nd lest expensve nto method for tng nto ount eletron orrelton effets. In ths perturton theory the soluton of Shrödnger equton ĤΨ = EΨ ( 6 n e found usng the Slter determnnt s referene. Generlly, suh determnnt my e onstruted from the ortls, generted y some one-eletron opertor ĥϕ p = ( + ûϕ p = ε p ϕ p ( 7 The frst step of ny perturton theory s the prttonng of the Hmltonn nto zero-order H 0 nd perturton Ĥ = Ĥ0 + ˆV ( 8 where Ĥ 0 Φ = E 0 Φ = ele (h Φ = ( ε Φ ( 9 7

18 The perturton opertor s usully defned s the dfferene etween the full nd the zero-order Hmltonns ˆV = Ĥ ele ele Ĥ0 = ˆv ext (r û(r + ele r r ( 0 Introdung λ s the smll perturton prmeter, the Hmltonn nd the wve funton n e wrtten s Ĥ = Ĥ0 + λ ˆV ( Ψ = Φ + λψ ( + λ Ψ ( +... ( E = E 0 + λe ( + λ E ( +... ( 3 These order-y-order orretons n e found y susttutng expnsons (, ( nd ( 3 nto ( 6 nd olletng terms wth the orrespondng order n λ (E 0 Ĥ0 Ψ ( >= ( ˆV E ( Φ > ( 4 (E 0 Ĥ0 Ψ ( >= ( ˆV E ( Ψ ( > E ( Φ > ( 5 Choosng the perturtve orretons to e orthogonl to the referene determnnt < Ψ (n Φ >=0 (so lled ntermedte normlzton t s esy to get the expressons for perturtve orretons t ny order. Proetng the equtons ( 4 nd ( 5 onto the referene determnnt expressons for energy orretons re otned E ( =< Φ V Φ > ( 6 E ( =< Φ V Ψ ( > ( 7 Expressons for the order-y-order expnson of wve funtons n e wrtten usng the resolvent opertor[4] Ψ ( >= ˆR 0 V Φ > ( 8 Ψ ( >= ˆR 0 ( ˆV E ( Ψ ( >= ˆR 0 ( ˆV E ( ˆR 0 ˆV Φ > ( 9 8

19 where ˆR 0 = ˆQ E 0 Ĥ0 ( 30 nd ˆQ = - Φ >< Φ s the proetor onto the omplementry spe of Φ >. Sne Ĥ0 s dgonl n the ss of Slter determnnts, t s possle to wrte ˆR 0 = n 0 or the spel se of the Hrtree-o referene determnnt Φ n >< Φ n E 0 E n ( 3 E 0 + E ( =< Φ Ĥ0 Φ > + < Φ ˆV Φ >= E H ( 3 the seond-order orreton to the energy s E ( = o uno,, < > (< > < > ε + ε ε ε ( 33 or the se of more generl referene determnnt, onstruted from ortls of Equton ( 7, the seond-order orreton to the energy hs the followng struture o E ( = uno < ĥ ˆf > ε ε + o, uno, < > (< > < > ε + ε ε ε ( 34. Kohn-Shm Densty untonl Theory Densty untonl Theory s n lterntve pproh to the desrpton of the eletron struture of moleulr nd sold-stte systems. Ths method uses eletron densty nsted of the wve funton s the s oet of theory. The mthemtl ss of DT s provded y two theorems, ntrodued y Kohn, Hohenerg nd Shm. The frst one, nown s Hohenerg-Kohn theorem[5], estlshes one-to-one mppng etween the ground-stte eletron densty nd the externl potentl. The externl potentl defnes prtulr oet (tom, moleule, et nd, euse of the one-to-one mppng, the densty ontns ll the nformton out the system. In prtulr, the ground-stte energy n e wrtten s funtonl of the densty. To get the ground stte energy n 9

20 terms of the densty, the Kohn-Shm theorem[6] n e used. Ths theorem sttes, tht the ground-stte energy s funtonl of densty hs mnmum, f the densty s ext. Therefore, gven the energy funtonl, one n otn the ground-stte densty nd energy y vrtonl mnmzton of the funtonl. The forml defnton of DT does not tell how to onstrut suh funtonl. Severl pproxmte forms hve een suggested, however, whose ury vres gretly for dfferend propertes. The net energy of eletron moton s prtulrly dffult to pproxmte s densty funtonl. The s de of Kohn nd Shm ws to trnsform the vrtonl serh over the densty nto serh over the ortls tht ntegrte to gven trl densty ( + v s (rϕ p (r = ε p ϕ p (r ( 35 Suh trnsformton does not restrt the vrtonl spe, provded tht every physlly menngful densty orresponds to unque set of ortls (the v-representlty ondton. The use of the Kohn-Shm SC model ensures not only tht the vrtonl densty s fermon densty, ut t lso provdes good pproxmton for the net energy. If ortls ntegrte to the true densty t s nturly to expet tht T s = ele ounts for lrge prt of rel net energy. < ϕ ϕ > ( 36 The rest of the unnown terms re grouped nto the exhnge-orrelton funtonl E x [ρ] = E[ρ] T s E ext E H ( 37 where E H s Hrtree energy nd n e esly e lulted from gven set of Kohn- Shm ortls. The non-ntertng net energy T s s supposed to reprodue lrge prt of the ext net energy T. Therefore, E x s eser to pproxmte s densty funtonl thn the totl energy E. 0

21 The defnton of the exhnge prt of E x n te nto ount ts defnton n wve-funton theory, E x =< Φ s V Φ s > E H ( 38 Kohn-Shm ortls re defned y n effetve lol potentl v s. Trnsformng the vrtonl ondton on the energy funtonl nto ondton for the onstrned serh over the ortls, t s possle to wrte v s (r = (E[ρ] T s ρ = (E ext + E H + E x ρ = v ext + v H + v x ( 39 where the exhnge-orrelton potentl s defned s the funtonl dervtve of the exhnge-orrelton energy v x (r = E x ρ(r ( 40 One E x s pproxmted nd the Kohn-Shm equtons re solved, the totl energy n e found from the followng expresson E = = ε dr dr ρ(r ρ(r r r dr ρ r v x (r + E x ( 4 The soluton of the Kohn-Shm equtons s ompletely nlogous to the soluton for the Hrtree-o se, nd t s usully done y n SC proedure. After self-onssteny s rehed, the Kohn-Shm ortls re gurnteed to reprodue the true densty of the mny-eletron system. Vrtully ll modern mplementtons of DT use the Kohn-Shm sheme. However, the theory stll hs open questons s to how to onstrut the exhnge-orrelton funtonl. Thus, the mn hllenge for the theoretl development of DT remns the onstruton of urte exhnge-orrelton funtonls... Tme-Dependent Densty untonl Theory The Kohn-Shme sheme provdes the posslty to desre ground stte energes nd denstes. or the desrpton of extton energes tme-dependent generlzton of onventonl DT n e used. Ordnry tme-dependent DT s sed on the exstene

22 of n ext mppng etween denstes nd externl potentls. In the ground stte formlsm, the exstene proof reles on the Rylegh-Rtz mnmum prnple for the energy. A strghtforwrd extenson to the tme-dependent domn s not possle sne mnmum prnple s not vlle n ths se. The exstene proof for the one-to-one mppng etween tme-dependent potentls nd tme-dependent denstes, ws frst gven y Runge nd Gross[7]. We n strt from the tme-dependent Shrödnger equton Ψ(t t = Ĥ(tΨ(t ( 4 evolvng from fxed ntl mny-prtle stte Ψ(t 0 = Ψ 0 ( 43 under the nfluene of dfferent externl potentls v(r,t. or eh fxed ntl stte Ψ 0, the forml soluton of the Shrödnger equton ( 4 defnes mp A : v(r, t Ψ(t ( 44 etween the externl potentl nd the orrespondng tme-dependent mny-prtle wve funton nd seond mp B : Ψ(t ρ(r, t =< Ψ(t ˆρ(r, t Ψ(t > ( 45 Thus, the followng mppng n e estlshed: G : v(r, t ρ(r, t ( 46 The Runge-Gross theorem estlshes tht the G mppng s nvertle up to some ddtve, tme-dependent onstnt. In other words, two denstes ρ(r, t nd ρ (r, t evolvng from the ommon ground stte Ψ 0 under the nfluene of potentls v(r,t nd

23 v (r,t re lwys dfferent, f ntrodued v(r, t v (r, t + C(t ( 47 After nvertlty for the G mppng s estlshed, the ton funtonl n e A[ρ] = t nd the vrtonl ondton n e ppled, dt < Ψ[ρ](t Ĥ Ψ[ρ](t > ( 48 t 0 t A[ρ] ρ(r, t = 0 ( 49 Usng the sme mnpultons s for the ground stte set of one-prtle equtons n e derved where t ϕ (r, t = ( + v s [ρ(r, t]ϕ (r, t ( 50 v s [ρ(r, t] = v ext (r, t + dr ρ(r, t r r + v x[ρ](r, t ( 5 The gret dvntge of the tme-dependent Kohn-Shm sheme les n ts omputtonl smplty ompred to other eletron-orrelton methods. The tme-dependent Kohn-Shm sheme wth explt tme-dependene of the densty nd the potentl n e ppled for ny type of externl, tme-dependent potentls. However, when the tmedependent externl potentl s smll t n e treted wth tme-dependent perturton theory. If the ppled perturton s perod eletromgnet feld, t s more onvenent to use response theory... Tme-Dependent Densty untonl Theory Lner Response Theory Consder the N-eletron system eng ntlly,. e. t t < t 0 n ts ground stte. In ths se the ntl densty ρ 0 n e lulted from the ordnry ground-stte Kohn- Shm equton ( + v 0 (r + dr ρ 0 (r r r + v x[ρ 0 ](rϕ (0 (r = ε (0 ϕ (0 (r ( 5 3

24 At t = t 0 the perturton s ppled so tht the totl potentl s gven y v(r, t = v 0 (r + v (r, t ( 53 where v (r, t=0 for t t 0. The oetve s to lulte the lner densty response ρ (r, t to the perturton v (r, t. Conventonlly, ρ (r, t s omputed from the full lner response funton χ s ρ (r, t = dr dt χ(r, t, r, t v (r, t ( 54 t 0 Sne the tme-dependent Kohn-Shm equtons ( 50 provde formlly ext wy of lultng the tme-dependent densty, t s possle to ompute ext densty response ρ (r, t s the response of the non-ntertng system ρ (r, t = dr dt χ KS (r, t, r, t v s ( (r, t ( 55 t 0 where v s ( (r, t s the effetve tme-dependent potentl evluted to frst order n the perturng potentl,.e., v s ( (r, t = v (r, t + dr ρ (r, t r r + dr dt f x (r, t, r, t ρ (r, t ( 56 The exhnge-orrelton ernel f x s gven y the funtonl dervtve of v x f x (r, t, r, t = v x[ρ](r, t ρ(r, t ( 57 t ρ = ρ 0. Whle the full response funton χ s very hrd to lulte, the non-ntertng χ KS n e omputed frly esly. In terms of the stt Kohn-Shm ortls the ourer trnsform of χ KS (r, t, r, t wth respet to (t t n e expressed s χ KS (r, r, ω = lm 0+ o uno ϕ (rϕ (rϕ (r ϕ (r ω (ε ε ( 58 4

25 Equtons ( 55 nd ( 56 re the ss of lner response theory. Sne equton ( 55 s not lner wth respet to ρ the soluton should e otned y some tertve proedure. However, for ll prtl purposes dret use of equton ( 55 s not onvenent. To get more onvenent form, the followng mtrx element should e onsdered < ϕ ρ (ω ϕ >=< ϕ v (ω ϕ > + drϕ (r( dr ρ (r, ω r r ϕ (r + + drϕ (r( dr f x (r, r, ωρ (r, ωϕ (r ( 59 On the other hnd, < ϕ ρ (r, ω ϕ > n e expressed n terms of response funton o ρ (r, ω = uno P (ωϕ ϕ + P (ωϕ ϕ ( 60 where P (ω = < ϕ v (ω ϕ >, P (ω = < ϕ v (ω ϕ > ω + (ε ε (ε ε ω Susttutng equton ( 6 nto equton ( 59 we hve ( 6 o uno P (ω(ω + ε ε =< ϕ v (ω ϕ > + ([< ϕ ϕ ϕ ϕ > + < ϕ ϕ f x (ω ϕ ϕ >]P + [< ϕ ϕ ϕ ϕ > + < ϕ ϕ f x (ω ϕ ϕ >]P o uno P (ω(ε ε ω =< ϕ v (ω ϕ > + ([< ϕ ϕ ϕ ϕ > + < ϕ ϕ f x (ω ϕ ϕ >]P + [< ϕ ϕ ϕ ϕ > + < ϕ ϕ f x (ω ϕ ϕ >]P ( 6 Introdung the nottons A, = (ε ε + < ϕ ϕ ϕ ϕ > + < ϕ ϕ f x (ω ϕ ϕ > B, =< ϕ ϕ ϕ ϕ > + < ϕ ϕ f x (ω ϕ ϕ > ( 63 5

26 equton ( 6 n e rewrtten n the followng mtrx form A B B + ω 0 P A 0 P + = v (ω v + (ω ( 64 Ths equton provdes posslty to lulte the lner response of the densty, used y the externl perturton v (r, ω. If the frequeny of the ppled eletromgnet feld s equl to some resonne frequeny (.e. frequeny, whh orrespond to trnston to some exted stte even n nfntesml perturton uses fnte response of the densty. In ths se equton ( 64 n e rewrtten s [8 ] A B B P = ω P A P + P + ( 65 Equton ( 65 s ommon for the lulton of extton energes wth tmedependent densty funtonl theory (TDDT. Most modern mplementtons of TDDT use the frequeny-ndependent exhnge-orrelton ernels, defned s smple funtonl dervtve f x (r, r = V x(r ρ(r Suh n pproh s nown s the dt pproxmton. If the exted stte orresponds to the promoton of sngle eletron, the dt pproxmton s pplle nd lulted trnston frequenes re qute urte. However, f there s promoton of two eletrons tng ple, the dt pproxmton wors very poorly euse the ( 66 underlyng equtons hve no solutons, tht orrespond to the promoton of two prtles...3 Prolems wth Conventonl untonls The onventonl pproh s to pproxmte the energy funtonl y some nlytl expresson of the densty nd ts grdents. The effetve potentl n then e wrtten n nlytl form, nd the Kohn-Shm equtons n e solved redly. There re severl levels of pproxmton for exhnge-orrelton funtonls. The strtng pont for the 6

27 onstruton of pproxmte funtonls s the Lol Densty Approxmton (LDA, where the energy s gven through n ntegrl of lol funtonl of the densty. The seond level s Generlzed Grdent Approxmton (GGA funtonls, whh mprove upon LDA y the ddton of the dependene on the grdent of the densty. The thrd level, nown s met-gga, ontns lso dependene upon the grdents of the Kohn-Shm ortls. or the GGA nd the met-gga there s the posslty to hoose form of funtonl. A numer of dfferent forms hve een suggested. A stndrd wy of hoosng the form of GGA nd met-gga funtonls s to stsfy set of theorems, whh re nown to e stsfed y the ext funtonl. Some funtonls ontn set of prmeters to reprodue expermentl dt. Suh funtonls re lled sememprl. There re lso funtonls whh do not ontn prmeters ut stsfy n extended set of theorems (non-emprl funtonls. Kohn-Shm DT wth onventonl funtonls n produe very urte results for some propertes. Vlues of the totl energy, otned wth GGA re usully omprle wth some nto orrelted results, le MBPT( or CCSD. Ths s gret dvntge of onventonl DT. However, the ury of GGA funtonls s restrted y ts nlytl form. Generlzed grdent pproxmton exhnge funtonls nnot provde the ext elmnton of oulom self-nterton of the Hrtree energy. Sne the exhnge energy s muh lrger thn the orrelton energy, n nomplete elmnton of self-nterton n sgnfntly redue the ury of the totl energy. Prtulrly, the mposslty to desre wely-ntertng systems, ounded mostly y dsperson fores, rses from n nomplete elmnton of self-nterton nd the wrong ehvor of the exhnge-orrelton funtonls wth the seprton of the system onto severl frgments. Although the exhnge-orrelton energes re qute urte wth GGA funtonls, the orrespondng potentls re not nerly urte, espelly n the nter-shell nd symptot regons. As onsequene, the ury of the densty s muh lower thn the ury for the energy. urthermore, the qulttvely norret potentls redue the 7

28 usefulness of the Kohn-Shm ortls nd ortl energes for the lulton of groundstte propertes. Extton energes nd response propertes re lso very senstve to the form of the potentl nd ther desrpton wth GGA re sometmes very nurte. Some of the prolems n e fxed wthout hngng the funtonl form. Severl post-sc orretons hve een suggested to prtlly remove the self-nterton error. or exmple, fter the Kohn-Shn equtons hve een solved, dsperson orreton to the energy s ntrodued to fx the long-rnge symptots of the exhnge potentl. However, suh orretons re very spef for the prtulr funtonl nd the lss of the systems, nd they re nomptle wth eh other. The extenson of GGA to met- GGA does not fx ll these prolems. Ther systemt nd onsstent resoluton s needed to go eyond GGA...4 Ortl-Dependent untonls An lterntve pproh to DT s to ompletely dsmss the onventonl wy of expressng the exhnge-orrelton energy s n explt funtonl of densty. Insted, the exhnge-orrelton energy s expressed n terms of ortls nd ortl energes, yet, the potentls remn mplt funtonls of the densty. In Kohn-Shm DT there s one-to-one mppng etween the densty nd potentl. Sne ortls re generted y n effetve potentl through Kohn-Shm equtons, there s one-to-one mppng etween the set of ortls nd the densty. Therefore, ortls nd ortl energes n e onsdered s funtonls of densty. In the se of ortl-dependent energy funtonls orrespondng exhngeorrelton potentls n not e lulted dretly s funtonl dervtves wth respet to densty. Insted, the hn rule should e used for the dervton of orrespondng potentls. Suh potentls re equvlent to the orrespondng potentls from optmzed effetve potentl (OEP method. Therefore, the OEP-sed methods onsttute the ss of DT wth ortl-dependent funtonls. 8

29 The Hrtree-o exhnge funtonl provdes n exhnge prt of ortldependent exhnge-orrelton potentls. Kohn-Shm DT wth OEP exhnge potentls provdes superor results to ll nown densty-dependent exhnge funtonls. To me OEP potentls useful for prtl lultons t s neessry to hve the orrelton potentl, whh n e omned wth t. Conventonl GGA orrelton funtonls re developed together wth the orrespondng exhnge potentls, whh re very nurte. Beuse of ths orrelton potentl of GGA ompenstes errors n the exhnge prt. In most ses GGA orrelton potentls hve n opposte sgn to nerly ext QMC potentls. The orretng terms norported nto orrelton potentls, so t s relly dffult to extrt the rel orrelton prt. So fr, t s not surprsng tht omnng GGA orrelton potentls wth OEP exhnge potentls the ssoted results re nferor to exhnge-only ses. Sne onventonl orrelton funtonls re not omptle wth OEP, the development of ortl-dependent orrelton funtonls s neessry. A nto DT uses ortl-dependent orrelton energy funtonls from the rgorous wve-funton methods. Sne orrespondng orrelton potentls re derved from nto methods, they re omptle wth OEP exhnge potentls. Unle onventonl ones, nto funtonls re systemtlly mprovle, sne one n lwys use hgher-level pproxmton to otn more urte funtonl. They lso hve well-defned lmt represented y the CI method...5 A Into Densty untonl Theory The mn dvntge of ortl-dependent energy funtonls s the ft, tht suh funtonls re nown n nlytl form. Prtulrly, the exhnge funtonl n e wrtten n followng wy E x =< Φ V ee Φ > E H = < ϕ ϕ ϕ ϕ > ( 67, 9

30 Here ortls onsdered s mplt funtonls of the densty nd the orrespondng funtonl dervtve wll produe ext-exhnge (EXX potentl. The most mportnt property of EXX funtonl s tht, unle onventonl densty funtonls, t ompletely nels the self-nterton omponent of Hrtree energy, so the orrespondng EXX potentl wll ompletely elmnte the self-nterton terms n Kohn- Shm equtons. Thus, usng the EXX funtonl nd potentl wll vod mny prolems, used y the self-nterton error n onventonl, pproxmted DT for oth energy nd densty. However, ortl dependene of EXX funtonl uses one omplton. Sne there s no explt dependene upon densty, potentls n not e wrtten dretly. Insted, one must rely on the hn rule, whh tes nto ount the mplt dependene of ortls on the densty, expressng the dervtve of nterest through the produt of nown dervtves. A nto ortl-dependent orrelton energy funtonls suh s MBPT( n e used for the onstruton of orrelton potentls. Suh potentls exht orret C/r 4 symptot ehvor. It ws lso shown tht MBPT( potentls re ext n the hghdensty lmt nd lso very lose to nerly ext QMC potentls. Alterntvely, orrelton potentls n e onstruted from the so lled densty ondton. 30

31 CHAPTER INTERCONNECTION BETWEEN UNCTIONAL DERIVATIVE AND EECTIVE OPERATOR APPROACHES TO AB INITIO DENSITY UNCTIONAL THEORY The use of the Kohn-Shm ortls nd ortl energes to onstrut n mplt densty-dependent energy funtonl usng,e.g perturton theory[, 3] s strghtforwrd pproh to the nto DT. The orrespondng Kohn-Shm potentl n then e otned y tng the funtonl dervtve of the fnte-order energy v the hn rule, tht trnsforms the dervtve wth respet to the densty nto the dervtve wth respet to ortls nd ortl energes[4].ths leds to the Optmzed Effetve Potentl[3, 5] equtons whh n e omplted lredy n seond order[3] Alterntvely, one n determne the frst nd seond order Kohn-Shm potentl y requrng tht the orrespondng frst nd seond order perturtve orretons to the referene densty vnsh.unle the funtonl dervtve pproh suh ondton on the densty n e desred wth stndrd mny-ody tehnques.the reent wor[7] uses dgrms to derve the seond-order OEP equton n systemt nd ompt fshon,whle seond pper [6] does so lgerlly. Both the funtonl dervtve nd densty(effetve opertor pprohes led to extly the sme equton n the frst order[7].however,the funtonl dervtve of the seond energy nvolves ertn type of denomntors tht re not present n the densty ondton(effetve opertor pproh.stll the terms nvolvng suh denomntors n e trnsformed to mth the densty-sed equton extly. Ths vet rses the queston of whether the two pprohes re equvlent n hgher orders,or for dfferent prttonngs of the hmltonn.. Equtons for the Exhnge-Correlton Potentl n the untonl Dervtve Approh To derve the equtons n oth pprohes we frst splt the full eletron hmltonn nto perturton nd zero-order hmltonn: H = H 0 + V ( 3

32 Let us frst onsder the hoe of H 0 s sum of Kohn-Shm ortl energes: H 0 = K ɛ p { + p p } ( p= where K - s the numer of ortls.the rets mens tht the produt of seond quntzton opertors re wrtten n norml order. In the funtonl dervtve method we defne the exhnge-orrelton potentl of the n-th order s: V x (n (r = E(n ρ(r ( 3 where E (n - s the energy of the n-th order of mny-ody perturton theory. In snglereferene mny-ody perturton theory we hve the energy of the nth order s n explt funtonl of the ortls.in the Görlng-Levy pproh ths funtonl s onsdered to e funtonl for the ortl energes lso [4] : E (n = E (n (ϕ...ϕ n, ɛ...ɛ n Another possle onsderton[3],when ortl energes re onsdered to e funtonls over orrespondng ortls E (n = E (n (ϕ...ϕ n, ɛ [ϕ ]...ɛ n [ϕ n ] ( 4 s equvlent to the Görlng-Levy[4] pproh. To onstrut the hn rule we should te nto ount the ft tht the Kohn-Shm ortls re funtonls of V s : E (n = E (n (ϕ (V s...ϕ n (V s ( 5 Then the Kohn-Shm potentl n e onsdered to e funtonl of ρ(r: E (n = E (n [ϕ (V s (ρ(r...ϕ n (V s (ρ(r] ( 6 3

33 Vrton of the energy n e presented n followng form: E (n = p E (n dr ϕ p (r ϕ p(r ( 7 We n wrte down vrtons of the ortls nd the Kohn-Shm potentl too: ϕ p (r ϕ p (r = dr V s (r V s(r ( 8 V s (r = dr V s(r ρ(r ( 9 ρ(r Usng equtons ( 8 nd ( 9 we n rewrte the vrton of the energy n the followng form: E (n = p E (n dr ϕ p (r ϕ p (r dr V s (r dr V s(r ρ(r ( 0 ρ(r Now we n wrte down the hn-rule[3, 4] for the lulton of V (n x : E (n ρ(r = p E (n dr ϕ p (r ϕ p (r V s (r 3 dr 3 V s (r 3 ρ(r = E (n dr 3 V s (r 3 V s (r 3 ρ(r ( Tng nto ount the ft tht[4]: ϕ p (r V s (r = ϕ p (r ϕ q (r ϕ q (r ( ɛ p ɛ q p,q p ρ(r V s (r = X(r, r =, t s possle to wrte n explt expresson for V (n x (r [3] V x (n (r = p,q p ε p V s (r = ϕ p(rϕ p (r ( 3 E (n dr ϕ p (r ϕ q(r ϕ (r ϕ (r ϕ (r ϕ (r ε ε ( 4 dr 3 ϕ p (r 3 ϕ q (r 3 ε p ε q X (r, r 3 ( 5 Usng the ft tht dr X(r, r X (r, r 3 = (r r 3 ( 6 33

34 we n rewrte equton ( 5 s:, ϕ (r ϕ (r < ϕ V n x ϕ > ε ε = p,q p < E(n ϕ p ϕ q > ϕ p(r 3 ϕ q (r 3 ε p ε q ( 7 Usng the ft tht ortls p nd q n e ouped or unouped,we n seprte the rght-hnd ste of equton ( 7 nto four prts:, ϕ (r ϕ (r < ϕ V n x ϕ > ε ε =, < E(n ϕ ϕ > ϕ (r 3 ϕ (r 3 ε ε + +, < E(n ϕ > ϕ (r 3 ϕ (r 3 + < E(n ϕ > ϕ (r 3 ϕ (r 3 + ϕ ε ε ϕ ε ε, +, < E(n ϕ ϕ > ϕ (r 3 ϕ (r 3 ε ε +. ( 8 Ths form of equton ( 8 wll e the ss for the formulton of the dgrmmt rules for tng funtonl dervtves nd for mng the onneton wth n effetve opertor pproh to the OEP-MBPT exhnge - orrelton potentl.. Equtons for the Exhnge-Correlton Potentl n n Effetve Opertor Approh Let us onsder one-prtle densty opertor n seond-quntzed form: ρ(r = p,q < ϕ p (r r ϕ q > + p q ( 9 Usng W theorem,we rewrte ths opertor n norml form wth the Kohn-Shm determnnt s the erm-vuum: ρ(r = p,q < ϕ p (r r ϕ q > { + p q }+ < Φ KS (r r Φ KS >= = p,q N o < ϕ p (r r ϕ q > { + p q } + ϕ (r ( 0 = The frst memer of the prevous expresson wll e lled the densty orreton: ρ(r = p,q < ϕ p (r r ϕ q > { + p q } ( 34

35 Sne the onverged Kohn-Shm sheme gves n ext densty, ll orretons to ths densty must e equl to zero[7].ths mens, tht f we onstrut n effetve opertor of the densty usng MBPT, the orreton to the densty must vnsh n ny order.ths s the mn de of the effetve opertor pproh. or the exhnge-orrelton potentl of frst order we wll hve: < Φ KS Ω (+ ρ(rω ( Φ KS >= (Ω (+ ρ(r S + ( ρ(rω ( S = 0 ( Ths ondton n e presented y dgrm ( 3. = 0 ( ( 3 Usng the ft tht f pq = ε p pq + < ϕ p V H x V x (ρ V ϕ q >, we n extrt our desrle exhnge potentl.the orrelton prt s exluded to mntn frst order, s the orrelton potentl ontns expressons of seond nd hgher orders. Then the equton for V x n e dgrmmtlly represented y dgrms nd 3. - = X 3 or the seond-order effetve opertor for the densty orreton we wll use the expresson ( 4 < Φ KS (Ω (+ + Ω (+ ρ(r(ω ( + Ω ( Φ KS >= = (Ω (+ ρ(r S + ( ρ(rω ( S + +(Ω (+ ρ(r S + ( ρ(rω ( S + (Ω (+ ρ(rω ( S = 0 ( 4 35

36 Hene,the dgrmmt representton for the seond-order equton s presented y the dgrms (3-(8 of equton( 5. C 3 = ( 5 Dgrmmt representton of potentl, derved from the densty ondton wll e used for the estlshng nteronneton wth the funtonl dervtve pproh. 36

37 .3 Interonneton n Artrry Order.3. Dgrmmt untonl Dervtves or formulton of the rules we wll use equton ( 8. The - funton needs to e ntrodued ordng to equton ( 6: = p,q p ϕ p (rϕ q (r ε p ε q = ( 6 Brets on the lst two dgrms denote denomntors. Expressons for the energy n MBPT onsst of lner omntons of terms, whh hve produts of moleulr ntegrls n the numertors nd produt of dfferenes of one-prtle energes n the denomntors, so t s esy to me dgrmmt representton for suh expressons.to te the funtonl dervtves from numertors, ordng to equton ( 8, ll lnes onneted to some vertex must e dsonneted from the orrespondng ple of lnng, nd when ths s done, new lne (orrespondng to ouped or unouped ortls must e nserted. In the fnl step ontrton wth the orrespondng - funton must e provded. All lnes orrespondng to denomntors re stll unhnged. Ths proedure must e provded for ll vertes,euse when we te funtonl dervtves from produts of funtons, we hve sum of produts, ordng to rules for tng dervtves. If new dgrm hnges ts sgn, mnus sgn must e ssgned to ths dgrm. When funtonl dervtves from denomntors re ten, t s more sutle to use equton ( 3. The most generl form for the denomntor n e represented y the followng formul: Den = α Kα ( = ε α o Kα = ε α uno ( 7 37

38 Usng equton ( 3 t s possle to wrte down the funtonl dervtves from some denomntor n the generl form: Den K = ( ϕ V o s = Kβ... + ( = K = ϕ uno ϕ β o Kβ = α,α Kα ( = ɛ α o ϕ β uno α,α β Kα = Kα ( = ɛ α uno ɛ α o Kα = ɛ α uno ( 8 Now t s possle to wrte down term whh nludes the funtonl dervtve from the denomntor: = β Nom Den = (Den V s Nom( Kβ = ϕβ o Kβ = ϕβ uno ( Kβ = ɛβ o Kβ = ɛβ uno α,α β ( Kα = ɛα o Kα = ɛα uno ( 9 We now hve the posslty to formulte how to te funtonl dervtves from denomntors. To te funtonl dervtves from denomntors, ll dgrms, where one of the lnes s douled nd etween these lnes whh rse from doulng, the orrespondng dgonl -funton s nserted. Ths proedure must e provded for ll horzontl lnes on the dgrm nd for ll the ontours the lnes ross..3. Dgrmmt untonl Dervtves n Seond-Order Mny-Body Perturton Theory Dret nteronneton n frst order s ler from dgrm s nd 3.The left-hnd sde of equton ( 7 s equl to dgrm, the rght-hnd ste s equl to dgrm 3 when the funtonl dervtve hs een ten from the expresson for the exhnge energy. The dgrmmt expresson for the seond-order energy n the generl se hs the form[]: E ( = + + ( 30 38

39 Consder the seond nd thrd dgrm n the energy expresson. or the se of smplty only non-equvlent dgrms wll e gven. Tng funtonl dervtves wth respet to ouped ortls we wll hve equton ( 3 + ( 3 Insertng the lnes of unouped ortls nd mng ontrtons wth the - funton, dgrms 4 nd 8 of equton ( 5 wll e otned ( 3: ( 3 When funtonl dervtves re ten wth respet to unouped ortls nd ouped ortls re nserted, dgrms 5 nd 9 of equton ( 5 wll e otned.when ths proedure s done for the lower vertex, omplex onugte dgrms wll e otned nd we wll hve the sme numer of dgrms of ths sort s n the effetve opertor pproh. When funtonl dervtves re ten wth respet to ouped ortls for the upper nd lower vertexes nd n ouped lne s nserted, we hve the dgrms, gven y equton ( 33 ( 33 Bret-type denomntor mens the dfferene ε ε. Summton of the fst two dgrms ordng to the rntz-mlls theorem[8] nd the sme proedure for the seond 39

40 two dgrms gves the dgrms of equton ( 34 + ( 34 On the two dgrms we mpose the restrton. To me dret orrespondene wth dgrms 7 nd we need to dd dgrms tht rse from tng funtonl dervtves from denomntors ( 35 ( 35 After these dgrms re dded to the prevous two, we wll hve dret orrespondene wth dgrms 7 nd. When funtonl dervtves re ten wth respet to the unouped ortls nd n unouped lne nserted, the sme proedure wll gve dret orrespondene wth dgrms 6 nd 0 of equton ( 5. Now onsder the frst dgrm for the seond-order energy expresson. The proedure for tng funtonl dervtves from the rght sde of the vertex, whh do not ontn losed -rng re solutely the sme s n the se of other seond nd thrd dgrms n the energy expresson. When suh funtonl dervtves re ten, we hve four dgrms orrespondng to dgrms -5. To te funtonl dervtves from the -rngs, the frst dgrm n the energy expresson must e represented wth more detl, tng nto ount tht f = h + J - K,n followng the form ( 36 X X = X X + + ( 36 40

41 When rules for tng funtonl dervtves dgrmmtlly re ppled to ths set of dgrms, we wll hve the next set of dgrms ( ( 37 The frst two dgrms re equl to dgrm 6; the thrd nd fourth equl to dgrms 7 nd 6 respetvely. Sne the left-hnd ste of eq. n e represented y dgrm 3, we hve n ext equvlene etween the funtonl dervtve nd the effetve opertor pprohes n the frst nd seond order for the Kohn-Shm prttonng of the hmltonn..3.3 Interonneton n Hgher Orders Equtons for the effetve-opertor pproh n the n-th order of MBPT hve the form ( 38 < Φ KS (Ω ( Ω (n+ ρ(r(ω ( +...+Ω (n Φ KS >= n (Ω (+ Ω (n S = 0 ( 38 =0 Ths equton tells s tht we need to ollet nd equte to zero the sum of ll possle omntons of wve opertors nd densty orreton opertors, nd these omntons must e of n-th order. The sme result should orrespond to tng funtonl dervtves from ll energy dgrms of n-th order. Sttement : When funtonl dervtves from some vertex of dgrm re ten wth respet to n ouped (unouped ortl, nd lne, whh orresponds to n unouped (ouped ortl nserted, we lwys wll hve dgrmmt expressons whh orrespond to prt of n =0 (Ω(+ Ω (n S. Proof: When funtonl dervtves re ten wth respet to n ouped (unouped ortl, nd lne whh orresponds to n unouped (ouped ortl s nserted, we lwys hve ontrton of the delt funton wth some fully onneted 4

42 dgrmmt expresson. All lnes whh orrespond to denomntors re stll unhnged, exept there s one extr denomntor from the delt-funton. If the funtonl dervtve hd een ten wth respet to the hghest or lowest vertex n the energy dgrm, the resultng dgrm orresponds to the produt Ω (n, n the nth-order of perturton theory. After pplyng the sme proedure to some ntermedte vertex, we hve n expresson whh ontns n- denomntors nd one extr denomntor from the delt-funton. To trnsform the resultng dgrm nto the produt of delt-funton nd two wve opertors, we need one extr lne, whh ross ll lnes t ts level. Suh lne n e otned, usng the rntz-mlls[8] ftorzton theorem. Sne ll ntl horzontl lnes ross ll lnes, whh go up from lower lyng vertexes, t s possle to represent the dgrms, whh pper fter pplyng the rntz-mlls[8] theorem n the form ( 39 Ω (+ Ω (n ( 39 Eh orresponds to some tme verson. When funtonl dervtves wll e ten from ll vertexes n ll dgrms, we wll hve ll possle ontrtons of the densty orreton opertor, whh hve lnes gong up or down, wth produts of wve opertors. So we hve prt of n =0 (Ω(+ Ω (n S. or exmple, n thrd order we wll hve: d d d = + ( 40 The dgrm on the left-hnd sde s the result of tng funtonl dervtves from typl energy dgrms of thrd order. Applyng the ftorzton theorem[8] to the rght-hnd sde we wll hve the sme result s on the left-hnd sde of ths relton. The 4

43 frst memer of the rght-hnd sde orresponds to Ω (3, whle the seond orresponds to Ω (+ Ω (. To fnlly estlsh the nteronneton etween the two pprohes, we need to show tht t s possle to trnsform dgrms whh ontns ret-type denomntors to stndrd dgrms. In prevous suseton ths proedure ws desred for the se where one horzontl lne rosses the ontour n the dgrm, whh orresponds to the energy n seond order MBPT. We need to prove, tht energy dgrms, whh ontn ontours rossed y m lnes, fter tng the funtonl dervtve whh respet to unouped (ouped ortls nd nsertng lnes of unouped (ouped ortls; n e trnsformed to lner omnton of m dgrms whh do not ontn ret-type denomntors. Consder the followng dgrm ( 4:. m ( 4 Numers on lnes show the ondtonl numer of lnes whh re entered for smplty of further mnpultons. The desrle sum of dgrms hs the form ( 4. l m +.. l m l m ( 4 Together wth dgrms whh orrespond to funtonl dervtves from denomntors, ths set of dgrms forms produts le Ω (+ Ω (l, where +l equls the order of MBPT. 43

44 Anlytl expressons whh orrespond to ths set of dgrms hve the form ( 43 Nom (ɛ + A (ɛ l + A...(ɛ + A m + Nom (ɛ l + A (ɛ + A (ɛ l + A...(ɛ + A m Nom (ɛ l + A...(ɛ l + A m (ɛ + A m ( 43 In these expressons Nom mens numertor,a mens the rest of the terms, whh re present n denomntors. After multplton nd dvson y (ɛ ɛ l we hve ( 44 Nom(ɛ ɛ l + A A (ɛ ɛ l (ɛ l + A (ɛ + A...(ɛ + A m + Nom(ɛ ɛ l + A A (ɛ ɛ l (ɛ l + A (ɛ l + A (ɛ + A...(ɛ + A m Nom(ɛ ɛ l + A m A m (ɛ ɛ l (ɛ l + A...(ɛ l + A m (ɛ + A m = = Nom (ɛ ɛ l (ɛ l + A (ɛ + A...(ɛ + A m Nom (ɛ ɛ l (ɛ + A (ɛ + A...(ɛ + A m + Nom (ɛ ɛ l (ɛ l + A (ɛ l + A (ɛ + A 3...(ɛ + A m Nom (ɛ ɛ l (ɛ l + A (ɛ + A...(ɛ + A m + + Nom (ɛ ɛ l (ɛ l + A (ɛ l + A (ɛ l + A 3 (ɛ + A 4...(ɛ + A m Nom (ɛ ɛ l (ɛ l + A (ɛ l + A (ɛ + A 3...(ɛ + A m Nom (ɛ ɛ l (ɛ l + A...(ɛ l + A m Nom (ɛ ɛ l (ɛ l + A...(ɛ + A m ( 44 After nellton of ll equvlent terms, we hve the expressons ( 45 Nom (ɛ ɛ l (ɛ + A...(ɛ + A m Nom (ɛ ɛ l (ɛ + A...(ɛ + A m ( 45 44

45 where Nom s the numertor, wth nterhnged ndexes nd l.these expressons n e represented y the followng two dgrms ( 46. l m +.. l m ( 46 Nmely these two dgrms wll pper fter tng funtonl dervtves usng dgrmmt rules for tng funtonl dervtves. Proof for the se where funtonl dervtves re ten wth respet to unouped ortls s the omplete nlog of ths one. Hene, we n formulte seond sttement. Sttement : When funtonl dervtves from some vertex of dgrm re ten wth respet to ouped (unouped ortls, nd lne whh orresponds to ouped (unouped ortl nserted, together wth dgrms whh rse from tng funtonl dervtves from denomntors; we lwys hve dgrmmt expressons, whh orresponds to prt of n =0 (Ω(+ Ω (n S. Ths sttement s dret orollry of the ove proved sttement out rettype denomntors nd sttement. Sne we hve orrespondene n the seond nd n-th order,usng the method of mthemtl nduton, t s possle to prove, tht the orrespondene ts ple n ll orders (fnte or nfnte..3.4 Interonneton n Infnte Order It should e noted tht summton of perturton orretons to the energy nd the wve funtons up to nfnte order provde orrespondene wth the full CI: n=0 E (n ( CI = E Ψ (n = Ψ ( CI ( 47 n=0 45

46 Usng the effetve opertor pproh t s possle to defne V x (n n ll possle orders. Ths proedure for n nfnte sum of orders gves V x. Insertng ths potentl nto the Kohn-Shm equtons, we n fnd ρ (,whh orresponds to the one-prtle densty n the full CI method.the sme densty ould e used n method le Zho-Morrson-Prr (ZMP[9] to extrt the orrespondng exhnge-orrelton potentl. Sne the full CI energy does not depend upon the hoe of ortl ss set, the OEP proedure[3, 5] nnot e used dretly for ths se. The nfnte sum of ll energy orretons does not depend upon hoe of ortl ss set, ut eh term of ths sum does depend upon the hoe of ortls. Ths ft enles us to onsder ll term of the nfnte sum of energy orretons s ortl-dependent funtonls. After the onstruton of the set V x (...V x ( nd summton up to nfnty, we wll hve the exhnge-orrelton potentl whh orresponds to the full CI. Usng the equvlene of the funtonl dervtve nd the effetve opertor pproh, t s possle to onlude tht fter summton of ths set of potentls, we gn wll hve the sme result s n the effetve opertor pproh. Redefned n suh wy, the OEP proedure[3, 5] for the full CI energy produes the sme densty s the ZMP method[9] would from full CI. 46

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbton Theory In Moller-Plesset (MP) perturbton theory one tes the unperturbed Hmltonn for n tom or molecule s the sum of the one prtcle Foc opertors H F() where the egenfunctons of

More information

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B]

Concept of Activity. Concept of Activity. Thermodynamic Equilibrium Constants [ C] [ D] [ A] [ B] Conept of Atvty Equlbrum onstnt s thermodynm property of n equlbrum system. For heml reton t equlbrum; Conept of Atvty Thermodynm Equlbrum Constnts A + bb = C + dd d [C] [D] [A] [B] b Conentrton equlbrum

More information

" = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction

 = #N d$ B. Electromagnetic Induction. v ) $ d v % l. Electromagnetic Induction and Faraday s Law. Faraday s Law of Induction Eletromgnet Induton nd Frdy s w Eletromgnet Induton Mhel Frdy (1791-1867) dsoered tht hngng mgnet feld ould produe n eletr urrent n ondutor pled n the mgnet feld. uh urrent s lled n ndued urrent. The phenomenon

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7

TELCOM 2130 Time Varying Queues. David Tipper Associate Professor Graduate Telecommunications and Networking Program University of Pittsburgh Slides 7 TELOM 3 Tme Vryng Queues Dvd Tpper Assote Professor Grdute Teleommuntons nd Networkng Progrm Unversty of Pttsburgh ldes 7 Tme Vryng Behvor Teletrff typlly hs lrge tme of dy vrtons Men number of lls per

More information

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods Engneerng Prt I 009-0, Pper 4, Mthemtl Methods, Fst Course, J.B.Young CMBRIDGE UNIVERSITY ENGINEERING DEPRTMENT PRT I (Frst Yer) 009-00 Pper 4 : Mthemtl Methods Leture ourse : Fst Mths Course, Letures

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M NLELE ŞTIINŢIICE LE UNIERSITĂŢII L.I.CUZ IŞI Toul XLII, s.i, Mtetă, 2001, f.2. STRENGTH IELDS ND LGRNGINS ON GOs 2 M BY DRIN SNDOICI strt. In ths pper we stud the strength felds of the seond order on the

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

New Algorithms: Linear, Nonlinear, and Integer Programming

New Algorithms: Linear, Nonlinear, and Integer Programming New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.om Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Shuai Dong. Using Math and Science to improve your game

Shuai Dong. Using Math and Science to improve your game Computtonl phscs Shu Dong Usng Mth nd Sene to mprove our gme Appromton of funtons Lner nterpolton Lgrnge nterpolton Newton nterpolton Lner sstem method Lest-squres ppromton Mllkn eperment Wht s nterpolton?

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains /4/3 I529: Mhne Lernng n onformts (Sprng 23 Mrkov Models Yuzhen Ye Shool of Informts nd omputng Indn Unversty, loomngton Sprng 23 Outlne Smple model (frequeny & profle revew Mrkov hn pg slnd queston Model

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potentl nd the Grnd Prtton Functon ome Mth Fcts (see ppendx E for detls) If F() s n nlytc functon of stte vrles nd such tht df d pd then t follows: F F p lso snce F p F we cn conclude: p In other

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

PROBLEM SET #2 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #2 SOLUTIONS by Robert A. DiStasio Jr. PROBLM ST # SOLUTIOS by Robert A. DStso Jr. Q. -prtcle densty mtrces nd dempotency. () A mtrx M s sd to be dempotent f M M. Show from the bsc defnton tht the HF densty mtrx s dempotent when expressed n

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Mass Transfer as you have learned it. Diffusion with Drift. Classic - in Gases 1. Three Gases (1) Appendix. Mass transfer in

Mass Transfer as you have learned it. Diffusion with Drift. Classic - in Gases 1. Three Gases (1) Appendix. Mass transfer in to ourse mterl for ÅA TF ourse 44 / 8 Mss trnsfer nd seprton tehnology Mssöverf verförng rng oh seprtonsten ( MÖF-ST ) See lso Krshn & Wesselngh Chem. Eng. S. 5(6) 997 86-9 Appendx. Mss trnsfer n mult-omponent

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

Chapter 7. Ab initio Theory

Chapter 7. Ab initio Theory Chapter 7. Ab nto Theory Ab nto: from the frst prnples. I. Roothaan-Hall approah Assumng Born-Oppenhemer approxmaton, the eletron Hamltonan: Hˆ Tˆ e + V en + V ee Z r a a a + > r Wavefunton Slater determnant:

More information

Multireference Correlated Wavefunction Calculations and Reaction Flux Analyses of Methyl Ester Combustion

Multireference Correlated Wavefunction Calculations and Reaction Flux Analyses of Methyl Ester Combustion Multreferene Correlted Wvefunton Clultons nd Reton Flux Anlyses of Methyl Ester Combuston Tsz S. Chwee, Dvd Krsloff, Vtor yeyem, Tng Tn, Mhele Pvone, nd Emly A. Crter Deprtments of Chemstry, Cheml Engneerng,

More information

Inelastic electron tunneling through a vibrational modulated barrier in STM

Inelastic electron tunneling through a vibrational modulated barrier in STM Romnn Reports n Physcs, olume 55, Numer 4, P. 47 58, 3 Inelstc electron tunnelng through vrtonl modulted rrer n SM P. udu culty of Physcs, Unversty of uchrest, PO ox MG, Mgurele, Romn strct: Usng mny ody

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundgl, Hyderbd - 5 3 FRESHMAN ENGINEERING TUTORIAL QUESTION BANK Nme : MATHEMATICS II Code : A6 Clss : II B. Te II Semester Brn : FRESHMAN ENGINEERING Yer : 5 Fulty

More information

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity

Generalized Lorentz Transformation Allowing the Relative Velocity of Inertial Reference Systems Greater Than the Light Velocity Generlzed Lorentz Trnsformton Allowng the Relte Veloty of Inertl Referene Systems Greter Thn the Lght Veloty Yu-Kun Zheng Memer of the Chnese Soety of Grtton nd Reltst Astrophyss Eml:yzheng@puorgn Astrt:

More information

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr. PROBLM ST # SOLUTIONS y Roert. DStso Jr. Q. Prove tht the MP eergy s sze-osstet for two ftely seprted losed shell frgmets. The MP orrelto eergy s gve the sp-ortl ss s: vrt vrt MP orr Δ. or two moleulr

More information

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

Graphical rules for SU(N)

Graphical rules for SU(N) M/FP/Prours of Physque Théorque Invrnes n physs nd group theory Grph rues for SU(N) In ths proem, we de wth grph nguge, whh turns out to e very usefu when omputng group ftors n Yng-Ms fed theory onstruted

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

Humidity Profiling with a VHF Wind Profiler and GPS Measurements

Humidity Profiling with a VHF Wind Profiler and GPS Measurements Humdty Proflng wth VHF Wnd Profler nd GPS esurements Vldslv Klus, Joël Vn Belen*, nd Yves Pontn* ( ) entre Ntonl de Reherhes étéorologues (NR), étéo Frne, Toulouse, Frne (*) Lortore de étéorologe Physue

More information

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION Advnes n Fuzzy ets nd ystems 05 Pushp Pulshng House Allhd nd Pulshed Onlne: Novemer 05 http://dx.do.org/0.7654/afde05_097_3 Volume 0 Numer 05 Pges 97-3 N: 0973-4X REGUAR CUBC ANGUAGE AND REGUAR CUBC EXPREON

More information

Proving the Pythagorean Theorem

Proving the Pythagorean Theorem Proving the Pythgoren Theorem W. Bline Dowler June 30, 2010 Astrt Most people re fmilir with the formul 2 + 2 = 2. However, in most ses, this ws presented in lssroom s n solute with no ttempt t proof or

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL: PYTHAGORAS THEOREM 1 WHAT S IN CHAPTER 1? 1 01 Squres, squre roots nd surds 1 02 Pythgors theorem 1 03 Finding the hypotenuse 1 04 Finding shorter side 1 05 Mixed prolems 1 06 Testing for right-ngled tringles

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

6 Random Errors in Chemical Analysis

6 Random Errors in Chemical Analysis 6 Rndom Error n Cheml Anl 6A The ture of Rndom Error 6A- Rndom Error Soure? Fg. 6- Three-dmenonl plot howng olute error n Kjeldhl ntrogen determnton for four dfferent nlt. Anlt Pree Aurte 4 Tle 6- Pole

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

SECONDAR Y - MRIEĦEL HALF-YEARLY EXAMINATIONS 2017/2018

SECONDAR Y - MRIEĦEL HALF-YEARLY EXAMINATIONS 2017/2018 Yer 9 PHYSICAL EDUCATION (OPTION) TIME: 1h 30mn SECONDAR Y - MRIEĦEL HALF-YEARLY EXAMINATIONS 2017/2018 Nme: Clss: Seton A Seton B Seton C Seton D TOTAL MARK 16 20 32 12 THEORY PAPER (80) 40% THEORY PAPER

More information

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp: Results n Projetve Geometry PG( r,), r, Emd Bkr Al-Zngn* Deprtment of Mthemts, College of Sene, Al-Mustnsryh Unversty, Bghdd, Ir Abstrt In projetve plne over fnte feld F, on s the unue omplete ( ) r nd

More information

Generalization of 2-Corner Frequency Source Models Used in SMSIM

Generalization of 2-Corner Frequency Source Models Used in SMSIM Generliztion o 2-Corner Frequeny Soure Models Used in SMSIM Dvid M. Boore 26 Mrh 213, orreted Figure 1 nd 2 legends on 5 April 213, dditionl smll orretions on 29 My 213 Mny o the soure spetr models ville

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

MCA-205: Mathematics II (Discrete Mathematical Structures)

MCA-205: Mathematics II (Discrete Mathematical Structures) MCA-05: Mthemts II (Dsrete Mthemtl Strutures) Lesson No: I Wrtten y Pnkj Kumr Lesson: Group theory - I Vette y Prof. Kulp Sngh STRUCTURE.0 OBJECTIVE. INTRODUCTION. SOME DEFINITIONS. GROUP.4 PERMUTATION

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get rgsdle (zdr8) HW6 dtmre (58335) Ths prnt-out should hve 5 questons Multple-choce questons my contnue on the next column or pge fnd ll choces efore nswerng 00 (prt of ) 00 ponts The currents re flowng n

More information

CONTINUE ON LEADS PLACEMENT

CONTINUE ON LEADS PLACEMENT Hert Letrure ECG leds, ECE4610, Z. Moussv CONTINUE ON LEADS PLACEMENT A I L LA I II III 0 II F III Three ddtonl leds re unpolr eletrodes euse they onsst of the potentl pperng on one eletrode tken th respet

More information

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18 Computt onl Biology Leture 18 Genome Rerrngements Finding preserved genes We hve seen before how to rerrnge genome to obtin nother one bsed on: Reversls Knowledge of preserved bloks (or genes) Now we re

More information

Introduction to Molecular Spectroscopy

Introduction to Molecular Spectroscopy Chem 5.6, Fall 004 Leture #36 Page Introduton to Moleular Spetrosopy QM s essental for understandng moleular spetra and spetrosopy. In ths leture we delneate some features of NMR as an ntrodutory example

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

An Adaptive Control Algorithm for Multiple-Input Multiple-Output Systems Using Neural Networks

An Adaptive Control Algorithm for Multiple-Input Multiple-Output Systems Using Neural Networks An Adptve Control Algorthm for Multple-Input Multple-Output Systems Usng Neurl Networks JOSE NORIEGA Deprtmento de Investgón en Fís Unversdd de Sonor Rosles y Blvd. Lus Enns, Col. Centro, CP, Hllo, Son.

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data

Department of Mechanical Engineering, University of Bath. Mathematics ME Problem sheet 11 Least Squares Fitting of data Deprtment of Mechncl Engneerng, Unversty of Bth Mthemtcs ME10305 Prolem sheet 11 Lest Squres Fttng of dt NOTE: If you re gettng just lttle t concerned y the length of these questons, then do hve look t

More information

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths Intermedite Mth Cirles Wednesdy 17 Otoer 01 Geometry II: Side Lengths Lst week we disussed vrious ngle properties. As we progressed through the evening, we proved mny results. This week, we will look t

More information

Lecture Notes No. 10

Lecture Notes No. 10 2.6 System Identifition, Estimtion, nd Lerning Leture otes o. Mrh 3, 26 6 Model Struture of Liner ime Invrint Systems 6. Model Struture In representing dynmil system, the first step is to find n pproprite

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR

6.3.2 Spectroscopy. N Goalby chemrevise.org 1 NO 2 CH 3. CH 3 C a. NMR spectroscopy. Different types of NMR 6.. Spetrosopy NMR spetrosopy Different types of NMR NMR spetrosopy involves intertion of mterils with the lowenergy rdiowve region of the eletromgneti spetrum NMR spetrosopy is the sme tehnology s tht

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information