Graphical rules for SU(N)

Save this PDF as:

Size: px
Start display at page:

Download "Graphical rules for SU(N)"

Transcription

1 M/FP/Prours of Physque Théorque Invrnes n physs nd group theory Grph rues for SU(N) In ths proem, we de wth grph nguge, whh turns out to e very usefu when omputng group ftors n Yng-Ms fed theory onstruted on the guge group SU(N). Ths ppes n prtur to Q, for whh, though N 3, t turns out to e usefu to onsder the extenson to SU(N) for resons whh w eome er n seton Genertors grph representton of the Le ger genertors n the fundment representton t s gven y t. (1) The fundment nes rry rrows to dstngush the two representtons N nd N whh re not equvent for N 3. The grph representton for the genertor (t ) s gven y Sne t s hermtn, (t ). () (t ) One n of ourse, through turn round y π, wrte t (3) thus hermtty (3) mpes tht (4) (5) 1

2 fter settng these rues, gven ordered produt of genertors drwn grphy n e trnsted gery foowng the rrows wrd, s one woud do for r γ mtres. The genertors re normzed onventony through the reton Tr(t t ) 1 δ. (6) 1. erve the Ferz dentty t t 1 (δ δ 1N ) δ δ. (7) [Souton : The ss of the proof s dent to the one used for spnors: I ns t ( 1,, N 1) provde ss for hermtn mtres N N. For gven rtrry hermtn mtrx, one n thus wrte 0 I + t. (8) Usng (6), one gets the expresson of the oeffents pperng n the deomposton (8), n the form 0 Tr N Ths eds to wrte (8) n the form, fousng to the oeffent, et Tr[t. (9).e., for every, Tr N δ +t t [ 1 N δ δ +t t δ δ 0 whh ends the proof fter dentfyng the oeffents of.. Show tht ths dentty reds grphy: 1 1 N (10) [Souton : Ths resut s ovous from the prevous queston. 3. From the deomposton of dentty tng n the tensor produt spe N N, Fnd the grph rues for the snget nd dont proetors. [Souton : The deomposton of dentty tng n the tensor produt spe N N s 1 N + (11) We thus hve P 1 1 N P d (1) (13)

3 4. he tht these proetors gve the pproprte vues for the dmenson of the snget nd dont representtons. [Souton : dm 1 TrP 1 1 N dm d TrP d 1 1. (14) 1 N. (15) few pptons.1 Some oor ftors n fundment representton Let us onsder now few typ oor ftors, whh we w enounter sever tmes. 1. Show tht (t t ) F δ nd ompute F. [Souton : Ths resut s expeted: t t s smr for SU(N), thus from Shur emm t shoud e mutpe of dentty. In order to get ths mutptve ftor F, t s enough to ompute the tre of t t, whh s equ to F N (TrI N). Sne Tr(t t ) 1 δ N 1 (numer of genertors N 1), thus F N 1 N.. erve the sme resut usng the Ferz dentty. gery [Souton :. Grphy. (t t ) t t 1 (δ δ 1N ) δ δ 1 ( N 1 ) δ N 1 N N δ. [Souton : 1 1 N 1 N 1 N N 1 N Thus (t t ) N 1 N δ F δ.e. F (16) 3. erve tht ( t t t ) 1 N t.e. 1 N (17) 3

4 [Souton : Usng Ferz dentty one gets ( t t t ) t t t 1 sne t 0 (genertors re treess). Grphy: ( δ δ 1 ) N δ δ t 1 N t 1 1 N 1 1 N 1 N where we hve used the ft tht Trt 0.. Some oor ftors n dont representton Grph rue n so e gven n order to ompute oor ftor nvovng the dont representton. It requres to rete the dont representton to the fundment one. 1. Prove tht f. (18) [Souton : Ths grph reton rees on the reton Tr([t,t t ) f. (19). erve the foowng dentty: f d f d N δ δ.e. d (0) 4

5 . gery [Souton : The frst proof s purey ger: Tr ( [t, t [t, t ) Tr ( f d t d f e t e) f d f e Tr(t d t e ) 1 fd f d, (1) thus f d f d Tr ( [t, t [t, t ) Tr ( t t t t +t t t t t t t t t t t t ) Tr ( t t t t (t t +t t )t t ) () where we hve used the nvrne of the tre under y permutton, whh fny gves, usng retons (16) nd (17), s we s normztons (6), ( f d f d Tr 1 ) N t t N 1 N t t N Tr(t t ) N δ. (3). Grphy. [Souton : From (18, we hve () (4) Eh of these terms n now e evuted seprtey usng the Ferz dentty: 1 1 N N 1 4N 1 8N ( N 1 8N 1 ) 8N (5) nd 1 1 N N 8N ( 1 8N 1 ). (6) 8N 5

6 where we hve used the ft tht the frst terms n the rght-hnd-sde of the seond ne of the ove equton vnshes sne genertors re treess. Thus, nsertng Eq.(5) nd Eq.(6) nsde Eq.(4) one gets N (7) q.e.d. 3 oor ftors for the n guon produton tree-eve mutguon mptude n e wrtten n n SU(N) Yng-Ms theory s M n [1,, n Tr(t 1 t t n ) m(p 1,ǫ 1 ;p,ǫ ; ;p n,ǫ n ), (8) where 1,, n,p 1,p,,p n nd ǫ 1,ǫ,ǫ n re, respetvey, the oors, moment, nd hetes of the guons, nd the sum s over the nony permuttons of the set [1,, n. Our m s to evute the oor ftors nvoved n the omputton of the squred mtrx eement, verged over oors for the nt stte. Expn why tree-eve mptude ony nvoves snge tres. [Souton : onsder tree-e oor struture, orrespondng to gven Feynmn dgrm nvoved n treeeve mptude nvovng n extern guons. t tree order, the ony owed vertes re 3-guons nd 4-guons ones (qurs re ony nvoved t oop eve). From the oor pont of vew, 4-guons vertex oos e two 3-guons vertes onneted y guon ne, so tht the proem redues to onsder pure tree-e struture ud from 3-guons vertes. It thus oos e (9) where,, nd re themseves tree-e dgrms. Frst, we pss from the dont representton to the fundment one y usng the dentty (18). Ths dentty n e rewrtten s f (30).e. f. (31) For smpty, we now remove the rrows on the fundment ne, tng the onventon tht oop n the fundment representton represent ounterowse oor fows. 6

7 The dgrm (9) thus reds (3) Let us ppy Ferz dentty to the guon whh onnets the two fundment oops. Ths eds to 1 1 N + 1 N (33) + 1 N + 1 N (34) so tht +.(35) Thus, usng reursve proof endng when rehng the sheves of the tree, t s er tht the whoe struture n e redued to snge tre of the produt of the n genertors n the fundment representton, the vrous terms eng the tre Tr(t 1 t t n ) nd ther non-y permuttons. 3.1 prtur se We frst onsder the oor ftor ssoted to Tr(t 1 t t n ). We denote the orrespondng oor ftor s n 1 (N t t n ) 1 1) Tr(t1 (N 1) T n. (36) [Souton : s premnry step, et us study the struture of Tr(t 1 t t n ). It reds [Tr(t 1 t t n ) Tr(t 1 t t n ) Tr(t n t t 1 ) (37) where we hve used the ft tht t re hermtn. Thus, Tr(t 1 t t n ) Tr(t 1 t t n ) Tr(t n t t 1 ) (38) 7

8 whh reds grphy 1 1 n Tr(t 1 t t n ) 3 4 n1 3 (39) the seond equty eng trv y n ovous deformton. 1. Show tht n 4 [Souton : Ovousy, T 1 0, (40) T N 1 4 T 3 (N )(N 1) 8N, (41). (4) T 1 0. Next, from Eq. (15), T 1 N 1 4. Fny, T N F 1 1 N ( N 1 4N 1 ) N 1, 4N so tht. Justfy the ft tht T 3 (N )(N 1) 8N. T n ( ) n N (43) for N ( t Hooft mt). [Souton : One n ppy the Ferz dentty s we dd ove for T nd T 3. In the rge N mt, ony the frst term n Eq. (10) remns. Eh guon thus ontrutes wth ftor of N/, edng to ( ) n N T n. 8

9 3. Prove tht T n+1 N n F 1 N T n. (44) [Souton : The proof rees on the use of the Ferz dentty (10), whh gves n+1 n 3 1 n 3 1 N n Now 1 1 n 3 F n1 3 n F, 4 4 thus edng to Eq. (44). 4. Sove the reton (44) nd show tht [Souton : Introdung the reurson (44) reds wth K N F 1N. Ths s soved y T n N 1 N n 1 () n [ 1(1N ) n1. (45) n (N)n N T n, n+1 K n + n, n K 1Kn1 1K,.e. Thus n (N 1) N (1(1N ) n1 ). T n Nn () n n N 1 1 [ 1(1N N n () n ) n1, whh stsfes, s expeted, T n ( ) N n. 9

10 3. The pnr mt 1. For few numer of guons, evute the other oor ftors ourng when squrng the vrous mtrx eements nvoved n Eq. (8). For smpty, we now repe SU(N) y U(N), nd we restrt ourseves to the N mt. In 1974 (Nuer Physs 7 (1974) ), t Hooft proved tht one n me smpe evuton of the sng of gven dgrm n ths U(N) Yng-Ms theory y smpe nvestgton of the two-dmenson surfe n one-to-one orrespondene wth ths dgrm. The phys motvton to do so s to ntrodue new expnson prmeter, owng for systemt ssfton of dgrms, esdes the usu oupng g nvoved n perturtve methods. We w not gve here the deted Feynmn rues for the U(N) Yng-Ms theory. The ony thng whh we need s the ft tht qurs (ntqur) ve n the fundment representton N ( N) of U(N), whe the guon re n the dont representton. The vrous propgtor thus rry oor ndes n ordne wth these representtons, whe the vertes nvove the genertors n fundment (for the qur-guon vertex) nd dont representtons (for 3-guons, 4-guons vertes nd guon-ghost vertex). Ths s ustrted n Fg. 1 (for smpty we do not onsder 4-guons nd ghosts vertes). Fgure 1: t Hooft representton for U(N) guge theory. To me mppng etween the oor struture of gven Feynmn dgrm nd two-dmenson surfe, one shoud tth tte surfes to eh oor ndex oop. Ths eds to g surfe, wth edges formed y the qur nes. Ths surfe s n gener mutpy onneted: t ontns worm hoes (for exmpe euse of n ntern qur oop). The surfe n e osed y tthng tte surfes to the qur oops seprtey.. Fnd the surfe to e drwn for the oor strutures nvestgted n seton Fnd the surfes orrespondng to the other oor ftors ourng n Eq. (8), for the se of n nd n 3 guons. n you dentfy the dfferene etween the type of surfes whh re nvoved? 4. Justfy the ft tht the strutures nvestgted n seton 3.1 re the domnnt one for gven vue of n. Wht s the topoogy of the orrespondng surfes? 10

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY THEORETICAL PHYSICS REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY V. CHIRIÞOIU 1, G. ZET 1 Poltehn Unversty Tmºor, Tehnl Physs Deprtment, Romn E-ml: vorel.hrtou@et.upt.ro

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

CS 4758 Robot Kinematics. Ashutosh Saxena

CS 4758 Robot Kinematics. Ashutosh Saxena CS 4758 Rt Kemt Ahuth Se Kemt tude the mt f de e re tereted tw emt tp Frwrd Kemt (ge t pt ht u re gve: he egth f eh he ge f eh t ht u fd: he pt f pt (.e. t (,, rdte Ivere Kemt (pt t ge ht u re gve: he

More information

An Introduction to Robot Kinematics. Renata Melamud

An Introduction to Robot Kinematics. Renata Melamud A Itrdut t Rt Kemt Ret Memud Kemt tude the mt f de A Empe -he UMA 56 3 he UMA 56 hsirevute t A revute t h E degree f freedm ( DF tht defed t ge 4 here re tw mre t the ed effetr (the grpper ther t Revute

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

Lecture 7 Circuits Ch. 27

Lecture 7 Circuits Ch. 27 Leture 7 Cruts Ch. 7 Crtoon -Krhhoff's Lws Tops Dret Current Cruts Krhhoff's Two ules Anlyss of Cruts Exmples Ammeter nd voltmeter C ruts Demos Three uls n rut Power loss n trnsmsson lnes esstvty of penl

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Neural Network Introduction. Hung-yi Lee

Neural Network Introduction. Hung-yi Lee Neu Neto Intoducton Hung- ee Reve: Supevsed enng Mode Hpothess Functon Set f, f : : (e) Tnng: Pc the est Functon f * Best Functon f * Testng: f Tnng Dt : functon nput : functon output, ˆ,, ˆ, Neu Neto

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

MCA-205: Mathematics II (Discrete Mathematical Structures)

MCA-205: Mathematics II (Discrete Mathematical Structures) MCA-05: Mthemts II (Dsrete Mthemtl Strutures) Lesson No: I Wrtten y Pnkj Kumr Lesson: Group theory - I Vette y Prof. Kulp Sngh STRUCTURE.0 OBJECTIVE. INTRODUCTION. SOME DEFINITIONS. GROUP.4 PERMUTATION

More information

Figure XX.1.1 Plane truss structure

Figure XX.1.1 Plane truss structure Truss Eements Formution. TRUSS ELEMENT.1 INTRODUTION ne truss struture is ste struture on the sis of tringe, s shown in Fig..1.1. The end of memer is pin juntion whih does not trnsmit moment. As for the

More information

Quantum Runge-Lenz Vector and the Hydrogen Atom, the hidden SO(4) symmetry

Quantum Runge-Lenz Vector and the Hydrogen Atom, the hidden SO(4) symmetry Quantum Runge-Lenz ector and the Hydrogen Atom, the hdden SO(4) symmetry Pasca Szrftgser and Edgardo S. Cheb-Terrab () Laboratore PhLAM, UMR CNRS 85, Unversté Le, F-59655, France () Mapesoft Let's consder

More information

Chapter 6. Rotations and Tensors

Chapter 6. Rotations and Tensors Vector Spaces n Physcs 8/6/5 Chapter 6. Rotatons and ensors here s a speca knd of near transformaton whch s used to transforms coordnates from one set of axes to another set of axes (wth the same orgn).

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains

1/4/13. Outline. Markov Models. Frequency & profile model. A DNA profile (matrix) Markov chain model. Markov chains /4/3 I529: Mhne Lernng n onformts (Sprng 23 Mrkov Models Yuzhen Ye Shool of Informts nd omputng Indn Unversty, loomngton Sprng 23 Outlne Smple model (frequeny & profle revew Mrkov hn pg slnd queston Model

More information

Andre Schneider P622

Andre Schneider P622 Andre Schneder P6 Probem Set #0 March, 00 Srednc 7. Suppose that we have a theory wth Negectng the hgher order terms, show that Souton Knowng β(α and γ m (α we can wrte β(α =b α O(α 3 (. γ m (α =c α O(α

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

MEG 741 Energy and Variational Methods in Mechanics I

MEG 741 Energy and Variational Methods in Mechanics I EG 74 Energy nd rton ethod n echnc I Brendn J. O Tooe, Ph.D. Aocte Profeor of echnc Engneerng Hord R. Hughe Coege of Engneerng Unerty of Ned eg TBE B- (7) 895-885 j@me.un.edu Chter 4: Structur Any ethod

More information

In this appendix, we evaluate the derivative of Eq. 9 in the main text, i.e., we need to calculate

In this appendix, we evaluate the derivative of Eq. 9 in the main text, i.e., we need to calculate Supporting Tet Evoution of the Averge Synptic Updte Rue In this ppendi e evute the derivtive of Eq. 9 in the min tet i.e. e need to ccute Py ( ) Py ( Y ) og γ og. [] P( y Y ) P% ( y Y ) Before e strt et

More information

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2 Note 2 Lng fong L Contents Ken Gordon Equaton. Probabty nterpretaton......................................2 Soutons to Ken-Gordon Equaton............................... 2 2 Drac Equaton 3 2. Probabty nterpretaton.....................................

More information

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences

Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences 548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Lner Coplexty Over nd Tre Representton of Lepel Cohn Estn Sequenes Tor Helleseth, Fellow, IEEE, Sng-Hyo K, Student Meer, IEEE, nd Jong-Seon

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272. Geometry of the irle - hords nd ngles Geometry of the irle hord nd ngles urriulum Redy MMG: 272 www.mthletis.om hords nd ngles HRS N NGLES The irle is si shpe nd so it n e found lmost nywhere. This setion

More information

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm.

Brander and Lewis (1986) Link the relationship between financial and product sides of a firm. Brander and Lews (1986) Lnk the relatonshp between fnanal and produt sdes of a frm. The way a frm fnanes ts nvestment: (1) Debt: Borrowng from banks, n bond market, et. Debt holders have prorty over a

More information

Performance Comparison of Three-Phase Shunt Active Power Filter Algorithms

Performance Comparison of Three-Phase Shunt Active Power Filter Algorithms Amern Journ of Apped Senes 5 (11): 144-148, 008 ISSN 1546-939 008 Sene Pubtons Performne Comprson of Three-Phse Shunt Ate Power Fter Agorthms 1 Moeykutty George nd Krtk Prd Bsu 1 Futy of Engneerng nd Tehnoogy,

More information

Study on the Normal and Skewed Distribution of Isometric Grouping

Study on the Normal and Skewed Distribution of Isometric Grouping Open Journ of Sttstcs 7-5 http://dx.do.org/.36/ojs..56 Pubshed Onne October (http://www.scp.org/journ/ojs) Study on the orm nd Skewed Dstrbuton of Isometrc Groupng Zhensheng J Wenk J Schoo of Economcs

More information

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam. NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Neural Network (Basic Ideas) Hung-yi Lee

Neural Network (Basic Ideas) Hung-yi Lee Neur Network (Bsc Ides) Hung-y Lee Lernng Lookng for Functon Speech Recognton f Hndwrtten Recognton f Wether forecst f Py vdeo gmes f wether tody Postons nd numer of enemes 你好 sunny tomorrow fre Frmework

More information

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j Vetors MC Qld-3 49 Chapter 3 Vetors Exerse 3A Revew of vetors a d e f e a x + y omponent: x a os(θ 6 os(80 + 39 6 os(9.4 omponent: y a sn(θ 6 sn(9 0. a.4 0. f a x + y omponent: x a os(θ 5 os( 5 3.6 omponent:

More information

ELASTIC-VISCOPLASTIC HOMOGENIZATION ANALYSIS OF PLAIN-WOVEN GFRP LAMINATES WITH MISALIGNED PLAIN FABRICS

ELASTIC-VISCOPLASTIC HOMOGENIZATION ANALYSIS OF PLAIN-WOVEN GFRP LAMINATES WITH MISALIGNED PLAIN FABRICS 8 TH INTERNTIONL CONFERENCE ON COMPOSITE MTERILS ELSTIC-VISCOPLSTIC HOMOGENIZTION NLYSIS OF PLIN-WOVEN GFRP LMINTES WITH MISLIGNED PLIN FBRICS S. Knmru, T. Mtsud * Deprtment of Engneerng Mechncs nd Energy,

More information

Associative Memories

Associative Memories Assocatve Memores We consder now modes for unsupervsed earnng probems, caed auto-assocaton probems. Assocaton s the task of mappng patterns to patterns. In an assocatve memory the stmuus of an ncompete

More information

Proving the Pythagorean Theorem

Proving the Pythagorean Theorem Proving the Pythgoren Theorem W. Bline Dowler June 30, 2010 Astrt Most people re fmilir with the formul 2 + 2 = 2. However, in most ses, this ws presented in lssroom s n solute with no ttempt t proof or

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

SVMs for regression Multilayer neural networks

SVMs for regression Multilayer neural networks Lecture SVMs for regresson Muter neur netors Mos Husrecht mos@cs.ptt.edu 539 Sennott Squre Support vector mchne SVM SVM mmze the mrgn round the seprtng hperpne. he decson functon s fu specfed suset of

More information

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6.

Let us look at a linear equation for a one-port network, for example some load with a reflection coefficient s, Figure L6. ECEN 5004, prng 08 Actve Mcrowve Crcut Zoy Popovc, Unverty of Colordo, Boulder LECURE 5 IGNAL FLOW GRAPH FOR MICROWAVE CIRCUI ANALYI In mny text on mcrowve mplfer (e.g. the clc one by Gonzlez), gnl flow-grph

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbton Theory In Moller-Plesset (MP) perturbton theory one tes the unperturbed Hmltonn for n tom or molecule s the sum of the one prtcle Foc opertors H F() where the egenfunctons of

More information

we have E Y x t ( ( xl)) 1 ( xl), e a in I( Λ ) are as follows:

we have E Y x t ( ( xl)) 1 ( xl), e a in I( Λ ) are as follows: APPENDICES Aendx : the roof of Equaton (6 For j m n we have Smary from Equaton ( note that j '( ( ( j E Y x t ( ( x ( x a V ( ( x a ( ( x ( x b V ( ( x b V x e d ( abx ( ( x e a a bx ( x xe b a bx By usng

More information

Introduction to Molecular Spectroscopy

Introduction to Molecular Spectroscopy Chem 5.6, Fall 004 Leture #36 Page Introduton to Moleular Spetrosopy QM s essental for understandng moleular spetra and spetrosopy. In ths leture we delneate some features of NMR as an ntrodutory example

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Physics 41 Chapter 22 HW Serway 7 th Edition

Physics 41 Chapter 22 HW Serway 7 th Edition yss 41 apter H Serway 7 t Edton oneptual uestons: 1,, 8, 1 roblems: 9, 1, 0,, 7, 9, 48, 54, 55 oneptual uestons: 1,, 8, 1 1 Frst, te effeny of te automoble engne annot exeed te arnot effeny: t s lmted

More information

1. Estimation, Approximation and Errors Percentages Polynomials and Formulas Identities and Factorization 52

1. Estimation, Approximation and Errors Percentages Polynomials and Formulas Identities and Factorization 52 ontents ommonly Used Formulas. Estmaton, pproxmaton and Errors. Percentages. Polynomals and Formulas 8. Identtes and Factorzaton. Equatons and Inequaltes 66 6. Rate and Rato 8 7. Laws of Integral Indces

More information

Effectiveness of Split-Plot Design over Randomized Complete Block Design in Some Experiments

Effectiveness of Split-Plot Design over Randomized Complete Block Design in Some Experiments Journ of Boogy, Agruture nd Hethre ISSN 4-308 (Pper) ISSN 5-093X (Onne) Vo.4, No.19, 014 www.ste.org Effetveness of Spt-Pot Desgn over Rndomzed Compete Bo Desgn n Some Experments 1 Dvd, I. J. nd Adeh,

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Nme: SID: Dscusson Sesson: hemcl Engneerng hermodynmcs -- Fll 008 uesdy, Octoer, 008 Merm I - 70 mnutes 00 onts otl losed Book nd Notes (5 ponts). onsder n del gs wth constnt het cpctes. Indcte whether

More information

Many-to-Many Traffic Grooming in WDM Mesh Networks

Many-to-Many Traffic Grooming in WDM Mesh Networks Mny-to-Mny Trff Groomng n WDM Mes Networks Mommd A. Se Amed E. K Deprtment of Eetr nd Computer Engneerng, Iow Stte Unversty, Ames, IA 50011 Em: {mse,k}@stte.edu Astrt In y-to-y ommunton, sesson onssts

More information

Periodic Learning of B-spline Models for Output PDF Control: Application to MWD Control

Periodic Learning of B-spline Models for Output PDF Control: Application to MWD Control 2005 Amercn Contro Conference June 8-10, 2005. Portnd, OR, USA WeB12.6 Perodc Lernng of B-spne Modes for Output PDF Contro: Appcton to MWD Contro H. Wng *, J. F. Zhng nd H. Yue Astrct Perodc ernng of B-spne

More information

Machine Learning: and 15781, 2003 Assignment 4

Machine Learning: and 15781, 2003 Assignment 4 ahne Learnng: 070 and 578, 003 Assgnment 4. VC Dmenson 30 onts Consder the spae of nstane X orrespondng to all ponts n the D x, plane. Gve the VC dmenson of the followng hpothess spaes. No explanaton requred.

More information

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order: 68A Solutons to Exercses March 05 (a) Usng a Taylor expanson, and notng that n 0 for all n >, ( + ) ( + ( ) + ) We can t nvert / because there s no Taylor expanson around 0 Lets try to calculate the nverse

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

MAE140 - Linear Circuits - Fall 10 Midterm, October 28

MAE140 - Linear Circuits - Fall 10 Midterm, October 28 M140 - Lnear rcuts - Fall 10 Mdterm, October 28 nstructons () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

The Laws of Sines and Cosines

The Laws of Sines and Cosines The Lws f Sines nd sines I The Lw f Sines We hve redy seen tht with the ute nge hs re: re sin In se is tuse, then we hve re h where sin 80 h 0 h sin 80 S re Thus, the frmu: 0 h sin y the Suppementry nge

More information

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods Engneerng Prt I 009-0, Pper 4, Mthemtl Methods, Fst Course, J.B.Young CMBRIDGE UNIVERSITY ENGINEERING DEPRTMENT PRT I (Frst Yer) 009-00 Pper 4 : Mthemtl Methods Leture ourse : Fst Mths Course, Letures

More information

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION Advnes n Fuzzy ets nd ystems 05 Pushp Pulshng House Allhd nd Pulshed Onlne: Novemer 05 http://dx.do.org/0.7654/afde05_097_3 Volume 0 Numer 05 Pges 97-3 N: 0973-4X REGUAR CUBC ANGUAGE AND REGUAR CUBC EXPREON

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations

Dynamics of Linked Hierarchies. Constrained dynamics The Featherstone equations Dynm o Lnke Herrhe Contrne ynm The Fethertone equton Contrne ynm pply ore to one omponent, other omponent repotone, rom ner to r, to ty tne ontrnt F Contrne Boy Dynm Chpter 4 n: Mrth mpule-be Dynm Smulton

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document Fttng Polynol to Het Cpcty s Functon of Teperture for Ag. thetcl Bckground Docuent by Theres Jul Zelnsk Deprtent of Chestry, edcl Technology, nd Physcs onouth Unversty West ong Brnch, J 7764-898 tzelns@onouth.edu

More information

MAE140 - Linear Circuits - Winter 16 Midterm, February 5

MAE140 - Linear Circuits - Winter 16 Midterm, February 5 Instructons ME140 - Lnear Crcuts - Wnter 16 Mdterm, February 5 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

New Algorithms: Linear, Nonlinear, and Integer Programming

New Algorithms: Linear, Nonlinear, and Integer Programming New Algorthms: ner, Nonlner, nd Integer Progrmmng Dhnnjy P. ehendle Sr Prshurmhu College, Tl Rod, Pune-400, Ind dhnnjy.p.mehendle@gml.om Astrt In ths pper we propose new lgorthm for lner progrmmng. Ths

More information

technische universiteit eindhoven Analysis of one product /one location inventory control models prof.dr. A.G. de Kok 1

technische universiteit eindhoven Analysis of one product /one location inventory control models prof.dr. A.G. de Kok 1 TU/e tehnshe unverstet endhoven Analyss of one produt /one loaton nventory ontrol models prof.dr. A.G. de Kok Aknowledgements: I would lke to thank Leonard Fortun for translatng ths ourse materal nto Englsh

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

MAE140 - Linear Circuits - Fall 13 Midterm, October 31

MAE140 - Linear Circuits - Fall 13 Midterm, October 31 Instructons ME140 - Lnear Crcuts - Fall 13 Mdterm, October 31 () Ths exam s open book. You may use whatever wrtten materals you choose, ncludng your class notes and textbook. You may use a hand calculator

More information

Research Article Application of Functionals in Creating Inequalities

Research Article Application of Functionals in Creating Inequalities Journ of Funton Spes Voume 016, Arte ID 934804, 6 pges http://dx.do.org/10.1155/016/934804 Reserh Arte Appton of Funtons n Cretng Inequtes Ztko PvT, 1 Shnhe Wu, nd Vedrn Novose 1 1 Mehn Engneerng Futy

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

12.4 Similarity in Right Triangles

12.4 Similarity in Right Triangles Nme lss Dte 12.4 Similrit in Right Tringles Essentil Question: How does the ltitude to the hpotenuse of right tringle help ou use similr right tringles to solve prolems? Eplore Identifing Similrit in Right

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundgl, Hyderbd - 5 3 FRESHMAN ENGINEERING TUTORIAL QUESTION BANK Nme : MATHEMATICS II Code : A6 Clss : II B. Te II Semester Brn : FRESHMAN ENGINEERING Yer : 5 Fulty

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

A Study on Root Properties of Super Hyperbolic GKM algebra

A Study on Root Properties of Super Hyperbolic GKM algebra Stuy on Root Popetes o Supe Hypebol GKM lgeb G.Uth n M.Pyn Deptment o Mthemts Phypp s College Chenn Tmlnu In. bstt: In ths ppe the Supe hypebol genelze K-Mooy lgebs o nente type s ene n the mly s lso elte.

More information

Chapter 5: Your Program Asks for Advice.

Chapter 5: Your Program Asks for Advice. Chte 5: You Pogm Asks fo Advce. Pge 63 Chte 5: You Pogm Asks fo Advce. Ths chte ntoduces new tye of ves (stng ves) nd how to get text nd numec esonses fom the use. Anothe Tye of Ve The Stng Ve: In Chte

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

GM1 Consolidation Worksheet

GM1 Consolidation Worksheet Cmridge Essentils Mthemtis Core 8 GM1 Consolidtion Worksheet GM1 Consolidtion Worksheet 1 Clulte the size of eh ngle mrked y letter. Give resons for your nswers. or exmple, ngles on stright line dd up

More information

Inverse Kinematics From Position to Angles

Inverse Kinematics From Position to Angles Invere Knemat From Poton to Ange Invere Knemat Gven a dered poton P & orentaton R o the end-eetor Y,, z, O, A, T z q,, n Fnd the jont varabe whh an brng the robot to the dered onguraton. Sovabt 0 Gven

More information

Boundary Value Problems. Lecture Objectives. Ch. 27

Boundary Value Problems. Lecture Objectives. Ch. 27 Boundar Vaue Probes Ch. 7 Lecture Obectves o understand the dfference between an nta vaue and boundar vaue ODE o be abe to understand when and how to app the shootng ethod and FD ethod. o understand what

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

k p theory for bulk semiconductors

k p theory for bulk semiconductors p theory for bu seconductors The attce perodc ndependent partce wave equaton s gven by p + V r + V p + δ H rψ ( r ) = εψ ( r ) (A) 4c In Eq. (A) V ( r ) s the effectve attce perodc potenta caused by the

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

Mathematics TASKS. GCSE to ASIA-level BRIDGING. tangent lines at a drffarent paint on the surface

Mathematics TASKS. GCSE to ASIA-level BRIDGING. tangent lines at a drffarent paint on the surface Mathematcs GCSE to ASA-eve BRDGNG TASKS tangent nes at a drffarent pant on the surface Pease compete one ne from the task st eow. A students must compete the mdde task: worked examp :!car task *Topc st

More information

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3

Lorentz Group. Ling Fong Li. 1 Lorentz group Generators Simple representations... 3 Lorentz Group Lng Fong L ontents Lorentz group. Generators............................................. Smple representatons..................................... 3 Lorentz group In the dervaton of Drac

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Iterative General Dynamic Model for Serial-Link Manipulators

Iterative General Dynamic Model for Serial-Link Manipulators EEL6667: Knematcs, Dynamcs and Control of Robot Manpulators 1. Introducton Iteratve General Dynamc Model for Seral-Lnk Manpulators In ths set of notes, we are gong to develop a method for computng a general

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

another way to solve eigenfunction/eigenvalue equations allows solution without any prior knowledge of answer

another way to solve eigenfunction/eigenvalue equations allows solution without any prior knowledge of answer Lenng gos Chpte 3. Mt Quntum Mehns nothe w to sove egenfunton/egenvue equtons e.g. H^ = E ows souton wthout n po knowedge of nswe b f most popu nume ppoh In mt geb we n sove n egenfunton/egenvue pobem

More information