COMPLEX NUMBER & QUADRATIC EQUATION

Size: px
Start display at page:

Download "COMPLEX NUMBER & QUADRATIC EQUATION"

Transcription

1 MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus nd rgument (or mpltude) of comple numer, squre root of comple numer, trngle nequlty, Qudrtc equton n rel nd comple numer system nd ther solutons. Relton etween roots nd co-effcent, nture of roots, formton of qudrtc equtons wth gven roots. Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

2 MCQ C O N C E P T S (Comple Numer) C The comple numer system Comple numer s denoted y z.e. z = +, where s clled s rel prt of z (Re z) nd s clled s mgnry prt of z (Im z). Here =, lso =, = ; 4 = etc. Prctce Prolems :. If n s nturl numer then the vlue of n + n + + n + + n + s 0. The vlue of ( 00 + ) ( 99 + )...( + ) wll e 0 [Answers : () () ] C Algerc Opertons on Comple Numer :. Addton ( + ) + (c + d) = + + c + d = ( + c) + ( + d). Sutrcton ( + ) (c + d) = + c d = ( c) + ( d). Multplcton ( + ) (c + d) = c + d + c + d = (c d) + (d + c) c d 4. Dvson. c d c d c d c d c d c d c d 5. Inequltes n comple numers re not defned. 6. In rel numers f + = 0 then = 0 = however n comple numers, z + z = 0 does not mply z = z = Equlty In Comple Numer : If z = z Re(z ) = Re(z ) nd I m (z ) = I m (z ) Prctce Prolems : 4. The vlue of 4 s equl to m. If then the lest ntegrl vlue of m s ( ) ( )y. If, then the rel vlue of nd y re gven y =, y = =, y = =, y = =, y = [Answers : () d () () ] C Modulus of Comple Numer : If z = +, then t s modulus s denoted nd defned y z orgn. Propertes of modulus. Infct z s the dstnce of z from () z z = z z () z z z (provde z z 0) Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

3 () z + z z + z (v) z z z z MCQ (Equlty n () nd (v) holds f nd only f orgn, z nd z re collner wth z nd z on the sme sde of orgn). C4 Representton of Comple Numer : Crtesn Form (Geometrc Representton) : Every comple numer z = + y cn e represented y pont on the Crtesn plne known s comple plne (Argnd dgrm) y the ordered pr (, y) Length OP = z = y nd = y tn s clled the rgument or mpltude. If s the rgument of comple numer then n + ; n I wll lso e the rgument of tht comple numer. The unque vlue of such tht < s clled the prncpl vlue of the rgument. Unless otherwse stted, mp z mples prncpl vlue of the rgument. The rgument of z =,, +,, = tn qudrnt. Propertes of Argument of Comple Numer : () rg (z z ) = rg (z ) + rg (z ) + m for some nteger m. () rg (z /z ) = rg (z ) rg (z ) + m for some nteger m. () rg (z ) = rg (z) + m for some nteger m. (v) rg (z) = 0 z s rel, for ny comple numer z 0 y, ccordng s z = + y les n I, II, III or IVth (v) rg (z) = ± / z s purely mgnry, for ny comple numer z 0 (v) rg (z z ) = ngle of the lne segment jonng the pont (z ) nd pont (z ) Trgnometrc/Polr Representton : z = r (cos + sn ) where z = r; rg z = ; z = r(cos sn ) cos + sn s lso wrtten s CS or e. Euler s Representton : z re ; z r;rg z ;z re e e e e Also cos nd sn re known s Euler s denttes. Prctce Prolems :. The prncple vlue of the rgument of the comple numer s 0 none of these. If z = 4 nd rg z = 5 then z equls to 6 Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

4 MCQ 4. If r = r r then... s 0 4. The mpltude or rgument of ( )( ) ( ) wll e [Answers : () c () c () c (4) c] C5 Conjugte of comple Numer Conjugte of comple numer z = + s denoted nd defned y Propertes of conjugte z. () z = z () zz z () z z ) (z ) (z ) ( z (z) (v) ( z z ) (z ) (z ) (v) ( zz ) (z) (z ) (v) (z 0) z (z ) (v) z z (z z )(z z ) z z zz zz (v) ( z ) z () rg( z) rg(z) 0 Prctce Prolems :. The modulus of comple numer ( )( ) wll e ( ) 0 ½ [Answers : () ] C6 Demovere s Theorem : If n s ny nteger then () (cos + sn ) n = cos n + sn n () (cos + sn ) (cos + sn ) (cos + sn ) (cos + sn )... (cos n + sn n ) = cos ( n ) + sn ( n ) C7 Cue Root of Unty : () The cue root of unty re,, () If s one of the mgnry cue roots of unty then + + = 0. In generl + r + r = 0; where r I ut s not the multple of. () In polr form the cue roots of unty re : (v) 4 4 cos0 sn 0;cos sn,cos sn The three cue roots of unty when plotted on the rgnd plne consttute the vrtes of n equlterl trngle. (v) The followng fctorston should e rememered : Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

5 (,, c R nd s the cue root of unty) = ( ) ( ) ( ) ; + + = ( ) ( ) + = ( + ) ( + ) ( + ) ; + + = ( ) ( ) + + c c = ( + + c) ( + + c) ( + + c) Prctce Prolems :. If s cue root of unty then ( + ) ( + ) s equl to MCQ 5 0. If n s postve nteger not multple of then + n + n = none of these 0 none of these. If s comple cue root of unty then ( ) ( ) ( 4 ) ( 8 ) equl to If s comple cue root of unty, then ( + ) ( + ) ( + 4 )... to n fctors 0 n c c 5. The vlue of c c wll e 0 [Answers : () d () c) () d (4) (5) ] C8 nth Roots of Unty : If,,,... n re the n, nth root of unty then : () They re n G.P. wth common rto e (/n) () p p p p = 0, f p s not n ntegrl multple of n n = n f p s n ntegrl multple of n () ( ) ( )... ( n ) = n ( + ) ( + )... ( + n ) = 0 f n s even nd f n s odd. (v) n = or ccordng s n s odd or even. Prctce Prolems :. If,,,... n re the n, nth roots of unty then ( ) ( )...( n ) equls 0 n n. If s ny nth root of unty then S = up to n terms s equl to n n n n [Answers : () c () ] C9 Geometrcl Propertes : () () Dstnce Formul : If z nd z re ffes of the two ponts P nd Q respectvely then dstnce etween P nd Q s gven y z z Secton Formul : If z nd z re ffes of the two ponts P nd Q respectvely nd pont C devdes the lne jonng P nd Q nternlly n the rto m : n then ff z to C s gven y mz nz z m n mz nz. If C devdes PQ n the rto m : n eternlly then z m n Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

6 () (v) (v) MCQ 6 Condton of collnerty : If,, c re three rel numers such tht z + z + cz = 0; where + + c = 0 nd,, c re not ll smultneoulsy zero, then the comple numers z, z nd z re collner. If the vertces A, B, C of trngle represents the comple numers z, z, z respectvely, then centrod of the trngle s z z z The equton of crcle hvng centre z 0 nd rdus s z z 0 = z z (v) If k where k 0 or then locus of z s crcle. z z (v) (v) If z, z, z re vertces of n equlterl trngle wth z 0 ts crcumcentre, then z + z + z s equl to z 0 The ponts z, z, z, z 4 n the comple plne re the vertces of prllelogrm tken n order f nd only f z + z = z + z 4 Prctce Prolems :. Length of the lne segment jonng the ponts ( ) nd ( + ) s z 5. The comple numers z = + y whch stsfy the equton le on z 5 the -s the strght lne y = 5 crcle pssng through the orgn none of these. The locus represented y z = z + s A crcle of rdus An ellpse wth foc t (, 0) nd (0, ) A strght lne through the orgn A crcle on the lne jonng (, 0), (0, ) s dmeter 4. The locus of the ponts representng the comple numer z for whch z = z z + 5 = 0 s crcle wth centre t the orgn strght lne pssng through the orgn the sngle pont (0, ) none of the ove [Answers : () c () () c (4) c] Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

7 MCQ 7 CONCEPTS (Qudrtc Equtons) C Qudrtc Equton : A qudrtc equton s ny equton equvlent to one of the form + + c = 0 hs only two roots. Here 0 nd,, c re rel numers (,, c R). Roots of the qudrtc equton 4c Here 4c = D s known s dscrmnnt of the equton (). 4c Sum of roots :, Product of roots : c, Dfference of roots : 4c D The qudrtc equton whose roots re nd s ( ) ( ) = 0 Prctce Prolems :. If, re the roots of the equton + + = 0 ( < 0), then s greter thn 0 none of these. If the rto of the roots of + + c = 0 e equl to the rto of the roots of + + c = 0, then, c, c re n A.P. G.P. H.P. None. The vlue of for whch one root of the qudrtc equton ( 5 + ) + ( ) + = 0 s twce s lrge s the other, s / / / / 4. Let, e the roots of the equton + p = 0 nd let, e the roots of the equton + q = 0. If the numers,,, (n order) form n ncresng G.P. then p =, q = 6 p =, q = p = 4, q = 6 p = 4, q = [Answers : () d () () d (4) ] C Nture of roots of one qudrtc equton :. D = 0, then equton () hs rel nd equl roots.. D > 0, then equton () hs rel nd dstnct roots.. If D < 0, then equton () hs mgnry roots. 4. If,, c re rel nd D < 0 then roots re l + m nd l m. 5. If,, c re rtonl nd D s perfect squre then roots re rtonl. 6. If,, c re rtonl nd D s not perfect squre then roots re rrtonl. The roots re l + m nd l m. Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

8 MCQ 8 Prctce Prolems :. If ( c) + (c ) y + c ( ) y s perfect squre, then the qunttes,, c re n A.P. G.P. H.P. none of these. If, re odd ntegers, then the roots of the equton + ( + ) + = 0, 0 re Rtonl Irrtonl Non-rel none of these. If,, c re ll postve nd n H.P., then the roots of + + c = 0 re Rel Imgnry Rtonl Equl [Answers : () c () () ] C Condton for common roots : Let the equtons re + + c = 0 nd + + c = 0 Here, 0, 0, 0. One root s common : (c c ) = ( c c ) ( ) Both roots re common : c c Prctce Prolems :. If,, c re n G.P., then the equton + + c = 0 nd d + e + f = 0 hve common root f d/, e/, f/c re n A.P. G.P. H.P. none of these. The equtons + + = nd + = 0 hve roots n common. Then + must e equl to 0 none [Answers : () () c] C4 Importnt Ponts :. If > 0 nd > 0 (oth roots re postve) then + > 0 nd > 0.. If < 0 nd < 0 then + < 0 nd > 0.. If roots re of opposte sgn then < 0. Prctce Prolems :. If the equton + (k + ) + 9k 5 = 0 hs only negtve roots, then : k 0 k 0 k 6 k 6. The set of vlues of p for whch the roots of the equton + + (p )p = 0 re of opposte, s (, 0) (0, ) (, ) (0, ) [Answers : () c () ] Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

9 MCQ 9 INITIAL STEP EXERCISE. The vlue of determnnt where = s If,,,..., n re nth roots of unty. The vlue ( ) ( ) ( )...( n ) s n 0 n n. The centre of squre ABCD s t z = 0. The ff of the verte A s z. Then the ff of the centrod of the trngle ABC s z (cos ± sn ) z (cos sn ) z (cos sn ) z (cos sn ) 4. If p, q re two equl numers lyng etween 0 nd such tht z = p +, z = + q nd z = 0 form n equlterl trngle, then (p, q) = ( +, + ) (, ) ( + 5, 5) none of these 5. If ( + )( + ) ( n + n ) = A + B, then n tn s : B A 6. The equton z = z hs B tn A B tn A tn A B no soluton two solutons four solutons n nfnte numer of solutons 7. If for comple numers z nd z, rg (z z ) = 0 then z z s equl to z + z z z z z 0 8. If, nd re the cue roots of p, p < 0, then for ny, y nd z, the vlue of y z y z,, re, none of these 9. If s n mgnry cue root of unty, then the vlue of s 0 0. Let z nd z e n th roots of unty whch sutend rght ngle t the orgn. Then n must e of the form 4k + 4k + 4k + 4k. If the comple numers z, z, z re n A.P., then they le on crcle prol lne ellpse. If nd re the roots of the equton + + = 0 nd 4 nd 4 re the roots of p + q = 0 the roots of 4 + p = 0 re lwys oth non-rel oth postve oth negtve postve nd negtve. If R, the lest vlue of the epresson 6 5 s none of these Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

10 4. If R, then 4 cn tke ll vlues f (0, ) [0, ] [, ] none of the ove 5. The roots of the equton ( ) 5 = re ( ) 5, wher ±, ± ± 4, ± 4 ±, ± 5 ± 6, ± 0 6. If nd e the roots of + p + = 0 nd, the roots of + q + = 0, then the vlue of ( ) ( ) ( + ) ( + ) s equl to p q q p p q MCQ 0 7. The numer of rel roots of equton ( ) + ( ) + ( ) = 0 s 0 8. The root common to the equton ( ) + ( c) + (c ) = 0 nd ( )( c) + ( ) (c ) + (c )( ) = 0 s / 0 9. If,, c re postve rel numers, then the numer of rel roots of the equton + + c = 0 s 4 0 none of these FINAL STEP EXERCISE. The soluton of the equton ( + ) = 0 form n A.P. G.P. H.P. none of these. The vlue of for whch the equton ( ) + = 0 hs roots elongng to (0, ) s > > 5 5. If z nd z re two dstnct ponts n n Argnd plne. If z = z, then the z z s pont on z z lne segment [, ] of the rel s the mgnry s unt crcle z = the lne rgz = tn z z z 4. If log, then the locus of z s z = 5 z < 5 z > 5 none of these 5. Let A 0 A A A A 4 A 5 e regulr hegon nscred n crcle of unt rdus. Then the product of the lengths of the lne segments A 0 A, A 0 A nd A 0 A 4 s 4 6. If z s comple numer hvng lest solute vlue nd z + =, then z = ( /) ( ) ( /) ( + ) ( + /) ( ) ( + /) ( + ) 7. Let,, c e non-zero rel numer such tht 0 0 ( cos 8 )( c)d 8 ( cos )( c)d, then the qudrtc equton + + c = 0 hs no root n (0, ) t lest one root n (0, ) two roots n (0, ) two mgnry roots Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

11 ( )( c) 8. For rel vlues of, the epresson wll ssume ll rel vlues provded c c c c 9. The rto of the roots of the equton + + c = 0 s sme s the rto of the roots of the equton p + q + r = 0. If D nd D re the dscrmnnts of + + c = 0 nd p + q + r = 0 respectvely, then D : D = p c r q none of these 0. The vlue of for whch ectly one root of the equton e e + e = 0, les etween nd re gven y 5 ln < < ln ln 4 0 ln none of the ove. The vlue of c for whch = 4 7, where nd re the roots of c = 0 s Root(s) of the equton = 0 elongng to the domn of defnton of the functon f() = log ( ) s/re 5, 5 5,. If the equtons + + c = 0 nd = 0 hve common root, where,, c re the lengths of the sdes of ABC, then sn A + sn B + sn C s equl to / MCQ 4. Let [] denote the gretest nteger n. Then n [0, ], the numer of solutons of the equton + [] = 0 s If the roots of the equton ( ) ( c) + ( c) ( ) + ( ) ( ) = 0 re equl, then + + c = c = 0 + c = 0 none of the ove 6. If s root of the equton = 0, then s equl to 6 s greter thn 6 s less thn 6 cn not e estmted 7. If Z nd the equton ( ) ( 0) + = 0 hs ntegrl roots, then the vlue of re 0, 8, 0, 8 none of these 8. The vlue of for whch ( ) + ( ) + s postve for ny re or 9. Gven tht for ll rel, the epresson 4 4 les etween nd. The vlues etween whch the epresson les re nd nd 0 nd 0 nd If, e the roots of + + c = 0 nd +, + e those of A + B + C = 0, then the vlue of ( c)/(b AC) s A 0 A Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

12 . If the product of the roots of the equton k + e log k = 0 s 7, then the roots of the equton re rel for k equl to 4. If, re the roots of the equton + p + q = 0 nd 4, 4 re the roots of r + s = 0, then the equton 4q + q r = 0 hs lwys (p, q, r, s re rel numers) two rel roots two negtve roots two postve roots one postve nd one negtve roots. If p, q {,,, 4}, the numer of equtons of the form p + q + = 0 hvng rel roots s MCQ 4. The numer of roots of the qudrtc equton 8 sec 6 sec + = 0 s nfnte 0 5. If A, G, H e respectvely, the A.M, G.M. nd H.M. of three postve numers,, c; then the equton whose roots re these numers s gven y A + G ( ) = 0 A + (G /H) G = 0 + A + (G /H) G = 0 A (G /H) + G = 0 6. If nd ( 0) re the roots of the equton + + = 0, then the lest vlue of + + ( R) s : 9/4 9/4 /4 /4 ANSWERS (INITIAL STEP EXERCISE). c. c. d c 6. c d. c. d. c c d ANSWERS (FINAL STEP EXERCISE) c. 4. c 5. c c. c. d 4. c 7. c 8. d d Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

13 MCQ AIEEE ANALYSIS [00] 6 0. If 4 y then =, y = = 0, y = = 0, y = 0 =, y =. If nd = 5, = 5, then the equton hvng / nd / s ts roots s = = = 0 9 = 0 6. If,, re the cue roots of unty, then n n s equl to n n 0 7. If, then n n = n, where n s ny postve nteger = 4n +, where n s ny postve nteger = n +, where n s ny postve nteger = 4n, where n s ny postve nteger 8. If z nd re two non-zero comple numers such tht z =, nd Arg (z) Arg () =, then equl to z s 77. The numer of rel roots of 9 s zero 4 4. If ( ) s cuc root of unty, then equls zero 5. If s n mgnry cue root of unty then ( + ) 7 equls AIEEE ANALYSIS [00] 9. Let z nd z e two roots of the equton z + z + = 0, z eng comple. Further, ssume tht the orgn, z nd z form n equlterl trngle. Then = = = 4 = 0. The vlue of for whch one root of the qudrtc equton ( 5 + ) + ( ) + = 0 s twce s lrge s the other, s / / / /. The numer of rel solutons of the equton + = 0 s 4. If the sum of the roots of the qudrtc equton + + c = 0 s equl to the sum of the squres of ther recprocls, then c, nd c Geometrc Progresson Hrmonc Progresson re n Arthmetc-Geometrc Progresson Arthmetc Progresson Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

14 MCQ 4 AIEEE ANALYSIS [004/005]. Let z, w e comple numers such tht z w 0 nd rg (zw) =. The rg z equls /4 / /4 5/4 [004] 4. If z = y nd z / = p + q, then y p q (p q ) equl to [004] 5. If z = z +, then z les on crcle the mgnry s the rel s n ellpse [004] 6. If ( p) s root of qudrtc equton + p + ( p) = 0 then ts roots re 0,, 0,, [004] 7. If one root of the equton + p + = 0 s 4, whle the equton + p + q = 0 hs equl roots, then the vlue of q s 49/4 4 [004] 8. If + + 6c = 0, the t lest one root of the equton + + c = 0 les n the ntervl (, ) (, ) (0, ) (, ) [004] 9. If the cue root of unty re,, then the roots of the equton ( ) + 8 = 0, re,,, +,, +, +,, [005] 0. If z nd z re two non-zero comple numers such tht z + z = z + z, then rg z rg z s equl to s [005] 0 z. If nd =, then z les on z [005] crcle n ellpse prol strght lne. In trngle PQR, R =. P Q tn nd tn re the roots of + + c = 0, 0 then c = + = + c = + c = c [005]. The vlue of for whch the sum of the squres of the roots of the equton ( ) = 0 ssume the lest vlue s 0 [005] 4. If the roots of the equton + c = 0 e two consecutve ntegers, then 4c equls [005] 5. If oth the roots of the qudrtc equton k + k + k 5 = 0 re less thn 5, then k les n the ntervl (6, ) (5, 6] [4, 5] (, 4) [005] 6. If the equton n n + n n = 0 0, n, hs postve root =, then the equton n n n + (n ) n n = 0 hs postve root, whch s smller thn greter thn equl to greter thn or equl to [005] If Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

15 MCQ 5 AIEEE ANALYSIS [006] 7. The numer of vlues of n the ntervl [0, ] stsfyng the equton sn + 5sn = 0 s All the vlues of m for whch oth roots of the equton m + m = 0 re greter thn ut less thn 4, le n the ntervl < m < 4 < m < 0 m > < m < 9. If the roots of the qudrtc equton + p + q = 0 re tn 0 0 nd tn 5 0, respectvely then the vlue of + q p s 0. If s rel, the mmum vlue of 7/7 / s 9 7. If z + z + = 0, where z s comple numer, then the vlue of z z s z z z z... z z 0 k k 0. The vlue of sn cos s k AIEEE ANALYSIS [007]. If the dfference etween the roots of the equton + + = 0 s less thn 5, then the set of possle vlues of s (, ) (, ) (, ) (, ) 4. If z + 4, then the mmum vlue of z + s ANSWERS AIEEE ANALYSIS. c d 6. d 7. d 8. c d d c 8. c 9. d 0. d. d.. 4. c 5. d d 9. c 0.. c.. c 4. Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

16 MCQ 6 TEST YOURSELF. The regon of the rgnd plne defned y z + z + 4 s nteror of n ellpse eteror of crcle nteror nd oundry of n ellpse eteror nd oundry of crcle. If z s comple numer lyng n the fourth kz qudrnt of the rgnd plne nd k for ll vlues of k (k ) then rnge of rg (z) s, 0 8, 0 4, 0 6 none of these. If the comple numers z, z, z, re the vertces of prllelogrm ABCD, then the fourth verte s 7. The numer of rel roots of the equton sn (e ) = s 0 nfntely mny 8. If, re the roots of P( + ) C = 0 then vlue of ( + ) ( + ) s C 4 + C + C C 9. If 4 s root of p + q = 0 where p, q R, p q then vlue s p q / / 5/ none of these 0. If,, c re n AP nd one root of the equton + + c = 0 s then the other root s 4 4 (z + z ) (z + z 4 z z 4 ) (z + z + z ) z + z z 4. The trngle wth vertces z, z nd ( )z + z s n sosceles trngle rght ngled trngle n sosceles rght ngled trngle n equlterl trngle z 5. If z = + y nd, then = mples tht z n the comple plne z les on the mgnry s z les on the rel s z les on the unt crcle none of these 6. If, re the roots of + p + q = 0 nd, re the roots of + r + s = 0, then vlue of ( ) ( ) ( ) ( ) s (r p) (q s) (r p) + (q s) (r p) + (q s) rp(r p) (q s) none of these. c. c. d 4. c 5. ANSWERS 6. d d c Ensten Clsses, Unt No. 0, 0, Vrdhmn Rng Rod Plz, Vks Pur Etn., Outer Rng Rod New Delh 0 08, Ph. : 96905, 857

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MT TRIGONOMETRIC FUNCTIONS AND TRIGONOMETRIC EQUATIONS C Trigonometric Functions : Bsic Trigonometric Identities : + cos = ; ; cos R sec tn = ; sec R (n ),n cosec cot = ; cosec R {n, n I} Circulr Definition

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

INVERSE TRIGONOMETRIC FUNCTIONS

INVERSE TRIGONOMETRIC FUNCTIONS MIT INVERSE TRIGONOMETRIC FUNCTIONS C Domins Rnge Principl vlue brnch nd Grphs of Inverse Trigonometric/Circulr Functions : Function Domin Rnge Principl vlue brnch = [ / /] Domin Rnge Principl vlue brnch

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245. Trgonometry Trgonometry Solutons Currulum Redy CMMG:, 4, 4 www.mthlets.om Trgonometry Solutons Bss Pge questons. Identfy f the followng trngles re rght ngled or not. Trngles,, d, e re rght ngled ndted

More information

STUDY PACKAGE. Subject : Mathematics Topic : COMPLEX NUMBER Available Online :

STUDY PACKAGE. Subject : Mathematics Topic : COMPLEX NUMBER Available Online : fo/u fopkjr Hkh# tu] ugha vkjehks dke] fofr ns[k NksM+s rqjar e/;e eu dj ';kea q#"k flag lady dj] lgrs fofr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez.ksrk ln~xq# Jh j.knksm+nklth

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions )

15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions ) - TRIGONOMETRY Pge P ( ) In tringle PQR, R =. If tn b c = 0, 0, then Q nd tn re the roots of the eqution = b c c = b b = c b = c [ AIEEE 00 ] ( ) In tringle ABC, let C =. If r is the inrdius nd R is the

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.)

Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.) nnouncements Imge Formton nd Cmers (cont.) ssgnment : Cmer & Lenses, gd Trnsformtons, nd Homogrph wll be posted lter tod. CSE 5 Lecture 5 CS5, Fll CS5, Fll CS5, Fll The course rt : The phscs of mgng rt

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

CONIC SECTIONS. Chapter 11

CONIC SECTIONS. Chapter 11 CONIC SECTIONS Chpter. Overview.. Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig..). Fig.. Suppose we rotte the line m round

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

VECTOR ALGEBRA. Syllabus :

VECTOR ALGEBRA. Syllabus : MV VECTOR ALGEBRA Syllus : Vetors nd Slrs, ddition of vetors, omponent of vetor, omponents of vetor in two dimensions nd three dimensionl spe, slr nd vetor produts, slr nd vetor triple produt. Einstein

More information

International Mathematical Olympiad. Preliminary Selection Contest 2012 Hong Kong. Outline of Solutions

International Mathematical Olympiad. Preliminary Selection Contest 2012 Hong Kong. Outline of Solutions Internatonal Mathematcal Olympad Prelmnary Selecton ontest Hong Kong Outlne of Solutons nswers: 7 4 7 4 6 5 9 6 99 7 6 6 9 5544 49 5 7 4 6765 5 6 6 7 6 944 9 Solutons: Snce n s a two-dgt number, we have

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

? plate in A G in

? plate in A G in Proble (0 ponts): The plstc block shon s bonded to rgd support nd to vertcl plte to hch 0 kp lod P s ppled. Knong tht for the plstc used G = 50 ks, deterne the deflecton of the plte. Gven: G 50 ks, P 0

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF

, MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, CONIC SECTION PART 8 OF DOWNLOAD FREE FROM www.tekoclsses.com, PH.: 0 903 903 7779, 98930 5888 Some questions (Assertion Reson tpe) re given elow. Ech question contins Sttement (Assertion) nd Sttement (Reson). Ech question hs

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

JEE Advnced Mths Assignment Onl One Correct Answer Tpe. The locus of the orthocenter of the tringle formed the lines (+P) P + P(+P) = 0, (+q) q+q(+q) = 0 nd = 0, where p q, is () hperol prol n ellipse

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

For all questions, answer choice E) NOTA" means none of the above answers is correct.

For all questions, answer choice E) NOTA means none of the above answers is correct. 0 MA Natonal Conventon For all questons, answer choce " means none of the above answers s correct.. In calculus, one learns of functon representatons that are nfnte seres called power 3 4 5 seres. For

More information

Complex Numbers Alpha, Round 1 Test #123

Complex Numbers Alpha, Round 1 Test #123 Complex Numbers Alpha, Round Test #3. Wrte your 6-dgt ID# n the I.D. NUMBER grd, left-justfed, and bubble. Check that each column has only one number darkened.. In the EXAM NO. grd, wrte the 3-dgt Test

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

P 1 (x 1, y 1 ) is given by,.

P 1 (x 1, y 1 ) is given by,. MA00 Clculus nd Bsic Liner Alger I Chpter Coordinte Geometr nd Conic Sections Review In the rectngulr/crtesin coordintes sstem, we descrie the loction of points using coordintes. P (, ) P(, ) O The distnce

More information

Chapters Five Notes SN AA U1C5

Chapters Five Notes SN AA U1C5 Chpters Five Notes SN AA U1C5 Nme Period Section 5-: Fctoring Qudrtic Epressions When you took lger, you lerned tht the first thing involved in fctoring is to mke sure to fctor out ny numers or vriles

More information

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions: Physcs 121 Smple Common Exm 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7 Nme (Prnt): 4 Dgt ID: Secton: Instructons: Answer ll 27 multple choce questons. You my need to do some clculton. Answer ech queston on the

More information

/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2

/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2 SET I. If the locus of the point of intersection of perpendiculr tngents to the ellipse x circle with centre t (0, 0), then the rdius of the circle would e + / ( ) is. There re exctl two points on the

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

MATHEMATICS PART A. 1. ABC is a triangle, right angled at A. The resultant of the forces acting along AB, AC

MATHEMATICS PART A. 1. ABC is a triangle, right angled at A. The resultant of the forces acting along AB, AC FIITJEE Solutions to AIEEE MATHEMATICS PART A. ABC is tringle, right ngled t A. The resultnt of the forces cting long AB, AC with mgnitudes AB nd respectively is the force long AD, where D is the AC foot

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

( ) ( )()4 x 10-6 C) ( ) = 3.6 N ( ) = "0.9 N. ( )ˆ i ' ( ) 2 ( ) 2. q 1 = 4 µc q 2 = -4 µc q 3 = 4 µc. q 1 q 2 q 3

( ) ( )()4 x 10-6 C) ( ) = 3.6 N ( ) = 0.9 N. ( )ˆ i ' ( ) 2 ( ) 2. q 1 = 4 µc q 2 = -4 µc q 3 = 4 µc. q 1 q 2 q 3 3 Emple : Three chrges re fed long strght lne s shown n the fgure boe wth 4 µc, -4 µc, nd 3 4 µc. The dstnce between nd s. m nd the dstnce between nd 3 s lso. m. Fnd the net force on ech chrge due to the

More information

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2. Mth 43 Section 6. Section 6.: Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot

More information

Ellipse. 1. Defini t ions. FREE Download Study Package from website: 11 of 91CONIC SECTION

Ellipse. 1. Defini t ions. FREE Download Study Package from website:  11 of 91CONIC SECTION FREE Downlod Stud Pckge from wesite: www.tekoclsses.com. Defini t ions Ellipse It is locus of point which moves in such w tht the rtio of its distnce from fied point nd fied line (not psses through fied

More information

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D . If * is the opertion defined by *b = b for, b N, then ( * ) * is equl to (A) 8 (B) 5 (C) 6 (D) 64 (E) 4. The domin of the function ( 9)/( ),if f( ) = is 6, if = (A) (0, ) (B) (-, ) (C) (-, ) (D) (, )

More information

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a KEY CONCEPTS THINGS TO REMEMBER :. The re ounded y the curve y = f(), the -is nd the ordintes t = & = is given y, A = f () d = y d.. If the re is elow the is then A is negtive. The convention is to consider

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers 9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

Mathematics Extension 2

Mathematics Extension 2 00 HIGHER SCHOOL CERTIFICATE EXAMINATION Mthemtics Etension Generl Instructions Reding time 5 minutes Working time hours Write using blck or blue pen Bord-pproved clcultors my be used A tble of stndrd

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r CO-ORDINTE GEOMETR II I Qudrnt Qudrnt (-.+) (++) X X - - - 0 - III IV Qudrnt - Qudrnt (--) - (+-) Region CRTESIN CO-ORDINTE SSTEM : Retngulr Co-ordinte Sstem : Let X' OX nd 'O e two mutull perpendiulr

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year 1/1/21. Fill in the circles in the picture t right with the digits 1-8, one digit in ech circle with no digit repeted, so tht no two circles tht re connected by line segment contin consecutive digits.

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Lesson-5 ELLIPSE 2 1 = 0

Lesson-5 ELLIPSE 2 1 = 0 Lesson-5 ELLIPSE. An ellipse is the locus of point which moves in plne such tht its distnce from fied point (known s the focus) is e (< ), times its distnce from fied stright line (known s the directri).

More information

( β ) touches the x-axis if = 1

( β ) touches the x-axis if = 1 Generl Certificte of Eduction (dv. Level) Emintion, ugust Comined Mthemtics I - Prt B Model nswers. () Let f k k, where k is rel constnt. i. Epress f in the form( ) Find the turning point of f without

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Physics for Scientists and Engineers I

Physics for Scientists and Engineers I Phscs for Scentsts nd Engneers I PHY 48, Secton 4 Dr. Betr Roldán Cuen Unverst of Centrl Flord, Phscs Deprtment, Orlndo, FL Chpter - Introducton I. Generl II. Interntonl Sstem of Unts III. Converson of

More information

Chapter 1: Logarithmic functions and indices

Chapter 1: Logarithmic functions and indices Chpter : Logrithmic functions nd indices. You cn simplify epressions y using rules of indices m n m n m n m n ( m ) n mn m m m m n m m n Emple Simplify these epressions: 5 r r c 4 4 d 6 5 e ( ) f ( ) 4

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

VECTORS AND TENSORS IV.1.1. INTRODUCTION

VECTORS AND TENSORS IV.1.1. INTRODUCTION Chpter IV Vector nd Tensor Anlyss IV. Vectors nd Tensors Septemer 5, 08 05 IV. VECTORS AND TENSORS IV... INTRODUCTION In mthemtcs nd mechncs, we he to operte wth qunttes whch requre dfferent mthemtcl ojects

More information

Generalized Least-Squares Regressions I: Efcient Derivations

Generalized Least-Squares Regressions I: Efcient Derivations Generlzed Lest-Squres Regressons I: Efcent Dervtons NATANIEL GREENE Deprtment of Mthemtcs nd Computer Scence Kngsough Communt College, CUNY 00 Orentl Boulevrd, Brookln, NY 35 UNITED STATES ngreene.mth@gml.com

More information

Similarity and Congruence

Similarity and Congruence Similrity nd ongruence urriculum Redy MMG: 201, 220, 221, 243, 244 www.mthletics.com SIMILRITY N ONGRUN If two shpes re congruent, it mens thy re equl in every wy ll their corresponding sides nd ngles

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get rgsdle (zdr8) HW6 dtmre (58335) Ths prnt-out should hve 5 questons Multple-choce questons my contnue on the next column or pge fnd ll choces efore nswerng 00 (prt of ) 00 ponts The currents re flowng n

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

332600_08_1.qxp 4/17/08 11:29 AM Page 481

332600_08_1.qxp 4/17/08 11:29 AM Page 481 336_8_.qxp 4/7/8 :9 AM Page 48 8 Complex Vector Spaces 8. Complex Numbers 8. Conjugates and Dvson of Complex Numbers 8.3 Polar Form and DeMovre s Theorem 8.4 Complex Vector Spaces and Inner Products 8.5

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

+ R 2 where R 1. MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark)

+ R 2 where R 1. MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark) 2. C h p t e r t G l n c e is the set of ll points in plne which re t constnt distnce from fixed point clled centre nd constnt distnce is known s rdius of circle. A tngent t ny point of circle is perpendiculr

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Special Numbers, Factors and Multiples

Special Numbers, Factors and Multiples Specil s, nd Student Book - Series H- + 3 + 5 = 9 = 3 Mthletics Instnt Workooks Copyright Student Book - Series H Contents Topics Topic - Odd, even, prime nd composite numers Topic - Divisiility tests

More information

10. AREAS BETWEEN CURVES

10. AREAS BETWEEN CURVES . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

More information

2.4 Linear Inequalities and Interval Notation

2.4 Linear Inequalities and Interval Notation .4 Liner Inequlities nd Intervl Nottion We wnt to solve equtions tht hve n inequlity symol insted of n equl sign. There re four inequlity symols tht we will look t: Less thn , Less thn or

More information

Inspiration and formalism

Inspiration and formalism Inspirtion n formlism Answers Skills hek P(, ) Q(, ) PQ + ( ) PQ A(, ) (, ) grient ( ) + Eerise A opposite sies of regulr hegon re equl n prllel A ED i FC n ED ii AD, DA, E, E n FC No, sies of pentgon

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

Level I MAML Olympiad 2001 Page 1 of 6 (A) 90 (B) 92 (C) 94 (D) 96 (E) 98 (A) 48 (B) 54 (C) 60 (D) 66 (E) 72 (A) 9 (B) 13 (C) 17 (D) 25 (E) 38

Level I MAML Olympiad 2001 Page 1 of 6 (A) 90 (B) 92 (C) 94 (D) 96 (E) 98 (A) 48 (B) 54 (C) 60 (D) 66 (E) 72 (A) 9 (B) 13 (C) 17 (D) 25 (E) 38 Level I MAML Olympid 00 Pge of 6. Si students in smll clss took n em on the scheduled dte. The verge of their grdes ws 75. The seventh student in the clss ws ill tht dy nd took the em lte. When her score

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus: More on χ nd errors : uppose tht we re fttng for sngle -prmeter, mnmzng: If we epnd The vlue χ ( ( ( ; ( wth respect to. χ n Tlor seres n the vcnt of ts mnmum vlue χ ( mn χ χ χ χ + + + mn mnmzes χ, nd

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Coalgebra, Lecture 15: Equations for Deterministic Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata Colger, Lecture 15: Equtions for Deterministic Automt Julin Slmnc (nd Jurrin Rot) Decemer 19, 2016 In this lecture, we will study the concept of equtions for deterministic utomt. The notes re self contined

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

Algebra II Notes Unit Ten: Conic Sections

Algebra II Notes Unit Ten: Conic Sections Syllus Ojective: 10.1 The student will sketch the grph of conic section with centers either t or not t the origin. (PARABOLAS) Review: The Midpoint Formul The midpoint M of the line segment connecting

More information

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

4 VECTORS. 4.0 Introduction. Objectives. Activity 1 4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply

More information

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

SECTION A STUDENT MATERIAL. Part 1. What and Why.? SECTION A STUDENT MATERIAL Prt Wht nd Wh.? Student Mteril Prt Prolem n > 0 n > 0 Is the onverse true? Prolem If n is even then n is even. If n is even then n is even. Wht nd Wh? Eploring Pure Mths Are

More information