COMPLEX NUMBERS AND DE MOIVRE S THEOREM

Size: px
Start display at page:

Download "COMPLEX NUMBERS AND DE MOIVRE S THEOREM"

Transcription

1 COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve, f s odd f s odd, f s eve d f s eve, f s odd 6. The rel vlues of d for whch the equto s s stsfed, re 5 8, b 8 5, 5,

2 7. sθ sθ wll be rel, f θ b 8. If cosθ sθ, the cot θ b cot θ cot θ θ d t 9. The multplcto verse of umber s the umber tself, the ts tl vlue s b d 0. If d, the Im b d. If / b, the b s equl to b b b b. The vlues of d stsfg the equto re, b, 0, d, 0. sθ sθ wll be purel mgr, f θ ± b ±. If, the b 0

3 5. The smllest postve teger for whch s b d 6. The rel prt of cosθ sθ s 5 cos θ b 5 cos θ 5 cosθ d 5 cos θ 7. If, the the multplctve verse of s where 8. If b / d /, cosθ sθ the s equl to b 9. If b c d b c, the b c b b c c b 0. If p q, the p q, b p, q q p,. If 6 0, the, s, b, 0, d 0, If b, the, b b, b 0 0, b d, b b b. If b, the b b d b

4 . If, the s equl to 5 b 6 5 d 5. The cojugte of, the form of b, s b d If d be comple umbers such tht hs egtve mgr prt, the d m be. If hs postve rel prt d Purel mgr Rel d egtve brel d postve 7. The mmum vlue of where stsfes the codto s b d 8. If s comple umber, the b 0 9. If 5, the 98 5 b 5 5 d 5 0. The umber of solutos of the equto 0 s b d. If, re two comple umbers, the s equl to b d

5 . If d re two o-ero comple umbers such tht, the rg rg s equl to b d 0. If cos α sα, the mp α b α. If α d cos s 6 6 the α, rg b, rg 6 5, rg d, rg t 5. If d mp mp 0, the b 0 d 6. If rg θ, the rg θ b θ θ d θ 7. If be the cojugte of the comple umber, the whch of the followg reltos s flse b. d rg rg 8. If..., the the vlue of b......

6 9. The cojugte of comple umber, s b d 0. If d re two comple umbers stsfg the equto, the s umber whch s Postve rel Zero or purel mgr bnegtve rel. If, re two comple umbers such tht d k, where k R, the the gle betwee d s t k k b t k k t k d t k. If d ω where, the 0 b Reω s. d. If be the cojugte of the comple umber, the whch of the followg reltos s flse b. d rg rg. Let be comple umber wth d be comple umber, the 0 b d

7 5. For two comple umbers, we hve the Re 0 b Im 0 Re 0 d Im 0 6. If, the the dfferece the mpltudes of d s b d 0 7. If d ω re two o ero comple umbers such tht ω d rg rg ω, the ω s equl to b d 8. rg 0 s equl to b d 9. If...., the rg rg... rg d rg dffer b Multple of b Multple of Greter th dless th 50. Whch of the followg re correct for two comple umbers d b rg rg rg d 5. If d 5, d the Re s equl to 7 7 b 7 d If 8 b the b b 8 9 d 8 s

8 5. If d r g, the s equl to 0 Purel rel b Purel mgr 5. The rel prt of s / e cos log b / e s log / / e cos log d e s log 55. If b, the possble vlue of b s b d 56. log s equl to t b t t d t cos cos s cos s b s dnoe of these / 58. The vlue of s b d - b c d 59. If, the b c d b b c d c d b d b c d

9 9 60. If b, the b s equl to b 56 0 d 9 6. The umber of o-ero tegrl solutos of the equto s Ifte b 5 6. The mgr prt of t s 0 b log d log 6. If cosθ sθ,the the vlue of s cos θ b sθ cosecθ d t θ 6. s equl to cos s s b cos cos s 65. If, the les o A ellpse A crcle b The mgr s d The rel s 66. The equto b 0, b R represets crcle f b b > b < b 67. Let be comple umber such tht < d,... be vertces of polgo such tht, k... k. The the vertces of the polgo le wth crcle b d

10 68. Let the comple umbers, d be the vertces of equlterl trgle. Let 0 be the crcum cetre of the trgle, the 0 b 0 0 d The comple umbers,, re the vertces of trgle. The the comple umbers whch mke the trgle to prllelogrm s b d All the bove 70. Let,, be three vertces of equlterl trgle crcumscrbg the crcle. If d,, re tclockwse sese the s b d 7. If s comple umber the Argd ple, the the equto 8 represets Prbol Hperbol b Ellpse d Crcle 7. If,,, re the ffes of four pots the Argd ple d s the ff of pot such tht, the,,, re Cocclc b Vertces of prllelogrm Vertces of rhombus d I strght le 7. If, the re of the trgle whose vertces re pots, d b d s 7. If, Strght le Prbol the the locus descrbed b the pot the Argd dgrm s b Crcle

11 75. If the re of the trgle formed b the pots, d o the comple ple s 8, the the vlue of s 6 b 9 d 76. The rego of Argd ple defed b s Iteror of ellpse b Eteror of crcle Iteror d boudr of ellpse 77. Let d be two comple umbers such tht, re coller b, d the org form rght gled trgle, d the org form equlterl trgle 78. The locus represeted b s A crcle of rdus b A ellpse wth foc t, 0 d 0, A strght le through the org d A crcle o the le jog,0,0, s dmeter 79. If d, the locus of s 5 0 b d 5 0. The 80. cosϕ sϕ cosϕ sϕ cos φ s φ b cos φ s φ s φ cos φ d s φ cos φ

12 8. If s postve teger, the s equl to cos b cos s s d 8. cos / 8 s / 8 cos / 8 s / 8 8 s equl to b 0 d 8. If ω s cube root of ut, the ω ω 0 ω b ω 8. If cosθ sθcos θ s θ... cos θ s θ m b m, the the vlue of θ s m d m where s equl to 5 b 5 5 d 5 cos α sα 86. s β cos β 5 cos α 5β sα 5β b cos α 5β sα 5β s α 5β cosα 5β 87. sθ cos θ sθ cos θ θ s θ θ cos b cos θ s θ cos θ θ s d cos θ s

13 88. The product of ll the roots of cos s / s b d 89. If cos θ, the s equl to cos θ b s θ cos θ d s θ cos s 90. The vlue of 0 0 cos s b d 9. If cos α cos β cos γ 0 0 s α s β s γ cos α β γ b cos α β γ 0 d the cos α cos β cos γ equls 9. If ω s cube root of ut, the ω ω ω ω b 0 d If ω s cube root of ut, the the vlue of ω ω ω ω 6 b 8 d 9. If ω s comple cube root of ut, the b d ω ω

14 bω cω 95. The vlue of b cω ω b bω cω c ω bω wll be d 96. If,,... re th, roots of ut, the for k,,..., k b k k k k k d k k k k k s equl to 6 b 6 d b 0 9 d If, the 00. If s equl to b I d s root of equto 0 the ts rel roots re, b,, d, 0. If ω s comple cube root of ut, the 5 ω 8 ω ω 8 ω 7 b 9 00 d 8 0. sh s s b s s d s

15 0. If, ω, ω re the cube roots of ut, the ω ω ω ω ω ω 0 b ω d ω

16 COMPLEX NUMBERS AND DE MOIVRE S THEOREM HINTS AND SOLUTIONS.. d We hve b 5. Let m m [ 5... ] Clerl seres s A.P. wth commo dfferece d T T sθ sθ s θ 8 sθ sθ sθ s θ s θ Now, sce t s rel, therefore Im 0 8 sθ s θ 8. cosθ sθ. 0 s 0 cosθ sθ. cosθ sθ θ, θ Rtolto of deomtor, we get cosθ sθ cosθ sθ cosθ sθ cosθ sθ 9. b Verfcto 0 d If d The Im.

17 . b / b b. b. b b b b b Equtg rel d mgr prts, we get b b d b b b. b Equtg rel d mgr prts, we get 7 d 9. Hece d.. sθ sθ wll be purel mgr, f the rel prt vshes,.e., 0 s θ s θ s θ 0. b If... We kow tht f two comple umbers re equl, ther modul must lso be equl, therefore from, we hve, > 0 / 0 5. b We hve 6. d { cosθ. sθ}. θ s. s θ cos θ θ s θ θ s. cos θ s θ θ s. cos θ θ θ θ s. cos s. cos

18 7. Gve d. Squrg both sdes, we get or. Sce t s multplctve dett, therefore multplctve verse of. 8. b If cos θ sθ cosθ sθ 6 cosθ sθ cosθ s θ cos θ cosθ s θ 6 cos θ sθ 5 cos θ 5 cos θ 9. b c/ c b b c/ c b c b c b c b 0. p q p q q p p q 0, q p d p q q p. d b Gve, b ; b b 5 b [ ] 0,. Gve tht b, therefore b b b b b b b b b b b b b b b b b b b

19 . Gve tht 7, 7 d Cojugte Assume two comple umbers stsfg both codtos.e., Let,, Hece the result. d 0 7. b ± 8 ±. Hece m. vlue of s 8. Let, d ; 9. 5, Hece, d Let, the. d Check b puttg 0 d 0. d, les o sme strght le. rg rg rg rg 0. d mp t sα cos α t α cot t α t α.. b cos s 6 6

20 d rg t t / / t rg t t b Let r θ s cos θ The r d rg 0 rg rg rg θ r [cos θ s θ ] r cosθ s θ. 6. b cocept. 7. d Let, Sce rg θ t rg θ t Thus rg rg. 8. We hve k, k,,... k k k k k Therefore b Cojugte Gve cos θ sθ cos θ sθ cot cos θ sθ θ s

21 Whch s ero, f, I θ d s otherwse purel mgr.. α cos α s α α α α s cos s cos Applg compoedo d dvdedo. ω. b. b We hve d be comple umber. ; ; Gve tht. 5. We hve cos θ θ Where, rg rg θ θ 0 cos θ θ θ θ 0 cos Re rg 6. Squrg the gve reltos mples tht 0 Now t t mp mp t t t.

22 7. d ω... d rg ω ω ω... From equto d ω ω ω d 0 ; ω ω 0 ω ω ω ω ; ω ω.. ω rg rg 5 0 rg We kow tht the prcpl vlue of θ les betwee d. 50. Cocept 5. d Gve, 5 d The Re b Tkg modulus d squrg o both sdes, we get b b 98 b b We hve rg rg rg rg rg Let rg θ, the rg θ [cos θ s ] θ

23 cosθ sθ d cosθ s cosθ sθ θ Hece Let. Tkg log o both sdes, log log log cos s / e log / log log e log log / / log e e. Tkg rel prt ol 55. d b b, b d hece b 56. b Let log log log log log θ log b log re log r θ... log b t b / Hece, [b eq. ] log t log t log t 0 t t t t Let

24 r cosθ d sθ r θ d r Thus 7 cos s Sce cos s d cos s 6 6 cos s 6 6 d cos s. 59. Hece the result. b c d b c d Also b c d c b d / 60. cos s e 9 / 9 9 e. e 9 cos s 9 9 b ; 0 9 b. 6. d Sce cos s, / 0 6. t 5 t 5 5 log 5 5 Im t log. log log.

25 6., s cos θ θ θ e the θ θ θ s cos e cosθ. 6. b whch c be wrtte s cos s 65. b We hve 66. b B ddg o both the sdes of b we get, b },{ b Ths equto wll represet crcle wth cetre, f b e b > >.. 0, sce b represets pot crcle ol. 67. We hve k k k... k k k k k < k les wth. 68. Let r be the crcum rdus of the equlterl trgle d ω the cube root of ut. 69. dstdrd problem 70. d / e s cos. 7. b 8 8

26 [ ] Whch s ellpse. 7. We hve, Therefore the pot hvg ff s equdstt from the four pots hvg ffes,,,. Thus s the ff of ether the cetre of crcle or the pot of tersecto of dgols of squre or rectgle. Therefore,,, re ether cocclc or vertces of squre. Hece,,, re cocclc. 7. b Let ; d If A deotes the re of the trgle formed b, d, the A Applg trsformto R R R R, we get A b Puttg [ ] 6 0. Whch s the equto of crcle Are of the trgle We hve 6 6

27 We hve,, where 0 d the org 0 form equlterl trgle e., strght le through the org b L.H.S. cos cos φ / s φ / cos φ / φ / s φ / cos φ / cos φ / s φ / cos φ / s φ / φ / e φ / e e φ cos φ s φ. 8. cos s cos s /. cos cos cos. 8. cos / 8 s / 8 cos / 8 s / 8 8 cos cos [cos [cos /6 s /6 cos /6 /6 s /6 cos /6 8 /6 s /6 ] /6 s /6] 8 cos s 6 6 [cos /6 s /6] 8 cos s 6 6 cos 6 s6 cos

28 8. ω ω ω ω 6 ω ω ω ω ω 0 8. We hve cosθ sθcos θ s θ... cos θ s θ cos θ θ θ... θ s θ θ. θ cos θ s θ cos θ d s θ o o 5 cos 50 s50 o 5 [cos50 5 s50 5] 5 [cos 0 o s 0 o ] 5 [cos 0 o s 0 o ] 5. o cos α sα s β cos β cos α s α 5 5 cos β s β 5 cos α s αcos β s β [cos α s α] [cos 5β s 5β] [cos α 5β sα 5β] 87. sθ cos θ sθ cosθ cos α sα cos α sα cos cos α α α s cos α α α s cos α α cos s α α cos s 88. b Gve tht cos s / / [cos s ]. Sce the epresso hs ol dfferet roots, therefore o puttg 0,,, cos s d multplg them, We get cos s cos s cos s cos s

29 89. cos θ cosθ 0 cos θ ± sθ cos θ ± sθ cos θ ± sθ cos θ sθ cos θ s θ b Let cos s d cos s 0 0 Therefore, stdrd problem 9. d If ω s comple cube root of ut the ω d ω ω 0 ω ω ω ω ω ω b ω ω ω ω 5 5 ω ω ω ω ω ω ω ω 9. ω ω ω ω ω ω ω ω ω, therefore 95. b Multplg the umertor d deomtor b ω d ω respectvel I d II epressos bω cω bω cω ω bω cω ω bω cω ω ω b cω ω c ω bω bω cω cω ω th 96. d The k roots of ut re gve b e k, k,..., k e for ll k,,..., k k k for ll k,...,

30 ω 0 0 ω d As ω d ω ω 0 0 ω ω 8. ω ω 9. ω ω ω 99. d 0 ω or ω For ω, ω ω 00 ω ω ω ω For ω , ω ω ω ω ω ω. ω ω Or 0 so ts rel roots re d. 0. d 5 ω 8ω ω 8ω,,, 5 5ω 5ω ω ω b s sh. 0. ω ω ω ω ω ω ω 0 ω [ ω ω ω ]

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these

Test Paper-II. 1. If sin θ + cos θ = m and sec θ + cosec θ = n, then (a) 2n = m (n 2 1) (b) 2m = n (m 2 1) (c) 2n = m (m 2 1) (d) none of these Test Paer-II. If s θ + cos θ = m ad sec θ + cosec θ =, the = m ( ) m = (m ) = m (m ). If a ABC, cos A = s B, the t s C a osceles tragle a eulateral tragle a rght agled tragle. If cos B = cos ( A+ C), the

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number.

( ) ( ) A number of the form x+iy, where x & y are integers and i = 1 is called a complex number. A umber of the form y, where & y are tegers ad s called a comple umber. Dfferet Forms )Cartesa Form y )Polar Form ( cos s ) r or r cs )Epoetal Form r e Demover s Theorem If s ay teger the cos s cos s If

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

ANSWERS, HINTS & SOLUTIONS FULL TEST II (PAPER - 2) Q. No. PHYSICS CHEMISTRY MATHEMATICS

ANSWERS, HINTS & SOLUTIONS FULL TEST II (PAPER - 2) Q. No. PHYSICS CHEMISTRY MATHEMATICS ITS-FT-II Pper-)-PCM-Sol-JEEdvced)/7 I JEE dvced 6, FIITJEE Studets bg 6 Top IR, 75 Top IR, 8 Top 5 IR. 5 Studets from Log Term Clssroom/ Itegrted School Progrm & Studets from ll Progrms hve qulfed JEE

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

St John s College. UPPER V Mathematics: Paper II. Learning Outcomes 3 and 4. Examiner: SLS / BH Marks: 150 Moderator: DG

St John s College. UPPER V Mathematics: Paper II. Learning Outcomes 3 and 4. Examiner: SLS / BH Marks: 150 Moderator: DG St Joh s College St Joh s College UPPER V Mthemtcs: Pper II Lerg Outcomes 3 d 4 ugust 00 Tme: 3 hours Emer: SLS / BH Mrks: 50 Modertor: DG PLESE RED THE FOLLOWING INSTRUCTIONS CREFULLY. Ths questo pper

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2. Chter Chter Syste of Rel uers Tertg Del frto: The del frto whh Gve fte uers of dgts ts del rt s lled tertg del frto. Reurrg ( o-tertg )Del frto: The del frto (No tertg) whh soe dgts re reeted g d g the

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Angle Bisectors Bisect Arcs

Angle Bisectors Bisect Arcs Volume, Number prl 006 My 006 Olympd orer elow ws the Fd Roud of the 6th ustr Mth Olympd 005. gle sectors sect rcs K Y. L rt (My 0, 005) roblem. Show tht fte umber of multples of 005 exst, whch ech of

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Review Exam II Complex Analysis

Review Exam II Complex Analysis Revew Exam II Complex Aalyss Uderled Propostos or Theorems: Proofs May Be Asked for o Exam Chapter 3. Ifte Seres Defto: Covergece Defto: Absolute Covergece Proposto. Absolute Covergece mples Covergece

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Computer Programming

Computer Programming Computer Progrmmg I progrmmg, t s ot eough to be vetve d geous. Oe lso eeds to be dscpled d cotrolled order ot be become etgled oe's ow completes. Hrl D. Mlls, Forwrd to Progrmmg Proverbs b Her F. Ledgrd

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150 CMPT- Itroducto to Computer Desg SFU Harbour Cetre Sprg 7 Lecture : Ja. 6 7 Stadard orms or boolea uctos Sum o Products Product o Sums Stadard Forms or Boolea Fuctos (cot ) It s useul to spec Boolea uctos

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

M3P14 EXAMPLE SHEET 1 SOLUTIONS

M3P14 EXAMPLE SHEET 1 SOLUTIONS M3P14 EXAMPLE SHEET 1 SOLUTIONS 1. Show tht for, b, d itegers, we hve (d, db) = d(, b). Sice (, b) divides both d b, d(, b) divides both d d db, d hece divides (d, db). O the other hd, there exist m d

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core Topc : Algebr Topc

More information

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics 4 Ler Homogeeous Recurrece Relto 4- bocc Rbbts 组合数学 ombtorcs The delt of the th moth d - th moth s gve brth by the rbbts - moth. o = - + - Moth Moth Moth Moth 4 I the frst moth there s pr of ewly-bor rbbts;

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation?

Can we take the Mysticism Out of the Pearson Coefficient of Linear Correlation? Ca we tae the Mstcsm Out of the Pearso Coeffcet of Lear Correlato? Itroducto As the ttle of ths tutoral dcates, our purpose s to egeder a clear uderstadg of the Pearso coeffcet of lear correlato studets

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge ccog to the ut whch the e fst touce. Thus cte sttg ut m e eque to use the fomule tht wee touce peceg ut e.g. ctes sttg C mght e epecte to use

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1 LOCUS 33 Seto - 3 PAIR OF STRAIGHT LINES Cosder two les L L Wht do ou thk wll L L represet? It s ovous tht pot lg o L d L wll stsf L L, d thus L L represets the set of pots osttutg oth the les,.e., L L

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i

Applying the condition for equilibrium to this equilibrium, we get (1) n i i =, r G and 5 i CHEMICAL EQUILIBRIA The Thermodyamc Equlbrum Costat Cosder a reversble reacto of the type 1 A 1 + 2 A 2 + W m A m + m+1 A m+1 + Assgg postve values to the stochometrc coeffcets o the rght had sde ad egatve

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006 Mult-Layer Refracto Problem Rafael Espercueta, Bakersfeld College, November, 006 Lght travels at dfferet speeds through dfferet meda, but refracts at layer boudares order to traverse the least-tme path.

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

The Z-Transform in DSP Lecture Andreas Spanias

The Z-Transform in DSP Lecture Andreas Spanias The Z-Trsform DSP eture - Adres Ss ss@su.edu 6 Coyrght 6 Adres Ss -- Poles d Zeros of I geerl the trsfer futo s rtol; t hs umertor d deomtor olyoml. The roots of the umertor d deomtor olyomls re lled the

More information

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i ENUMERATON OF FNTE GROUPS OF THE FORM R ( 2 = (RfR^'u =1. 21 THE COMPLETE ENUMERATON OF FNTE GROUPS OF THE FORM R 2 ={R R j ) k -= H. S. M. COXETER*. ths paper, we vestgate the abstract group defed by

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Complex Numbers Primer

Complex Numbers Primer Complex Numbers Prmer Before I get started o ths let me frst make t clear that ths documet s ot teded to teach you everythg there s to kow about complex umbers. That s a subject that ca (ad does) take

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION School Of Distce Eductio Questio Bk UNIVERSITY OF ALIUT SHOOL OF DISTANE EDUATION B.Sc MATHEMATIS (ORE OURSE SIXTH SEMESTER ( Admissio OMPLEX ANALYSIS Module- I ( A lytic fuctio with costt modulus is :

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information