Mathematically, integration is just finding the area under a curve from one point to another. It is b

Size: px
Start display at page:

Download "Mathematically, integration is just finding the area under a curve from one point to another. It is b"

Transcription

1 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom oe pot to oter It s d represeted y, were te symol s tegrl sg, te umers d re te lower d upper lmts o tegrto, respetvely, te uto s te tegrd o te tegrl, d s te vrle o tegrto Fgure represets grpl demostrto o te oept Wy re we terested tegrto: euse most equtos pyss re deretl equtos tt must e tegrted to d te solutos Furtermore, some pysl quttes e oted y tegrto emple: dsplemet rom veloty Te prolem s tt sometmes tegrtg lytlly some utos esly eome lorous For ts reso, wde vrety o umerl metods ve ee developed to d te tegrl I Rem Sums Fgure- Itegrto Let e deed o te losed tervl [, ], d let e rtrry prtto o [, ] su s: < < < < - <, were s te legt o te t sutervl I s y pot te t sutervl, te te sum Δ, Numerl Itegrto 8

2 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] - - s lled Rem Sum o te uto or te prtto o te tervl [, ] For gve prtto, te legt o te logest sutervl s lled te orm o te prtto It s deoted y te orm o Te ollowg lmt s used to dee te dete tegrl: lm Δ Δ I Ts lmt ests d oly or y postve umer ε, tere ests postve umer δ su tt or every prtto o [, ] wt < δ, t ollows tt I Δ < ε or y oe o te umers te t sutervl o I te lmt o Rem Sum o ests, te te uto s sd to e tegrle over [, ] d tt te Rem Sums o o [, ] ppro te umer I Emple lm Δ I, Δ Were I d Fd te re o te rego etwee te prol y d te -s o te tervl [, ] Use Rem s Sum wt our prttos TRAPEZOIDAL RULE Trpezodl rule s sed o te Newto-Cotes ormul tt we ppromte te tegrd y t order polyoml, te te tegrl o te uto s ppromted y te tegrl o tt t order polyoml d, Numerl Itegrto 8

3 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] So we wt to ppromte te tegrl d I to d te vlue o te ove tegrl, we wrte our uto uder polyoml orm: were were s order polyoml Trpezodl rule ssumes t, tt s, te re uder te ler polyoml strgt le, d d DERIVATION OF THE TRAPEZOIDAL RULE We ve: d d d But wt s d? Now we oose, d s te two pots to ppromte y strgt le rom to,,, Solvg te ove two equtos or d, Hee we get, d d Numerl Itegrto 8

4 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Emple Te vertl dste overed y roket rom t 8 to t seods s gve y 8 l 98t dt t Use sgle segmet Trpezodl rule to d te dste overed Fd te true error, E t or prt Fd te solute reltve true error or prt Multple-segmet Trpezodl Rule: Oe wy to rese te ury o te trpezodl rule s to rese te umer o segmets etwee d So ts proedure, we wll dvde [, ] to equl segmets d pply te Trpezodl rule over e segmet, te sum o te results oted or e segmet s te ppromte vlue o te tegrl Dvde to equl segmets s sow te gure elow Te te wdt o e segmet s Te tegrl Ι e roke to tegrls s I d d d d d Fgure- Multple-segmet Trpezodl rule Numerl Itegrto 8

5 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Applyg Trpezodl rule o e segmet gves: d [ ] [ ] d Emple Te vertl dste overed y roket rom t 8 to t seods s gve y 8 l 98t dt t Use two-segmet Trpezodl rule to d te dste overed Fd te true error, E t or prt Fd te solute reltve true error or prt Wy resg te umer o segmets To llustrte te mporte o resg te umer o segmets te Trpezodl rule, let us osder te ollowg tegrl: I d e Numerl Itegrto 8

6 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Te ollowg tle represets te vrto te solute d reltve error wt te umer o segmets used Note tt wt smll umer o segmets, te error s very g Appromte Vlue % 9 79% % % % 7 9% 8 % E t t Error Multple-segmet Trpezodl Rule Te true error or sgle segmet Trpezodl rule s gve y E t "ζ, < ζ < [,] were ζ s some pot Wt s te error, te, te multple-segmet Trpezodl rule? It wll e smply te sum o te errors rom e segmet, were te error e segmet s tt o te sgle segmet Trpezodl rule Te error e segmet s [ ] E " ζ < ζ < " ζ [ ] E " ζ < ζ < " ζ [ { } ] E " ζ < ζ < " ζ Hee te totl error multple-segmet Trpezodl rule s E t E Numerl Itegrto 8

7 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Te term Hee " ζ " ζ " ζ " ζ ", < < s ppromte verge vlue o te seod dervtve E t " ζ SIMPSON S / RD RULE Trpezodl rule ws sed o ppromtg te tegrd y rst order polyoml, d te tegrtg te polyoml te tervl o tegrto Smpso s /rd rule s eteso o Trpezodl rule were te tegrd s ppromted y seod order polyoml We ve, I d d were s seod order polyoml Coose,,,,, evlute d d, s te tree pots o te uto to Solvg te ove tree equtos or ukows, d gves, Numerl Itegrto 87

8 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Te d I d Susttutg vlues o d gves, d Se or Smpso s / rd Rule, te tervl [ ], s roke to segmets, te segmet wdt s Hee te Smpso s / rd rule s gve y d Se te ove orm s / ts ormul, t s lled Smpso s / rd Rule Numerl Itegrto 88

9 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Emple Te dste overed y roket rom 8 t to t s gve y 8 98 l dt t t Use Smpso s / rd Rule to d te ppromte vlue o Fd te true error, t E Fd te solute reltve true error, t Multple Segmet Smpso s / rd Rule Just lke multple-segmet Trpezodl Rule, we sudvde te tervl [ ], to segmets d pply Smpso s / rd Rule over every two segmets Note tt eeds to e eve Dvde tervl [ to equl segmets, ee te segmet wdt ], d d were d d d d d Apply Smpso s / rd Rule over e tervl, d Se,,, te d Numerl Itegrto 89

10 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] { } { [ ] } eve odd eve odd d Error Multple Segmet Smpso s / rd Rule Te true error sgle pplto o Smpso s / rd Rule s gve y E t < < ζ ζ, 88 I Multple Segmet Smpso s / rd Rule, te error s te sum o te errors e pplto o Smpso s / rd Rule Te error segmet Smpso s / rd Rule s gve y, 88 E < < ζ ζ 9 ζ, 88 E < < ζ ζ 9 ζ : E < <, 88 ζ ζ 9 ζ Hee, te totl error Multple Segmet Smpso s / rd Rule s t E E 9 ζ Numerl Itegrto 9

11 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Te term were 9 9 ζ ζ ζ s ppromte verge vlue o ζ E t 9, < < Hee Rrdso s Etrpolto Formul or Trpezodl Rule Te true error multple segmet Trpezodl Rule wt segmets or tegrl d s gve y E t ξ were or e, te term ξ s pot somewere te dom [, ] ξ, d e vewed s ppromte verge vlue o us to sy tt te true error, Et e wrtte uder te orm: [,] Ts leds E t α Numerl Itegrto 9

12 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Or C E t were Se, we ve C s ppromte ostt o proportolty E TV t I were TV true vlue I ppromte vlue usg -segmets Te, we wrte, C TV I I te umer o segmets s douled rom to te Trpezodl rule, C TV I Te ove equtos e omed to get: TV I I I GAUSS QUADRATURE RULE Dervto o two-pot Guss Qudrture Rule Te two-pot Guss Qudrture Rule s eteso o te Trpezodl Rule ppromto were te rgumets o te uto re ot predetermed s d, ut s ukows d So te two-pot Guss Qudrture Rule, te tegrl s ppromted s I d Numerl Itegrto 9

13 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Tere re our ukows,, d Tese re oud y ssumg tt te ormul gves et results or tegrtg geerl trd order polyoml, Hee d d Te ormul gves d Equtg te ove equtos gves Se ts equto, te ostts d re rtrry, te oeets o d re equl Ts gves us te our ollowg equtos:,,,,,, d Numerl Itegrto 9

14 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Hee d Hger pot Guss Qudrture Formuls I we wrte te tegrl o te uto uder te ollowg orm: d Ts s lled te tree-pot Guss Qudrture Rule Te oeets, d, d te uto rgumets, d re lulted y ssumg te ormul gves et epressos or tegrtg t order polyoml d Geerl -pot rules would ppromte te tegrl d Argumets d wegg tors or -pot Guss Qudrture Rules Usully oeets d rgumets or -pot Guss Qudrture Rule re tulted But, tey re gve or tegrls o te orm g d g Numerl Itegrto 9

15 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] Tle : Wegtg tors d uto rgumets used Guss Qudrture ormuls Wegtg Futo Pots Ftors Argumets Note: te tle s gve or g d tegrls, ow we solve d? Ay tegrl wt lmts o [, ] e overted to tegrl wt lmts [, ] Let Numerl Itegrto 9

16 Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] mt I, te t I, te t su tt m m Solvg tese two smulteous ler Equtos gves m Hee t d dt Susttutg our vlues o d d to te tegrl gves us d d Emple Use tree-pot Guss Qudrture Rule to ppromte te dste overed y roket rom t 8 to t s gve y 8 l 98t dt t Also, d te solute reltve true error Numerl Itegrto 9

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cper 7. Smpso s / Rule o Iegro Aer redg s per, you sould e le o. derve e ormul or Smpso s / rule o egro,. use Smpso s / rule o solve egrls,. develop e ormul or mulple-segme Smpso s / rule o egro,. use

More information

Chapter Trapezoidal Rule of Integration

Chapter Trapezoidal Rule of Integration Cper 7 Trpezodl Rule o Iegro Aer redg s per, you sould e le o: derve e rpezodl rule o egro, use e rpezodl rule o egro o solve prolems, derve e mulple-segme rpezodl rule o egro, 4 use e mulple-segme rpezodl

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Numerical differentiation (Finite difference)

Numerical differentiation (Finite difference) MA umercl Alyss Week 4 To tk d wrte portle progrms we eed strct model of ter computtol evromet. Ftful models do est ut tey revel tt evromet to e too dverse forcg portle progrmmers to lot eve te smplest

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 2007/2008 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 2007 MASA : 3 JAM

UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 2007/2008 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 2007 MASA : 3 JAM UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 7/8 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 7 MASA : 3 JAM KOD KURSUS : KKKQ33/KKKF33 TAJUK : PENGIRAAN BERANGKA ARAHAN :.

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numerl Alss Dr Murrem Merme INTEROLATION ELM Numerl Alss Some of te otets re dopted from Luree V. Fusett Appled Numerl Alss usg MATLAB. rete Hll I. 999 ELM Numerl Alss Dr Murrem Merme Tod s leture

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order hpter Ite Sequeces d Seres. Sequeces A sequece s set o umers wrtte dete order,,,... The umer s clled the rst term, s clled the secod term, d geerl s th clled the term. Deto.. The sequece {,,...} s usull

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/200 Trpezoidl Rule o Itegrtio Wht is Itegrtio Itegrtio: The process

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

FORMULAE FOR FINITE DIFFERENCE APPROXIMATIONS, QUADRATURE AND LINEAR MULTISTEP METHODS

FORMULAE FOR FINITE DIFFERENCE APPROXIMATIONS, QUADRATURE AND LINEAR MULTISTEP METHODS Jourl o Mtemtcl Sceces: Advces d Alctos Volume Number - Pges -9 FRMULAE FR FINITE DIFFERENCE APPRXIMATINS QUADRATURE AND LINEAR MULTISTEP METHDS RAMESH KUMAR MUTHUMALAI Dertmet o Mtemtcs D G Vsv College

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Mjor: All Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Revised by Prof. Jang, CAU

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Revised by Prof. Jang, CAU Part 4 Capter 6 Sple ad Peewe Iterpolato PowerPot orgazed y Dr. Mael R. Gutao II Duke Uverty Reved y Pro. Jag CAU All mage opyrgt Te MGraw-Hll Compae I. Permo requred or reproduto or dplay. Capter Ojetve

More information

Implicit Runge-Kutta method for Van der pol problem

Implicit Runge-Kutta method for Van der pol problem Appled d Computtol Mthemts 5; 4(-: - Publshed ole Jul, 4 (http://www.seepublshggroup.om//m do:.48/.m.s.54. ISSN: 8-55 (Prt; ISSN: 8-5 (Ole Implt Ruge-Kutt method for V der pol problem Jfr Bzr *, Mesm Nvd

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

ENGI 4430 Numerical Integration Page 5-01

ENGI 4430 Numerical Integration Page 5-01 ENGI 443 Numercal Itegrato Page 5-5. Numercal Itegrato I some o our prevous work, (most otaly the evaluato o arc legth), t has ee dcult or mpossle to d the dete tegral. Varous symolc algera ad calculus

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III Itrodcto to Nmercl Alyss Mrc, 9 Nmercl Metods or PDEs Lrry Cretto Meccl Egeerg 5B Semr Egeerg Alyss Mrc, 9 Otle Revew mdterm soltos Revew bsc mterl o mercl clcls Expressos or dervtves, error d error order

More information

Module 2: Introduction to Numerical Analysis

Module 2: Introduction to Numerical Analysis CY00 Itroducto to Computtol Chemtr Autum 00-0 Module : Itroducto to umercl Al Am of the preet module. Itroducto to c umercl l. Developg mple progrm to mplemet the umercl method opc of teret. Iterpolto:

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Numerical Analysis Third Class Chemical Engineering Department University of Technology Assoc. Prof. Dr. Zaidoon Mohsin shakor

Numerical Analysis Third Class Chemical Engineering Department University of Technology Assoc. Prof. Dr. Zaidoon Mohsin shakor Numercl Alss Thrd Clss Chemcl Egeerg Deprtmet Uverst o Techolog Assoc. Pro. Dr. Zdoo Mohs shkor Itroducto to Numercl Alss U. Alss versus Numercl Alss The word lss mthemtcs usull mes who to solve problem

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Chapter 5. Curve fitting

Chapter 5. Curve fitting Chapter 5 Curve ttg Assgmet please use ecell Gve the data elow use least squares regresso to t a a straght le a power equato c a saturato-growthrate equato ad d a paraola. Fd the r value ad justy whch

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Computer Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Численные методы. Учебно-методическое пособие

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Численные методы. Учебно-методическое пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Нижегородский государственный университет им. Н.И. Лобачевского Численные методы К.А.Баркалов Учебно-методическое пособие Рекомендовано методической

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs WSEAS TRANSACTIONS o MATHEMATICS Fudzh Isml Dgoll Implt Ruge-Kutt Nstrom Geerl Method Order Fve for Solvg Seod Order IVPs FUDZIAH ISMAIL Deprtmet of Mthemts Uverst Putr Mls Serdg Selgor MALAYSIA fudzh@mth.upm.edu.m

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

SOLVING INITIAL VALUE PROBLEM USING RUNGE-KUTTA 6 th ORDER METHOD

SOLVING INITIAL VALUE PROBLEM USING RUNGE-KUTTA 6 th ORDER METHOD VOL. NO. JULY ISSN 898 ARPN Jourl o Egeerg d Appled Sees As Reserh Pulshg Networ ARPN. All rghts reserved. www.rpourls.om SOLVING INITIAL VALUE PROBLEM USING RUNGEUTTA th ORDER METHOD As Fdhl As AlShmmr

More information

TEACHERS ASSESS STUDENT S MATHEMATICAL CREATIVITY COMPETENCE IN HIGH SCHOOL

TEACHERS ASSESS STUDENT S MATHEMATICAL CREATIVITY COMPETENCE IN HIGH SCHOOL Jourl o See d rs Yer 5, No., pp. 5-, 5 ORIGINL PPER TECHERS SSESS STUDENT S MTHEMTICL CRETIVITY COMPETENCE IN HIGH SCHOOL TRN TRUNG TINH Musrp reeved: 9..5; eped pper:..5; Pulsed ole:..5. sr. ssessme s

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Some Unbiased Classes of Estimators of Finite Population Mean

Some Unbiased Classes of Estimators of Finite Population Mean Itertol Jourl O Mtemtcs Ad ttstcs Iveto (IJMI) E-IN: 3 4767 P-IN: 3-4759 Www.Ijms.Org Volume Issue 09 etember. 04 PP-3-37 ome Ubsed lsses o Estmtors o Fte Poulto Me Prvee Kumr Msr d s Bus. Dertmet o ttstcs,

More information

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr. PROBLM ST # SOLUTIONS y Roert. DStso Jr. Q. Prove tht the MP eergy s sze-osstet for two ftely seprted losed shell frgmets. The MP orrelto eergy s gve the sp-ortl ss s: vrt vrt MP orr Δ. or two moleulr

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY

ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY IJRRAS 7 3 Deemer 203 wwwrressom/volumes/vol7issue3/ijrras_7_3_02 ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY Zlto Pvć & Ver Novosel 2 Mehl Egeerg Fulty Slvos Bro Uversty o Osje Trg Ive Brlć Mžurć 2

More information

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1 LOCUS 33 Seto - 3 PAIR OF STRAIGHT LINES Cosder two les L L Wht do ou thk wll L L represet? It s ovous tht pot lg o L d L wll stsf L L, d thus L L represets the set of pots osttutg oth the les,.e., L L

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Computational Methods CMSC/AMSC/MAPL 460. Quadrature: Integration

Computational Methods CMSC/AMSC/MAPL 460. Quadrature: Integration Computatioal Metods CMSC/AMSC/MAPL 6 Quadrature: Itegratio Ramai Duraiswami, Dept. o Computer Siee Some material adapted rom te olie slides o Eri Sadt ad Diae O Leary Numerial Itegratio Idea is to do itegral

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL

MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL Bullet of te Trslv Uversty of Brşov Vol 5 (54-1 Seres 1: Specl Issue No 1 MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL M BOTIŞ 1 Astrct: I te ler lyss of structures troug modl

More information

General Method for Calculating Chemical Equilibrium Composition

General Method for Calculating Chemical Equilibrium Composition AE 6766/Setzma Sprg 004 Geeral Metod for Calculatg Cemcal Equlbrum Composto For gve tal codtos (e.g., for gve reactats, coose te speces to be cluded te products. As a example, for combusto of ydroge wt

More information

Lecture 3: Review of Linear Algebra and MATLAB

Lecture 3: Review of Linear Algebra and MATLAB eture 3: Revew of er Aler AAB Vetor mtr otto Vetors tres Vetor spes er trsformtos Eevlues eevetors AAB prmer Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst Vetor mtr otto A -mesol (olum) vetor

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 More oundr-vlue Prolems nd genvlue Prolems n Os ovemer 9, 7 More oundr-vlue Prolems nd genvlue Prolems n Os Lrr retto Menl ngneerng 5 Semnr n ngneerng nlss ovemer 9, 7 Outlne Revew oundr-vlue prolems Soot

More information

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM S. Res. Chem. Commu.: (3 8-88 ISSN 77-669 GENERLIZED OPERTIONL RELTIONS ND PROPERTIES OF FRCTIONL NKEL TRNSFORM R. D. TYWDE *. S. GUDDE d V. N. MLLE b Pro. Rm Meghe Isttute o Teholog & Reserh Bder MRVTI

More information

Differentiation and Numerical Integral of the Cubic Spline Interpolation

Differentiation and Numerical Integral of the Cubic Spline Interpolation JOURNAL OF COMPUTER VOL. NO. OCTOBER 7 Deretto d Nuercl Itegrl o te Cuc ple Iterpolto g Go cool o Coputer cece d Tecolog Jgsu Uverst o cece d Tecolog Zejg C El: go_sg@otl.co Zue Zg d Cuge Co Ke Lortor

More information

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS Appedi A Emples for Ls,,. FACTORING POLYNOMIALS Tere re m stdrd metods of fctorig tt ou ve lered i previous courses. You will uild o tese fctorig metods i our preclculus course to ele ou to fctor epressios

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

The Z-Transform in DSP Lecture Andreas Spanias

The Z-Transform in DSP Lecture Andreas Spanias The Z-Trsform DSP eture - Adres Ss ss@su.edu 6 Coyrght 6 Adres Ss -- Poles d Zeros of I geerl the trsfer futo s rtol; t hs umertor d deomtor olyoml. The roots of the umertor d deomtor olyomls re lled the

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

Numerical Integration - (4.3)

Numerical Integration - (4.3) Numericl Itegrtio - (.). Te Degree of Accurcy of Qudrture Formul: Te degree of ccurcy of qudrture formul Qf is te lrgest positive iteger suc tt x k dx Qx k, k,,,...,. Exmple fxdx 9 f f,,. Fid te degree

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations.

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations. Amerc Jorl of Egeerg Reserch (AJER) 04 Amerc Jorl of Egeerg Reserch (AJER) e-iss : 30-0847 p-iss : 30-0936 Volme-03, Isse-08, pp-43-47 www.jer.org Reserch Pper Ope Access mercl Solto of Hgher Order Ler

More information

Recall from the previous lecture: Extreme Value Theorem Suppose a real-valued function f( x1,, x n. ) is continuous on a closed and bounded

Recall from the previous lecture: Extreme Value Theorem Suppose a real-valued function f( x1,, x n. ) is continuous on a closed and bounded Multvrle Clculus Lecture # Notes I ths lecture we cotue the dscusso of extrem of fuctos of severl vrles. I prtculr, we ll dscuss protocol for fdg extrem ouded rego, we ll look t some pplctos ecoomcs, d

More information

148 CIVIL ENGINEERING

148 CIVIL ENGINEERING STRUTUR NYSS fluee es fo Bems d Tusses fluee le sows te vto of effet (eto, se d momet ems, foe tuss) used movg ut lod oss te stutue. fluee le s used to deteme te posto of movele set of lods tt uses te

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Math 1313 Final Exam Review

Math 1313 Final Exam Review Mth 33 Fl m Revew. The e Compy stlled ew mhe oe of ts ftores t ost of $0,000. The mhe s depreted lerly over 0 yers wth srp vlue of $,000. Fd the vlue of the mhe fter 5 yers.. mufturer hs mothly fed ost

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Section 2.1 Special Right Triangles

Section 2.1 Special Right Triangles Se..1 Speil Rigt Tringles 49 Te --90 Tringle Setion.1 Speil Rigt Tringles Te --90 tringle (or just 0-60-90) is so nme euse of its ngle mesures. Te lengts of te sies, toug, ve very speifi pttern to tem

More information