Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Size: px
Start display at page:

Download "Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n."

Transcription

1 Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx f () s squre mtrx j for j () j for j Property (ddto, sutrto d slr multplto) d B re two mtres of order m d k s slr () B j j m m k k () k kj km Property () () ( B C) ( B) C B B () k( B) k kb x y z w Exerse 4 Gve tht, fd the vlues of x, y, w d z [,,, ] x y z w 5 Mtrx

2 Property 5 (Mtrx multplto d rspose) () Let M m p d B M p d j =,,,, the B M m d Bj p k k kj for,,, m () Gve M m p, the M pm d j j Property 6 () ( C) E ( CE) () ( B) C C BC () ( C D) C D (v) (v) B B (v) where s rel slr (v) ( C) C (v) I geerl, B B e B B B, B ( B)( B) (x) B does t mply or B (x) B does t mply B I 4 Exerse 7 Let, B, C, D d E Evlute () ( B) C 4 9 () ( B C) B 57 6 () (C) 9 (d) ( ) B D EE 8 7 Exerse 8 () Fd mtrx suh tht 7 7 () If x, fd the vlues of x d [, ] x Mtrx

3 Mtrx Exerse 9 Let 4 () Evlute I 5 4 () Hee, or otherwse, evlute () Hee, or otherwse, fd mtrx B suh tht I B B 8 6 Exerse Let () Fd d, () Usg () or otherwse, evlute Exerse Let, B where () Prove tht for ll postve teger, ) ( () Hee, or otherwse, evlute for y postve teger, () B) ( ) )( ( () B ) ( ] ) )[( ( ) ( Defto () s lled symmetr f () s lled skew-symmetr f

4 Defto (Determts) () d d () d e f = e + fg + dh eg d fh g h or you use the method of oftor: Property 4 () () If two rows or olums re proportol, the, e k k k g h () Let B e mtrx oted from y terhgg y rows (olums), the det( B) det( ), e d g e h f g d h e f (v) sd g r rse rh sf rs d g e h f (v) d g k e kd h kg f d g e h f or d k g e k h f k d g e h f (v) det( B) det( )det( B) (v) det( ) det( ) Exerse 5 x () If 8 x, fd the vlues of x [, 6] () Ftorze () [ ] () x y x y y x y x x y x y [ ( x y)( xy x y )] Mtrx 4

5 Exerse 6 Prove tht ( )( )( ) Defto 7 (Iverse) () squre mtrx of order s sd to e o sgulr or vertle ff there exsts squre mtrx B suh tht B B I he mtrx B s lled the verse of d deoted y () squre mtrx s sgulr or NO vertle ff does t exst Property 8 () Iverse of vertle mtrx s uque () If det( ), the s o sgulr d dj ( ) trspose of the oftor of, where dj () s the djot of whh s the heorem 9 () squre mtrx s o sgulr ff () squre mtrx s sgulr ff Exerse Property Fd the verse of Gve s squre d vertle () If B, the B () If B C, the B C () s lso vertle d If d B re o-sgulr, the ( Exerse Let B ) B 5 () Evlute 8 4I () Hee, or otherwse, fd (6 mrks) [96] 8 4 Exerse Let d P 5 () Fd P P () Fd, where s postve teger (6 mrks) [94] Mtrx 5

6 4 Exerse 4 Let, B, C B B d let e postve teger 4 () Fd C d C, () Show tht C pc qi for some tegers p d q Exerse 5 () For y dgol mtrx D,, R Prove tht D for ll postve teger () If, fd mtrx B of the form so tht B B s dgol mtrx 4 h k / () Hee, express, where s postve teger, the form of mtrx 4 / Exerse 6 () Show tht f s mtrx suh tht, the det = 74 () Gve tht B 67, use (), or otherwse, to show det B I Hee dedue tht det B 4 I (7 mrks) [9] Exerse 7 Let P e o sgulr rel mtrx d Q, where d re two dstt rel umers Defe M P QP d deote the detty mtrx y I () Fd rel umers d, terms of d, suh tht M () Prove tht det( M I M I) ( ) (6 mrks) [7] Mtrx 6

7 Mtrx 7 Exerse 8 () 8, ()() () Exerse 9 () () p, q (d)

8 Exerse ()() 6 I, () -, I () or 8 Exerse () () (d), Mtrx 8

9 Exerse ()() p, q (v) [84] he mtrx stsfes the odto () polyoml f ( x) s defed y f ( x) det xi x x x Wrte dow the polyoml f ( x) wth oeffets expressed terms of, d Evlute the mtrx f( ) I () Usg (), or otherwse, express the form I, where d re rel umers Hee fd 9 for [86] Let M e the set of rel mtres For y U M, let det U d U deote respetvely the determt d trspose of U Let F { U M : U U d detu } () () If U F, show tht detu () Show tht U F f d oly f U for some rel, suh tht w x () Let B e M y z p () Show tht f there exst U F d p, q R suh tht UBU, q the B B, e, x y () Show tht f s B B, the there exstsu F suh tht UBU t for some s, t R Mtrx 9

10 [87] Let M e the set of rel mtres d I e the detty mtrx of order () For y M, show tht f = I, the det = () Let B M suh tht B + B + I = () Show tht B = I d B ( B I ) () Smplfy I B B B () If B, show tht d d () Fd mtrx M M wth tegrl etres suh tht M I d M I [89] Let, B () Fd B d B, where B deotes the trspose of B () For eh of the mtres B d B verse f t exsts, determe whether t s vertle, d fd ts [5 mrks] [9] () Let X d Y e two squre mtres suh tht XY YX () X Y X XY Y, () X Y r C r X r Y r for =, 4, 5, Prove tht (Note : For y squre mtrx, defe I ) [ mrks] () By usg ()() d osderg 4, or otherwse, fd 4 [4 mrks] () If X d Y re squre mtres, () prove tht X Y X XY Y mples XY YX ; () prove tht X Y X X Y XY Y does NO mply XY YX (Ht : Cosder prtulr X d Y, eg X,Y ) [8 mrks] Mtrx

11 [9] Ftorze the determt [4 mrks] os s [9] () Let Prove y mthemtl duto tht s os os s s os for =,, () Let M :, R d e postve teger () For y X, Y M, show tht (I) XY M, (II) XY YX, (III) If X, the X exsts d X M () For y X M, show tht there exst r d R suh tht os s X r s os Hee fd ll X M suh tht X () If Y, B M d Y B, show tht there exsts X M suh tht X d Y BX Hee fd ll Y M suh tht Y [ mrks] [ mrks] [9] () Show tht f s mtrx suh tht, the det = () 74 Gve tht B 67, use (), or otherwse, to show det B I Hee dedue tht det B 4 I [7 mrks] 8 4 [94] Let d P 5 () Fd P P () Fd, where s postve teger [6 mrks] Mtrx

12 [94] () If, d re the roots of x pxq, fd u equto whose roots re (), d Solve the equto x x x Hee, or otherwse, solve the equto x 8x 6x 9 [6 mrks] [95] () Let Prove tht, where, R d for ll postve tegers () Hee, or otherwse, evlute 95 [6 mrks] [96] Let 5 () Evlute 8 4I () Hee, or otherwse, fd [6 mrks] [96] () Solve the equto det (*) [ mrks] () Let, ( < ) e the roots of (*) Fd two o-zero vetors (x, y ) d (x, y ) suh tht =, Show tht (x, y ) d (x, y ) re lerly depedet Let x P y x y Fd x y x y P d evlute P P [9 mrks] () Evlute 996 [ mrks] Mtrx

13 [97] () Let e o-sgulr mtrx Show tht x det xi det x I () Let = det () Show tht 4 s root of det xi () Solve det xi d hee fd the other roots surd form [7 mrks] os s [97] () () Let S = : R s os Show tht for y mtres d B S, B s lso S () Let () = Prove tht os s s os for y postve teger [4 mrks] () Let M = where, R d () Show tht M = k() for some rel umers k d Express k, os d s terms of d () If, prove tht there exsts postve teger suh tht M s dgol p (e of the form ) f d oly f q t s rtol () If =, fd ll postve tegers suh tht M s dgol [ mrks] [98] Let where,,, d R, d det = d () Show tht for some k R ( mrks) k k () Fd P the form of suh tht r P for some, R s If + d =, fd Q the form of suh tht PP Q for some R (5 mrks) 7 () Fd S suh tht S S for some R 6 4 Hee, or otherwse, evlute where s postve teger (7 mrks) Mtrx

14 [99] () Let d B e two squre mtres of the sme order If B B, show tht ( B) B for y postve teger (4 mrks) p q () Let where, re ot oth zero If B, r s show tht B B f d oly f p r d q s (4 mrks) x y () Let C where x, y, z re o-zero d dstt z Fd o-zero mtres D d E suh tht C = D + E d DE = ED = ( mrks) (d) Evlute 5 99 (4 mrks) [] Let M = where Show y duto tht M [ ( ) ] [ ( )] for ll postve tegers Hee or otherwse, evlute (5 mrks) 4 [] () Let e mtrx suh tht I, where I s the detty mtrx () Prove tht hs verse, d fd terms of 4 () Prove tht I () Prove tht I (v) Fd vertle mtrx B suh tht () Let X B B BI (6 mrks) () Usg ()() or otherwse, fd X () Let e postve teger Fd X () Fd two mtres Y d Z, other th X, suh tht Y Y Y I, Z Z Z I (9 mrks) Mtrx 4

15 [] () If det, fd the two vlues of ( mrks) () Let d e vlues oted (), where < Fd d suh tht os os,, s, s Let os os P Evlute P, where s postve teger s s Prove tht P P s mtrx of the form d (8 mrks) d () Evlute, where s postve teger (5 mrks) k k [4] Let =, where,, k R wth k k Defe X ( I) d Y ( I), where I s the detfy mtrx () Evlute XY, YX, X + Y, X d Y (4 mrks) () Prove tht = X + Y for ll postve tegers (4 mrks) () Evlute (4 mrks) (d) If d re o-zero rel umers, guess expresso for - terms of,, X d Y, d verfy t ( mrks) m m [6] Let M where m m m () Evlute M ( mrk) () Let X e o zero rel mtrx suh tht MX XM d () Prove tht d d () Prove tht X s o sgulr mtrx () Suppose tht X 6X () Fd X () If d ( M kx ) M, express k terms of m ( mrks) () Usg the result of ()()(), fd two rel mtres P d Q, other th M d M, suh tht P Q M (4 mrks) Mtrx 5

16 p q [5] () Let M, where p, q, r, s R r s () Suppose det M Prove tht M ( p s) M for y postve teger () Suppose qr Let d e the roots of the qudrt equto x ( p s) x det M Deote the detty mtrx y I () Prove tht d re two dstt rel umers () Prove tht M ( ) M I () Defe M I d B M I Prove tht B B d det det B Fd rel umers d, terms of d, suh tht M B ( mrks) () Evlute 4, where s postve teger Cddtes my use the ft, wthout proof, tht f X d Y re mtres stsfyg XY YX, the ( X Y ) X Y for y postve teger (4 mrks) [7] Let P e o-sgulr rel mtrx d Q, where d re two dstt rel umers Defe M P QP d deote the detty mtrx y I () Fd rel umers d, terms of d, suh tht M () Prove tht det( M I M I) ( ) (6 mrks) [8] Deote the Idetty mtrx y I p q () Let M, where p, q d r re rel umers r p () Evlute M () Let I e rel umer Prove tht f p qr, the for y postve teger, ( s ) ( s ) ( s ) ( s ) (7 mrks) M si M I 6 () Let () Express the form I, where,, d re rel umers 8 () Evlute () Usg the result of ()(), or otherwse, evlute 8 (8 mrks) Mtrx 6

17 [9] Let M os s () Suppose tht M r, where r d Fd r d ( mrks) s os p () rel mtrx of the form s lled dgol mtrx Fd ll postve tegers q suh tht M s dgol mtrx, d evlute M for suh vlues of ( mrks) () Let e rel mtrx suh tht M M Prove tht ( M )( M M M ) M ( mrks) (d) Deote the detty mtrx y I Is I M sgulr mtrx? Expl your swer ( mrks) (e) Evlute M M M M (6 mrks) 4 [] 8 () Let e rel mtrx d 4 () Prove tht P s o-sgulr mtrx () Evlute P P () Let () For y postve teger, fd d d d suh tht 4 B For y postve teger, fd P, where P P d 5 B B B B d (9 mrks) (6 mrks) Mtrx 7

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2. Chter Chter Syste of Rel uers Tertg Del frto: The del frto whh Gve fte uers of dgts ts del rt s lled tertg del frto. Reurrg ( o-tertg )Del frto: The del frto (No tertg) whh soe dgts re reeted g d g the

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chpter Vetor pes - Vetor pes Ler Comtos Vetor spe V V s set over fel F f V F! + V. Eg. R s vetor spe. For R we hek -4=-4-4R -7=-7-7R et. Eg. how tht the set of ll polomls PF wth oeffets from F s vetor

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005 Seto 2:00 ~ 2:50 pm Thursday Marylad 202 Sep. 29, 2005. Homework assgmets set ad 2 revews: Set : P. A box otas 3 marbles, red, gree, ad blue. Cosder a expermet that ossts of takg marble from the box, the

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have ES4 Sold Mehs Z Suo Prpl stress Prpl Stress Imge mterl prtle stte o stress The stte o stress s xed, but we represet the mterl prtle my wys by uttg ubes deret orettos For y gve stte o stress, t s lwys possble

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

The linear system. The problem: solve

The linear system. The problem: solve The ler syste The prole: solve Suppose A s vertle, the there ests uue soluto How to effetly opute the soluto uerlly??? A A A evew of dret ethods Guss elto wth pvotg Meory ost: O^ Coputtol ost: O^ C oly

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Chapter 1 Counting Methods

Chapter 1 Counting Methods AlbertLudwgs Uversty Freburg Isttute of Empral Researh ad Eoometrs Dr. Sevtap Kestel Mathematal Statsts - Wter 2008 Chapter Coutg Methods Am s to determe how may dfferet possbltes there are a gve stuato.

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

The Z-Transform in DSP Lecture Andreas Spanias

The Z-Transform in DSP Lecture Andreas Spanias The Z-Trsform DSP eture - Adres Ss ss@su.edu 6 Coyrght 6 Adres Ss -- Poles d Zeros of I geerl the trsfer futo s rtol; t hs umertor d deomtor olyoml. The roots of the umertor d deomtor olyomls re lled the

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr.

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr. PROBLM ST # SOLUTIONS y Roert. DStso Jr. Q. Prove tht the MP eergy s sze-osstet for two ftely seprted losed shell frgmets. The MP orrelto eergy s gve the sp-ortl ss s: vrt vrt MP orr Δ. or two moleulr

More information

CHAPTER 4: DETERMINANTS

CHAPTER 4: DETERMINANTS CHAPTER 4: DETERMINANTS MARKS WEIGHTAGE 0 mrks NCERT Importnt Questions & Answers 6. If, then find the vlue of. 8 8 6 6 Given tht 8 8 6 On epnding both determinnts, we get 8 = 6 6 8 36 = 36 36 36 = 0 =

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) + MATH 04: INTRODUCTORY ANALYSIS SPRING 008/09 PROBLEM SET 0 SOLUTIONS Throughout this problem set, B[, b] will deote the set of ll rel-vlued futios bouded o [, b], C[, b] the set of ll rel-vlued futios

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

MATH 371 Homework assignment 1 August 29, 2013

MATH 371 Homework assignment 1 August 29, 2013 MATH 371 Homework assgmet 1 August 29, 2013 1. Prove that f a subset S Z has a smallest elemet the t s uque ( other words, f x s a smallest elemet of S ad y s also a smallest elemet of S the x y). We kow

More information

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1 LOCUS 33 Seto - 3 PAIR OF STRAIGHT LINES Cosder two les L L Wht do ou thk wll L L represet? It s ovous tht pot lg o L d L wll stsf L L, d thus L L represets the set of pots osttutg oth the les,.e., L L

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numerl Alss Dr Murrem Merme INTEROLATION ELM Numerl Alss Some of te otets re dopted from Luree V. Fusett Appled Numerl Alss usg MATLAB. rete Hll I. 999 ELM Numerl Alss Dr Murrem Merme Tod s leture

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Math 10 Discrete Mathematics

Math 10 Discrete Mathematics Math 0 Dsrete Mathemats T. Heso REVIEW EXERCISES FOR EXM II Whle these problems are represetatve of the types of problems that I mght put o a exam, they are ot lusve. You should be prepared to work ay

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Design maintenanceand reliability of engineering systems: a probability based approach

Design maintenanceand reliability of engineering systems: a probability based approach Desg mateaead relablty of egeerg systems: a probablty based approah CHPTER 2. BSIC SET THEORY 2.1 Bas deftos Sets are the bass o whh moder probablty theory s defed. set s a well-defed olleto of objets.

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements: Mtrices Elementry Mtrix Theory It is often desirble to use mtrix nottion to simplify complex mthemticl expressions. The simplifying mtrix nottion usully mkes the equtions much esier to hndle nd mnipulte.

More information

Modeling uncertainty using probabilities

Modeling uncertainty using probabilities S 1571 Itroduto to I Leture 23 Modelg uertty usg probbltes Mlos Huskreht mlos@s.ptt.edu 5329 Seott Squre dmstrto Fl exm: Deember 11 2006 12:00-1:50pm 5129 Seott Squre Uertty To mke dgost feree possble

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Lecture 3: Review of Linear Algebra and MATLAB

Lecture 3: Review of Linear Algebra and MATLAB eture 3: Revew of er Aler AAB Vetor mtr otto Vetors tres Vetor spes er trsformtos Eevlues eevetors AAB prmer Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst Vetor mtr otto A -mesol (olum) vetor

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

2. Elementary Linear Algebra Problems

2. Elementary Linear Algebra Problems . Eleety e lge Pole. BS: B e lge Suoute (Pog pge wth PCK) Su of veto opoet:. Coputto y f- poe: () () () (3) N 3 4 5 3 6 4 7 8 Full y tee Depth te tep log()n Veto updte the f- poe wth N : ) ( ) ( ) ( )

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

(This summarizes what you basically need to know about joint distributions in this course.)

(This summarizes what you basically need to know about joint distributions in this course.) HG Ot. ECON 430 H Extra exerses for o-semar week 4 (Solutos wll be put o the et at the ed of the week) Itroduto: Revew of multdmesoal dstrbutos (Ths summarzes what you basally eed to kow about jot dstrbutos

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008 Alele Uverstăţ d Orde Fsul: Proteţ Medulu Vol. XIII 00 THEORETICAL AND COMPARATIVE STUDY REGARDING THE MECHANICS DISPLASCEMENTS UNDER THE STATIC LOADINGS FOR THE SQUARE PLATE MADE BY WOOD REFUSE AND MASSIF

More information

The Algebraic Least Squares Fitting Of Ellipses

The Algebraic Least Squares Fitting Of Ellipses IOSR Jourl of Mthets (IOSR-JM) e-issn: 78-578 -ISSN: 39-765 Volue 4 Issue Ver II (Mr - Ar 8) PP 74-83 wwwosrjourlsorg he Algebr Lest Squres Fttg Of Ellses Abdelltf Betteb Dertet of Geerl Studes Jubl Idustrl

More information

Downloaded from

Downloaded from POLYNOMIALS UNIT- It is not once nor twice but times without number tht the sme ides mke their ppernce in the world.. Find the vlue for K for which x 4 + 0x 3 + 5x + 5x + K exctly divisible by x + 7. Ans:

More information

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions: Smplex ad Rectagle Elemets Mult-dex Notato = (,..., ), o-egatve tegers = = β = ( β,..., β ) the + β = ( + β,..., + β ) + x = x x x x = x x β β + D = D = D D x x x β β Defto: The set P of polyomals of degree

More information

All-Pairs shortest paths via fast matrix multiplication

All-Pairs shortest paths via fast matrix multiplication All-Pars shortest paths va fast matrx multplato Ur Zw Tel Avv Uversty Summer Shool o Shortest Paths (PATH0) DIKU, Uversty of Copehage 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information