All-Pairs shortest paths via fast matrix multiplication

Size: px
Start display at page:

Download "All-Pairs shortest paths via fast matrix multiplication"

Transcription

1 All-Pars shortest paths va fast matrx multplato Ur Zw Tel Avv Uversty Summer Shool o Shortest Paths (PATH0) DIKU, Uversty of Copehage 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplato. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplato. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems Matrx multplato A ( a j ) B ( b j ) C ( j ) j abj 1 j Ca be omputed avely O( 3 ) tme. Matrx multplato Complexty (by defto) Strasse (1969) Coppersmth, Wograd (1990) Cojeture/Ope problem: +o(1)??? Multplyg matres C 11 C1 A11 A1 B 11 B1 C1 C A1 A B1 B multplatos 4 addtos

2 Strasse s algorthm Strasse s algorthm C M M M M C M M 1 3 C M M 1 4 C M M M M M ( A A )( B B ) M ( A A ) B 1 11 M A ( B B ) M A ( B B ) M ( A A ) B 11 1 M ( A A )( B B ) M ( A A )( B B ) multplatos 18 addtos/subtratos Vew eah matrx as a matrx whose elemets are // matres. Apply the algorthm reursvely. T() = 7 T(/) + O( ) T() = O( log7/log )=O(.81 ) Retagular Matrx multplato p A p B C p j abj 1 Coppersmth (1997): Complexty 1.8 p o(1) For p 0.9, omplexty = +o(1)!!! 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplato. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems A terestg speal ase of the APSP problem M-Plus Produts A B C AB m{ a b j j M-Plus produt C AB 8 3 m { a b j j

3 Solvg APSP by repeated squarg If W s a by matrx otag the edge weghts of a graph. The W s the dstae matrx. By duto, W gves the dstaes realzed by paths that use edges. Thus: for 1 to log do DD*D APSP() MPP() log Atually: APSP() = O(MPP()) B A B A D X = C D C E F (ABD*C)* EBD* X * = = G H D*CE D*GBD* APSP() APSP(/) + 6 MPP(/) + O( ) Algebra Produt C AB a b j j O(.38 ) M-Plus Produt C AB m{ a b j j? The fast algebra algorthms aot be used, as the m operato has o verse 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplato. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems Usg matrx multplato to ompute m-plus produts 11 1 a11 a1 b11 b1 1 a1 a b1 b m{ a b ' j j j x x x x x x x x a11 a1 b11 b a1 a b1 b 1 a bj x j frst( ) j Usg matrx multplato to ompute m-plus produts x x x x x x x x a11 a1 b11 b a1 a b1 b 1.38 polyomal produts Assume: 0 a j, b j M M operatos per polyomal produt M.38 operatos per max-plus produt

4 Tryg to mplemet the repeated squarg algorthm for 1 to log do DD*D Cosder a easy ase: all weghts are 1. After the -th terato, the fte elemets D are the rage {1,,. The ost of the m-plus produt s.38 The ost of the last produt s 3.38!!! 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplato. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems Fredma s tr The m-plus produt of two matres a be dedued after oly O(. ) addtos ad omparsos. Breag a square produt to several retagular produts m A 1 A B 1 B A* B m A * B MPP() (/m) (MPP(,m,) + ) m Fredma s tr Fredma s tr (ot.) a r +b rj a s +b sj a r - a s b sj - b rj A B m a r +b rj a s +b sj a r - a s b sj - b rj Geerate all the dfferees a r - a s ad b sj - b rj. Sort them usg O(m ) omparsos. (No-trval!) Merge the two sorted lsts usg O(m ) omparsos. Naïve alulato requres m operatos Fredma observed that the result a be ferred after performg oly O(m ) operatos The orderg of the elemets the sorted lst determes the result of the m-plus produt!!!

5 . 11 =a 17 +b 71 1 =a 14 +b 4... Deso Tree Complexty a 17 -a 19 b 9 -b 7 yes o 11 =a 13 +b 31 1 =a 1 +b =a 18 +b 81 1 =a 16 +b =a 1 +b 1 1 =a 13 +b 3... All-Pars Shortest Paths dreted graphs wth real edge weghts Rug tme [Floyd 6] [Warshall 6] 3 3 (log log / log ) 1/3 [Fredma 76] 3 (log log / log ) 1/ [Taaoa 9] 3 / (log ) 1/ [Dobosewz 90] 3 (log log / log ) /7 [Ha 04] 3 log log / log 3 (log log ) 1/ / log 3 / log [Taaoa 04] [Zw 04] [Cha 0] 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplato. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems Dreted versus udreted graphs y x z (x,z) (x,y) + (y,z) y x z (x,z) (x,y) + (y,z) (x,z) (x,y) (y,z) Dstaes G ad ts square G Let G=(V,E). The G =(V,E ), where (u,v)e f ad oly f (u,v)e or there exsts wv suh that (u,w),(w,v)e Let (u,v) be the dstae from u to v G. Let (u,v) be the dstae from u to v G. Lemma: (u,v)= (u,v)/, for every u,vv. Thus: (u,v)= (u,v) or (u,v)= (u,v)-1 Dstaes G ad ts square G (ot.) Lemma: If (u,v)= (u,v) the for every eghbor w of v we have (u,w) (u,v). Lemma: If (u,v)= (u,v) 1 the for every eghbor w of v we have (u,w) (u,v) ad for at least oe eghbor (u,w) < (u,v). ( v, w) E Let A be the adjaey matrx of the G. Let C be the dstae matrx of G a ( CA) : deg( v) u, w u, w w, v u, v u, v w

6 1. If A s a all oe matrx, the all dstaes are 1.. Compute A, the adjaey matrx of the squared graph. Sedel s algorthm 3. Fd, reursvely, the dstaes the square. 4. Dede, usg matrx multplato, for every two vertes u,v, whether ther dstae s twe the dstae the square, or twe mus 1. Algorthm APD(A) f A=J the retur J-I else C APD(A ) X CA, deg Ae 1 d j j -[x j < j deg j ] retur D ed Complexty: O(.38 log ) 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplatobv. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems Sampled Repeated Squarg (Z 98) Choose a subset of V for 1 to log 3/ do { of sze (9l)/s s(3/) +1 Brad( V, (9l)/s ) Dm{ D, D[V,B]*D[B,V] Selet the olums Selet the rows The s also of D Wth a slghtly whose hgh probablty, more omplated of D whose des all determst are dstaes B are algorthm orret! des are B Sampled Dstae Produts (Z 98) I the -th terato, the set B s of sze l / s, where s = (3/) +1 The matres get smaller ad smaller but the elemets get larger ad larger Sampled Repeated Squarg - Corretess for 1 to log 3/ do { s(3/) +1 Brad(V,(9 l )/s) Dm{ D, D[V,B]*D[B,V] Ivarat: After the -th terato, dstaes that are attaed usg (3/) edges are orret. Cosder a shortest path that uses (3/) +1 edges s /3 Falure 9l Let s = (3/) + (1 ) probablty : s Retagular Matrx multplato p p Naïve omplexty: p [Coppersmth 97]: 1.8 p o(1) For p 0.9, omplexty = +o(1)!!!

7 Complexty of APSP algorthm The -th terato: l / s l / s m{ Ms, s s s=(3/) +1 The elemets are of absolute value Ms M Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplato. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems The preproessg algorthm (YZ 0) ; B V for 1 to log 3/ do { s(3/) +1 Brad(B,(9l)/s) D[V,B] m{d[v,b], D[V,B]*D[B,B] D[B,V] m{d[b,v], D[B,B]*D[B,V] The APSP algorthm for 1 to log 3/ do { s(3/) +1 Brad(V,(9l)/s) Dm{ D, D[V,B]*D[B,V] Twe Sampled Dstae Produts The query aswerg algorthm (u,v) D[{u,V]*D[V,{v] v u Query tme: O()

8 The preproessg algorthm: Corretess Let B be the -th sample. B 1 B B 3 Ivarat: After the -th terato, f u B or vb ad there s a shortest path from u to v that uses at most (3/) edges, the D(u,v)= (u,v). The query aswerg algorthm: Corretess Suppose that the shortest path from u to v uses betwee (3/) ad (3/) +1 edges Cosder a shortest path that uses (3/) +1 edges u v 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplato. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems Approxmate m-plus produts SCALE(A,M,R): Obvous dea: salg APX-MPP(A,B,M,R) : A SCALE(A,M,R) B SCALE(B,M,R) retur MPP(A,B ) Ra j / M, f 0 aj M aj! " #, otherwse $ Complexty s R.38, stead of M.38, but small values a be greatly dstorted. Addaptve Salg APX-MPP(A,B,M,R) : C for r log R to log M do A SCALE(A, r,r) B SCALE(B, r,r) C m{c,mpp(a,b ) ed Complexty s R.38 logm Streth 1+4/R 1. Algebra matrx multplato a. Strasse s algorthm b. Retagular matrx multplato. M-Plus matrx multplato a. Equvalee to the APSP problem b. Expesve reduto to algebra produts. Fredma s tr 3. APSP udreted graphs a. A O(.38 ) algorthm for uweghted graphs (Sedel) b. A O(M.38 ) algorthm for weghted graphs (Shosha-Zw) 4. APSP dreted graphs 1. A O(M ) algorthm (Zw). A O(M.38 ) preproessg / O() query aswerg alg. (Yuster-Z) 3. A O(.38 logm) (1+ )-approxmato algorthm. Summary ad ope problems

9 All-Pars Shortest Paths graphs wth small teger weghts Udreted graphs. Edge weghts {0,1, M Rug tme M.38 [Shosha-Zw 99] Improves results of [Alo-Gall-Margalt 91] [Sedel 9] All-Pars Shortest Paths graphs wth small teger weghts Dreted graphs. Edge weghts { M,,0, M Rug tme M [Zw 98] Improves results of [Alo-Gall-Margalt 91] [Taaoa 98] Aswerg dstae queres Dreted graphs. Edge weghts { M,,0, M Preproessg tme M.38 Query tme [Yuster-Zw 0] Approxmate All-Pars Shortest Paths graphs wth o-egatve teger weghts Dreted graphs. Edge weghts {0,1, M (1+ )-approxmate dstaes I partular, ay M 1.38 dstaes a be omputed M.38 tme. For dese eough graphs wth small eough edge weghts, ths mproves o Goldberg s SSSP algorthm. M.38 vs. m 0. logm Rug tme (.38 log M)/ [Zw 98] Ope problems A O(.38 ) algorthm for the dreted uweghted APSP problem? A O( 3- ) algorthm for the APSP problem wth edge weghts {1,,,? A O(.- ) algorthm for the SSSP problem wth edge weghts {0,±1, ±,, ±?

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

Chapter 1 Counting Methods

Chapter 1 Counting Methods AlbertLudwgs Uversty Freburg Isttute of Empral Researh ad Eoometrs Dr. Sevtap Kestel Mathematal Statsts - Wter 2008 Chapter Coutg Methods Am s to determe how may dfferet possbltes there are a gve stuato.

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Computational Geometry

Computational Geometry Problem efto omputatoal eometry hapter 6 Pot Locato Preprocess a plaar map S. ve a query pot p, report the face of S cotag p. oal: O()-sze data structure that eables O(log ) query tme. pplcato: Whch state

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Pseudo-random Functions

Pseudo-random Functions Pseudo-radom Fuctos Debdeep Mukhopadhyay IIT Kharagpur We have see the costructo of PRG (pseudo-radom geerators) beg costructed from ay oe-way fuctos. Now we shall cosder a related cocept: Pseudo-radom

More information

Problems and Solutions

Problems and Solutions Problems ad Solutos Let P be a problem ad S be the set of all solutos to the problem. Deso Problem: Is S empty? Coutg Problem: What s the sze of S? Searh Problem: fd a elemet of S Eumerato Problem: fd

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

This lecture and the next. Why Sorting? Sorting Algorithms so far. Why Sorting? (2) Selection Sort. Heap Sort. Heapsort

This lecture and the next. Why Sorting? Sorting Algorithms so far. Why Sorting? (2) Selection Sort. Heap Sort. Heapsort Ths lecture ad the ext Heapsort Heap data structure ad prorty queue ADT Qucksort a popular algorthm, very fast o average Why Sortg? Whe doubt, sort oe of the prcples of algorthm desg. Sortg used as a subroute

More information

Design maintenanceand reliability of engineering systems: a probability based approach

Design maintenanceand reliability of engineering systems: a probability based approach Desg mateaead relablty of egeerg systems: a probablty based approah CHPTER 2. BSIC SET THEORY 2.1 Bas deftos Sets are the bass o whh moder probablty theory s defed. set s a well-defed olleto of objets.

More information

A Markov Chain Competition Model

A Markov Chain Competition Model Academc Forum 3 5-6 A Marov Cha Competto Model Mchael Lloyd, Ph.D. Mathematcs ad Computer Scece Abstract A brth ad death cha for two or more speces s examed aalytcally ad umercally. Descrpto of the Model

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

MONOPOLISTIC COMPETITION MODEL

MONOPOLISTIC COMPETITION MODEL MONOPOLISTIC COMPETITION MODEL Key gredets Cosumer utlty: log (/ ) log (taste for varety of dfferetated goods) Produto of dfferetated produts: y (/ b) max[ f, ] (reasg returs/fxed osts) Assume that good,

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Spring Ammar Abu-Hudrouss Islamic University Gaza

Spring Ammar Abu-Hudrouss Islamic University Gaza ١ ١ Chapter Chapter 4 Cyl Blo Cyl Blo Codes Codes Ammar Abu-Hudrouss Islam Uversty Gaza Spr 9 Slde ٢ Chael Cod Theory Cyl Blo Codes A yl ode s haraterzed as a lear blo ode B( d wth the addtoal property

More information

Pseudo-random Functions. PRG vs PRF

Pseudo-random Functions. PRG vs PRF Pseudo-radom Fuctos Debdeep Muhopadhyay IIT Kharagpur PRG vs PRF We have see the costructo of PRG (pseudo-radom geerators) beg costructed from ay oe-way fuctos. Now we shall cosder a related cocept: Pseudo-radom

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

A Mean- maximum Deviation Portfolio Optimization Model

A Mean- maximum Deviation Portfolio Optimization Model A Mea- mamum Devato Portfolo Optmzato Model Wu Jwe Shool of Eoom ad Maagemet, South Cha Normal Uversty Guagzhou 56, Cha Tel: 86-8-99-6 E-mal: wujwe@9om Abstrat The essay maes a thorough ad systemat study

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

r 1,2 = a 1 (a 2 2 4a 2 a 0 )

r 1,2 = a 1 (a 2 2 4a 2 a 0 ) Fall emester- 6 Numeral Methods Mehaal Egeerg - ME Dr. aeed J. Almalow, smalow@taahu.edu.sa CHAPTER. Roots of Equatos, Lear ystems ad Algera ystems.. Roots of Polyomal The polyomal equato s: f( ) = a +

More information

Math 10 Discrete Mathematics

Math 10 Discrete Mathematics Math 0 Dsrete Mathemats T. Heso REVIEW EXERCISES FOR EXM II Whle these problems are represetatve of the types of problems that I mght put o a exam, they are ot lusve. You should be prepared to work ay

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction.

Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction. Exact Inference: Introduction. Exat nferene: ntroduton Exat nferene: ntroduton Usng a ayesan network to ompute probabltes s alled nferene n general nferene nvolves queres of the form: E=e E = The evdene varables = The query varables

More information

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process Ru Probablty-Based Ital Captal of the Dsrete-Tme Surplus Proess by Parote Sattayatham, Kat Sagaroo, ad Wathar Klogdee AbSTRACT Ths paper studes a surae model uder the regulato that the surae ompay has

More information

Overcoming Limitations of Sampling for Aggregation Queries

Overcoming Limitations of Sampling for Aggregation Queries CIS 6930 Approxmate Quer Processg Paper Presetato Sprg 2004 - Istructor: Dr Al Dobra Overcomg Lmtatos of Samplg for Aggregato Queres Authors: Surajt Chaudhur, Gautam Das, Maur Datar, Rajeev Motwa, ad Vvek

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Lattices. Mathematical background

Lattices. Mathematical background Lattces Mathematcal backgroud Lattces : -dmesoal Eucldea space. That s, { T x } x x = (,, ) :,. T T If x= ( x,, x), y = ( y,, y), the xy, = xy (er product of xad y) x = /2 xx, (Eucldea legth or orm of

More information

MATH 371 Homework assignment 1 August 29, 2013

MATH 371 Homework assignment 1 August 29, 2013 MATH 371 Homework assgmet 1 August 29, 2013 1. Prove that f a subset S Z has a smallest elemet the t s uque ( other words, f x s a smallest elemet of S ad y s also a smallest elemet of S the x y). We kow

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

Packing of graphs with small product of sizes

Packing of graphs with small product of sizes Joural of Combatoral Theory, Seres B 98 (008) 4 45 www.elsever.com/locate/jctb Note Packg of graphs wth small product of szes Alexadr V. Kostochka a,b,,gexyu c, a Departmet of Mathematcs, Uversty of Illos,

More information

k 1 in the worst case, and ( k 1) / 2 in the average case The O-notation was apparently The o-notation was apparently

k 1 in the worst case, and ( k 1) / 2 in the average case The O-notation was apparently The o-notation was apparently Errata for Algorthms Sequetal & Parallel, A Ufed Approach (Secod Edto) Russ Mller ad Laurece Boxer Charles Rver Meda, 005 Chapter 1 P. 3, l. 14- to 13- the worst case, ad / the average case 1 the worst

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Hard Core Predicates: How to encrypt? Recap

Hard Core Predicates: How to encrypt? Recap Hard Core Predcates: How to ecrypt? Debdeep Mukhopadhyay IIT Kharagpur Recap A ecrypto scheme s secured f for every probablstc adversary A carryg out some specfed kd of attack ad for every polyomal p(.),

More information

n -dimensional vectors follow naturally from the one

n -dimensional vectors follow naturally from the one B. Vectors ad sets B. Vectors Ecoomsts study ecoomc pheomea by buldg hghly stylzed models. Uderstadg ad makg use of almost all such models requres a hgh comfort level wth some key mathematcal sklls. I

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Q-analogue of a Linear Transformation Preserving Log-concavity

Q-analogue of a Linear Transformation Preserving Log-concavity Iteratoal Joural of Algebra, Vol. 1, 2007, o. 2, 87-94 Q-aalogue of a Lear Trasformato Preservg Log-cocavty Daozhog Luo Departmet of Mathematcs, Huaqao Uversty Quazhou, Fua 362021, P. R. Cha ldzblue@163.com

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

Alternating Direction Implicit Method

Alternating Direction Implicit Method Alteratg Drecto Implct Method Whle dealg wth Ellptc Eqatos the Implct form the mber of eqatos to be solved are N M whch are qte large mber. Thogh the coeffcet matrx has may zeros bt t s ot a baded system.

More information

The Lie Algebra of Smooth Sections of a T-bundle

The Lie Algebra of Smooth Sections of a T-bundle IST Iteratoal Joural of Egeerg Scece, Vol 7, No3-4, 6, Page 8-85 The Le Algera of Smooth Sectos of a T-udle Nadafhah ad H R Salm oghaddam Astract: I ths artcle, we geeralze the cocept of the Le algera

More information

10.1 Approximation Algorithms

10.1 Approximation Algorithms 290 0. Approxmato Algorthms Let us exame a problem, where we are gve A groud set U wth m elemets A collecto of subsets of the groud set = {,, } s.t. t s a cover of U: = U The am s to fd a subcover, = U,

More information

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy Itroducto to Smulato - Lecture 22 Itegral Equato ethods Jacob Whte Thaks to Deepak Ramaswamy, chal Rewesk, X Wag ad Kare Veroy Outle Itegral Equato ethods Exteror versus teror problems Start wth usg pot

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Algorithms Design & Analysis. Hash Tables

Algorithms Design & Analysis. Hash Tables Algorthms Desg & Aalyss Hash Tables Recap Lower boud Order statstcs 2 Today s topcs Drect-accessble table Hash tables Hash fuctos Uversal hashg Perfect Hashg Ope addressg 3 Symbol-table problem Symbol

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

A New Method for Decision Making Based on Soft Matrix Theory

A New Method for Decision Making Based on Soft Matrix Theory Joural of Scetfc esearch & eports 3(5): 0-7, 04; rtcle o. JS.04.5.00 SCIENCEDOMIN teratoal www.scecedoma.org New Method for Decso Mag Based o Soft Matrx Theory Zhmg Zhag * College of Mathematcs ad Computer

More information

3. RECURSIVE ALGORITHMS AND RECURRENCE RELATIONS

3. RECURSIVE ALGORITHMS AND RECURRENCE RELATIONS . RECURSIVE ALGORITHMS AND RECURRENCE RELATIONS I dscussg the example of fdg the determat of a matrx a algorthm was outled that defed det(m) for a x matrx terms of the determats of matrces of sze (-)x(-).

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

LOAD-FLOW CALCULATIONS IN MESHED SYSTEMS Node voltage method A system part with the node k and its direct neighbour m

LOAD-FLOW CALCULATIONS IN MESHED SYSTEMS Node voltage method A system part with the node k and its direct neighbour m LOAD-FLOW CALCLATIONS IN MESHED SYSTEMS Node oltage method A system part wth the ode ad ts dret eghbor m Î Îm Î m m Crrets Î m m m Î Î m m m m Î m m m m m m m Let s dee the ode sel-admttae (adm. matr dagoal

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

International Journal of Mathematical Archive-3(12), 2012, Available online through ISSN

International Journal of Mathematical Archive-3(12), 2012, Available online through   ISSN teratoal Joural of Matheatal Arhve-3(2) 22 4789-4796 Avalable ole through www.ja.fo SSN 2229 546 g-quas FH-losed spaes ad g-quas CH-losed spaes Sr. Paule Mary Hele Assoate Professor Nrala College Cobatore

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

2. Higher Order Consensus

2. Higher Order Consensus Prepared by F.L. Lews Updated: Wedesday, February 3, 0. Hgher Order Cosesus I Seto we dsussed ooperatve otrol o graphs for dyamal systems that have frstorder dyams, that s, a sgle tegrator or shft regster

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

A conic cutting surface method for linear-quadraticsemidefinite

A conic cutting surface method for linear-quadraticsemidefinite A coc cuttg surface method for lear-quadratcsemdefte programmg Mohammad R. Osoorouch Calfora State Uversty Sa Marcos Sa Marcos, CA Jot wor wth Joh E. Mtchell RPI July 3, 2008 Outle: Secod-order coe: defto

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1,

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1, Lecture (Part II) Materals Covered Ths Lecture: Chapter 2 (2.6 --- 2.0) The umber of ways of parttog dstct obects to dstct groups cotag, 2,, obects, respectvely, where each obect appears exactly oe group

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

The Occupancy and Coupon Collector problems

The Occupancy and Coupon Collector problems Chapter 4 The Occupacy ad Coupo Collector problems By Sarel Har-Peled, Jauary 9, 08 4 Prelmares [ Defto 4 Varace ad Stadard Devato For a radom varable X, let V E [ X [ µ X deote the varace of X, where

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Lecture 8. A little bit of fun math Read: Chapter 7 (and 8) Finite Algebraic Structures

Lecture 8. A little bit of fun math Read: Chapter 7 (and 8) Finite Algebraic Structures Lecture 8 A lttle bt of fu ath Read: Chapter 7 (ad 8) Fte Algebrac Structures Groups Abela Cyclc Geerator Group order Rgs Felds Subgroups Euclda Algorth CRT (Chese Reader Theore) 2 GROUPs DEFINITION: A

More information

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005 Seto 2:00 ~ 2:50 pm Thursday Marylad 202 Sep. 29, 2005. Homework assgmets set ad 2 revews: Set : P. A box otas 3 marbles, red, gree, ad blue. Cosder a expermet that ossts of takg marble from the box, the

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions: Smplex ad Rectagle Elemets Mult-dex Notato = (,..., ), o-egatve tegers = = β = ( β,..., β ) the + β = ( + β,..., + β ) + x = x x x x = x x β β + D = D = D D x x x β β Defto: The set P of polyomals of degree

More information

Computations with large numbers

Computations with large numbers Comutatos wth large umbers Wehu Hog, Det. of Math, Clayto State Uversty, 2 Clayto State lvd, Morrow, G 326, Mgshe Wu, Det. of Mathematcs, Statstcs, ad Comuter Scece, Uversty of Wscos-Stout, Meomoe, WI

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P versus NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Prelmary theorem 3. Proof 4. Expla 5. Cocluso. Itroduce The P versus NP problem s a major usolved problem computer scece. Iformally, t asks whether a computer

More information

G S Power Flow Solution

G S Power Flow Solution G S Power Flow Soluto P Q I y y * 0 1, Y y Y 0 y Y Y 1, P Q ( k) ( k) * ( k 1) 1, Y Y PQ buses * 1 P Q Y ( k1) *( k) ( k) Q Im[ Y ] 1 P buses & Slack bus ( k 1) *( k) ( k) Y 1 P Re[ ] Slack bus 17 Calculato

More information