3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

Size: px
Start display at page:

Download "3D Geometry for Computer Graphics. Lesson 2: PCA & SVD"

Transcription

1 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD

2 Last week - egedecomposto We wat to lear how the matrx A works: A 2

3 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much. A 3

4 Spectra ad dagoalzato If A s symmetrc, the egevectors are orthogoal (ad there s always a egebass). A A = UΛU λ1 λ2 Λ= Au = λ u λ 4

5 Why SVD Dagoalzable matrx s essetally a scalg. Most matrces are ot dagoalzable they do other thgs alog wth scalg (such as rotato) So, to uderstad how geeral matrces behave, oly egevalues are ot eough SVD tells us how geeral lear trasformatos behave, ad other thgs 5

6 he pla for today Frst we ll see some applcatos of PCA Prcpal Compoet Aalyss that uses spectral decomposto. he look at the theory. SVD Basc tuto Formal defto Applcatos 6

7 PCA the geeral dea PCA fds a orthogoal bass that best represets gve data set. y y x x he sum of dstaces 2 from the x axs s mmzed. 7

8 PCA the geeral dea PCA fds a orthogoal bass that best represets gve data set. z 3D pot set stadard bass x y PCA fds a best approxmatg plae (aga, terms of Σdstaces 2 ) 8

9 Applcato: fdg tght boudg box A axs-alged boudg box: agrees wth the axes y maxy mx maxx x my 9

10 Applcato: fdg tght boudg box Oreted boudg box: we fd better axes! y x 10

11 Applcato: fdg tght boudg box hs s ot the optmal boudg box z x y 11

12 Applcato: fdg tght boudg box Oreted boudg box: we fd better axes! 12

13 Usage of boudg boxes (boudg volumes) Serve as very smple approxmato of the object Fast collso detecto, vsblty queres Wheever we eed to kow the dmesos (sze) of the object he models cosst of thousads of polygos o quckly test that they do t tersect, the boudg boxes are tested Sometmes a herarchy of BB s s used he tghter the BB the less false alarms we have Sample 13

14 Scaed meshes 14

15 Pot clouds Scaers gve us raw pot cloud data How to compute ormals to shade the surface? ormal 15

16 Pot clouds Local PCA, take the thrd vector 16

17 Notatos Deote our data pots by x 1, x 2,, x R d x 1 x 2 x x1 x2 x x,,, 1 = x = = 2 x d d d x 1 x 2 x 17

18 he org of the ew axes he org s zero-order approxmato of our data set (a pot) It wll be the ceter of mass: m It ca be show that: = 1 = 1 x m = argm x -x x =

19 Scatter matrx Deote y = x m, = 1, 2,, S = YY where Y s d matrx wth y k as colums (k = 1, 2,, ) S d y1 y2 y y1 y1 y d y1 y2 y y2 y2 y2 = d d d 1 2 d y1 y2 y y y y Y Y 19

20 Varace of projected pots I a way, S measures varace (= scatteress) of the data dfferet drectos. Let s look at a le L through the ceter of mass m, ad project our pots x oto t. he varace of the projected pots x s: 1 2 var( L) = x m = 1 L L L L Orgal set Small varace Large varace 20

21 Varace of projected pots Gve a drecto v, v = 1, the projecto of x oto L = m + vt s: x m = < v, x m> / v = < v, y > = v y x L m v x 21

22 Varace of projected pots So, x-m vy v Y = 1 = 1 var( L) = = ( ) = = = Y v = < Y v, Y v>= v YY v= v Sv= < Sv, v> y y1 y2 y d y 1 2 d y1 y2 y 2 ( ) ( v v v ) ( v v v ) vy = = = vy = 1 = 1 d d d d y y1 y2 y 22

23 Drectos of maxmal varace So, we have: var(l) = <Sv, v> heorem: Let f : {v R d v = 1} R, f (v) = <Sv, v> (ad S s a symmetrc matrx). he, the extrema of f are attaed at the egevectors of S. So, egevectors of S are drectos of maxmal/mmal varace! 23

24 Summary so far We take the cetered data vectors y 1, y 2,, y R d Costruct the scatter matrx S = YY S measures the varace of the data pots Egevectors of S are drectos of maxmal varace. 24

25 Scatter matrx - egedecomposto S s symmetrc S has egedecomposto: S = VΛV λ 1λ2 v 1 S = v 1 v 2 v d v 2 λ d v d he egevectors form orthogoal bass 25

26 Prcpal compoets Egevectors that correspod to bg egevalues are the drectos whch the data has strog compoets (= large varace). If the egevalues are more or less the same there s o preferable drecto. Note: the egevalues are always o-egatve. 26

27 Prcpal compoets here s o preferable drecto S looks lke ths: V λ V λ Ay vector s a egevector here s a clear preferable drecto S looks lke ths: λ V V μ μ s close to zero, much smaller tha λ. 27

28 How to use what we got For fdg oreted boudg box we smply compute the boudg box wth respect to the axes defed by the egevectors. he org s at the mea pot m. v 3 v 1 v 2 28

29 For approxmato y v 2 v 1 x y y x x hs le segmet approxmates the orgal data set he projected data set approxmates the orgal data set 29

30 For approxmato I geeral dmeso d, the egevalues are sorted descedg order: λ 1 λ 2 λ d he egevectors are sorted accordgly. o get a approxmato of dmeso d < d, we take the d frst egevectors ad look at the subspace they spa (d = 1 s a le, d = 2 s a plae ) 30

31 For approxmato o get a approxmatg set, we project the orgal data pots oto the chose subspace: x = m + α 1 v 1 + α 2 v α d v d + +α d v d Projecto: x = m + α 1 v 1 + α 2 v α d v d +0 v d v d 31

32 SVD

33 Geometrc aalyss of lear trasformatos We wat to kow what a lear trasformato A does Need some smple ad comprehedble represetato of the matrx of A. Let s look what A does to some vectors Sce A(αv) = αa(v), t s eough to look at vectors v of ut legth A 33

34 he geometry of lear trasformatos A lear (o-sgular) trasform A always takes hyper-spheres to hyper-ellpses. A A 34

35 he geometry of lear trasformatos hus, oe good way to uderstad what A does s to fd whch vectors are mapped to the ma axes of the ellpsod. A A 35

36 Geometrc aalyss of lear trasformatos If we are lucky: A = V Λ V, V orthogoal (true f A s symmetrc) he egevectors of A are the axes of the ellpse A 36

37 37 Symmetrc matrx: ege decomposto I ths case A s just a scalg matrx. he ege decomposto of A tells us whch orthogoal axes t scales, ad by how much: [ ] [ ] A λ λ λ = v v v v v v A 1 1 λ 2 λ 1 A v v λ =

38 Geeral lear trasformatos: SVD I geeral A wll also cota rotatos, ot just scales: 1 1 A σ 2 σ 1 A = U V A = σ 1 σ 2 [ u u u ] [ v v v ] σ

39 Geeral lear trasformatos: SVD 1 1 A σ 2 σ 1 AV = U A orthoormal [ v v v ] = [ u u u ] orthoormal σ 1 σ 2 σ A v = σ u, σ 0 39

40 SVD more formally SVD exsts for ay matrx Formal defto: For square matrces A R, there exst orthogoal matrces U, V R ad a dagoal matrx Σ, such that all the dagoal values σ of Σ are o-egatve ad A = UΣV = A U Σ V 40

41 SVD more formally he dagoal values of Σ (σ 1,, σ ) are called the sgular values. It s accustomed to sort them: σ 1 σ 2 σ he colums of U (u 1,, u ) are called the left sgular vectors. hey are the axes of the ellpsod. he colums of V (v 1,, v ) are called the rght sgular vectors. hey are the premages of the axes of the ellpsod. A = UΣV = A U Σ V 41

42 Reduced SVD For rectagular matrces, we have two forms of SVD. he reduced SVD looks lke ths: he colums of U are orthoormal Cheaper form for computato ad storage = A U Σ V 42

43 Full SVD We ca complete U to a full orthogoal matrx ad pad Σ by zeros accordgly = A U Σ V 43

44 Some hstory SVD was dscovered by the followg people: E. Beltram ( ) M. Jorda ( ) J. Sylvester ( ) E. Schmdt ( ) H. Weyl ( ) 44

45 SVD s the workg horse of lear algebra here are umercal algorthms to compute SVD. Oce you have t, you have may thgs: Matrx verse ca solve square lear systems Numercal rak of a matrx Ca solve least-squares systems PCA May more 45

46 Matrx verse ad solvg lear systems Matrx verse: So, to solve Ax= x A = U V ( ) ( ) A = U V = V U = = V 1 σ 1 = V U 1 σ b U 1 b 46

47 Matrx rak he rak of A s the umber of o-zero sgular values σ 1σ2 m = σ A U Σ V 47

48 Numercal rak If there are very small sgular values, the A s close to beg sgular. We ca set a threshold t, so that umerc_rak(a) = #{σ σ > t} If rak(a) < the A s sgular. It maps the etre space R oto some subspace, lke a plae (so A s some sort of projecto). 48

49 Back to PCA We wated to fd prcpal compoets y y x x 49

50 PCA Move the ceter of mass to the org p = p m y y x x 50

51 PCA Costructed the matrx X of the data pots. X p p p = 1 2 he prcpal axes are egevectors of S = XX λ 1 XX = S = U U λ d 51

52 PCA We ca compute the prcpal compoets by SVD of X: X = UΣV XX = UΣV ( UΣ V ) = = Σ Σ = Σ 2 U V V U U U hus, the left sgular vectors of X are the prcpal compoets! We sort them by the sze of the sgular values of X. 52

53 Shape matchg We have two objects correspodece Wat to fd the rgd trasformato that algs them 53

54 Shape matchg Whe the objects are alged, the legths of the coectg les are small. 54

55 Shape matchg formalzato Alg two pot sets P = p,, p ad Q= q,, q. { } { } 1 1 Fd a traslato vector t ad rotato matrx R so that: p = 1 2 ( Rq + t) s mmzed 55

56 Shape matchg soluto urs out we ca solve the traslato ad rotato separately. heorem: f (R, t) s the optmal trasformato, the the pots {p } ad {Rq + t} have the same ceters of mass. p 1 p = 1 = q 1 q = 1 = p 1 = + = 1 ( Rq t ) 1 p = R q + = R + t q t = 1 t = p Rq 56

57 Fdg the rotato R o fd the optmal R, we brg the cetrods of both pot sets to the org: p = p p q = q q We wat to fd R that mmzes p Rq =

58 Fdg the rotato R 2 ( ) ( ) = 1 = 1 = 1 p Rq = p Rq p Rq = ( p ) p p Rq q R p q R Rq = + I hese terms do ot deped o R, so we ca gore them the mmzato 58

59 Fdg the rotato R ( ) ( p ) Rq q R p = p Rq + q R p m max. = 1 = 1 R = R = R ( ) q p q p p q ( ) ( p ) Rq p Rq max 2 = max = 1 = 1 ths s a scalar 59

60 Fdg the rotato R p q qp qp = 1 = 1 = 1 ( R ) = race R = race R H = = 1 qp = = 3 3 race( A) = = 1 A 60

61 Fdg the rotato R So, we wat to fd R that maxmzes race( RH ) heorem: f M s symmetrc postve defte (all egevalues of M are postve) ad B s ay orthogoal matrx the race M race BM ( ) ( ) So, let s fd R so that RH s symmetrc postve defte. he we kow for sure that race(rh) s maxmal. 61

62 Fdg the rotato R hs s easy! Compute SVD of H: Defe R: Check RH: H = UΣV R = VU ( )( ) RH = VU UΣ V = VΣV hs s a symmetrc matrx, Its egevalues are σ 0 So RH s postve! 62

63 Summary of rgd algmet: raslate the put pots to the cetrods: Compute the covarace matrx Compute the SVD of H: he optmal rotato s he traslato vector s p = p p = q q H = qp = 1 H = UΣV R = VU t = p Rq q 63

64 Complexty Numercal SVD s a expesve operato We always eed to pay atteto to the dmesos of the matrx we re applyg SVD to. 64

65 Small somewhat related example 65

66 he Ed

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD Sgular Value Decomosto Lear Algera (3) m Cootes Ay m x matrx wth m ca e decomosed as follows Dagoal matrx A UWV m x x Orthogoal colums U U I w1 0 0 w W M M 0 0 x Orthoormal (Pure rotato) VV V V L 0 L 0

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

1 Convergence of the Arnoldi method for eigenvalue problems

1 Convergence of the Arnoldi method for eigenvalue problems Lecture otes umercal lear algebra Arold method covergece Covergece of the Arold method for egevalue problems Recall that, uless t breaks dow, k steps of the Arold method geerates a orthogoal bass of a

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier

Announcements. Recognition II. Computer Vision I. Example: Face Detection. Evaluating a binary classifier Aoucemets Recogto II H3 exteded to toght H4 to be aouced today. Due Frday 2/8. Note wll take a whle to ru some thgs. Fal Exam: hursday 2/4 at 7pm-0pm CSE252A Lecture 7 Example: Face Detecto Evaluatg a

More information

A scalar t is an eigenvalue of A if and only if t satisfies the characteristic equation of A: det (A ti) =0

A scalar t is an eigenvalue of A if and only if t satisfies the characteristic equation of A: det (A ti) =0 Chapter 5 a glace: Let e a lear operator whose stadard matrx s wth sze x. he, a ozero vector x s sad to e a egevector of ad f there exsts a scalar sch that (x) x x. he scalar s called a egevale of (or

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures

Geometric Suffix Tree: A New Index Structure for Protein 3-D Structures CPM 2006 Geometrc Suffx ree: A New Idex Structure for Prote 3-D Structures etsuo Shbuya Huma Geome Ceter, Isttute of Medcal Scece, Uversty of okyo oday's alk Backgrouds Prote structures Suffx rees Geometrc

More information

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning

Principal Components. Analysis. Basic Intuition. A Method of Self Organized Learning Prcpal Compoets Aalss A Method of Self Orgazed Learg Prcpal Compoets Aalss Stadard techque for data reducto statstcal patter matchg ad sgal processg Usupervsed learg: lear from examples wthout a teacher

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

An Introduction to. Support Vector Machine

An Introduction to. Support Vector Machine A Itroducto to Support Vector Mache Support Vector Mache (SVM) A classfer derved from statstcal learg theory by Vapk, et al. 99 SVM became famous whe, usg mages as put, t gave accuracy comparable to eural-etwork

More information

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy

Integral Equation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, Xin Wang and Karen Veroy Itroducto to Smulato - Lecture 22 Itegral Equato ethods Jacob Whte Thaks to Deepak Ramaswamy, chal Rewesk, X Wag ad Kare Veroy Outle Itegral Equato ethods Exteror versus teror problems Start wth usg pot

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

Computational Geometry

Computational Geometry Problem efto omputatoal eometry hapter 6 Pot Locato Preprocess a plaar map S. ve a query pot p, report the face of S cotag p. oal: O()-sze data structure that eables O(log ) query tme. pplcato: Whch state

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

GG313 GEOLOGICAL DATA ANALYSIS

GG313 GEOLOGICAL DATA ANALYSIS GG33 GEOLOGICAL DATA ANALYSIS 3 GG33 GEOLOGICAL DATA ANALYSIS LECTURE NOTES PAUL WESSEL SECTION 3 LINEAR (MATRIX ALGEBRA OVERVIEW OF MATRIX ALGEBRA (or All you ever wated to kow about Lear Algebra but

More information

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction

Application of Legendre Bernstein basis transformations to degree elevation and degree reduction Computer Aded Geometrc Desg 9 79 78 www.elsever.com/locate/cagd Applcato of Legedre Berste bass trasformatos to degree elevato ad degree reducto Byug-Gook Lee a Yubeom Park b Jaechl Yoo c a Dvso of Iteret

More information

Lattices. Mathematical background

Lattices. Mathematical background Lattces Mathematcal backgroud Lattces : -dmesoal Eucldea space. That s, { T x } x x = (,, ) :,. T T If x= ( x,, x), y = ( y,, y), the xy, = xy (er product of xad y) x = /2 xx, (Eucldea legth or orm of

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i. CS 94- Desty Matrces, vo Neuma Etropy 3/7/07 Sprg 007 Lecture 3 I ths lecture, we wll dscuss the bascs of quatum formato theory I partcular, we wll dscuss mxed quatum states, desty matrces, vo Neuma etropy

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

On the construction of symmetric nonnegative matrix with prescribed Ritz values

On the construction of symmetric nonnegative matrix with prescribed Ritz values Joural of Lear ad Topologcal Algebra Vol. 3, No., 14, 61-66 O the costructo of symmetrc oegatve matrx wth prescrbed Rtz values A. M. Nazar a, E. Afshar b a Departmet of Mathematcs, Arak Uversty, P.O. Box

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab Lear Regresso Lear Regresso th Shrkage Some sldes are due to Tomm Jaakkola, MIT AI Lab Itroducto The goal of regresso s to make quattatve real valued predctos o the bass of a vector of features or attrbutes.

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices.

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices. 4.3 - Modal Aalyss Physcal coordates are ot always the easest to work Egevectors provde a coveet trasformato to modal coordates Modal coordates are lear combato of physcal coordates Say we have physcal

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Numerical Analysis Formulae Booklet

Numerical Analysis Formulae Booklet Numercal Aalyss Formulae Booklet. Iteratve Scemes for Systems of Lear Algebrac Equatos:.... Taylor Seres... 3. Fte Dfferece Approxmatos... 3 4. Egevalues ad Egevectors of Matrces.... 3 5. Vector ad Matrx

More information

Centroids Method of Composite Areas

Centroids Method of Composite Areas Cetrods Method of Composte reas small boy swallowed some cos ad was take to a hosptal. Whe hs gradmother telephoed to ask how he was a urse sad 'No chage yet'. Cetrods Prevously, we developed a geeral

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture Notes 2. The ability to manipulate matrices is critical in economics. Lecture Notes. Revew of Matrces he ablt to mapulate matrces s crtcal ecoomcs.. Matr a rectagular arra of umbers, parameters, or varables placed rows ad colums. Matrces are assocated wth lear equatos. lemets

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

CS 523: Computer Graphics, Spring Shape Modeling. PCA Applications + SVD. Andrew Nealen, Rutgers, /15/2011 1

CS 523: Computer Graphics, Spring Shape Modeling. PCA Applications + SVD. Andrew Nealen, Rutgers, /15/2011 1 CS 523: Computer Graphcs, Sprng 20 Shape Modelng PCA Applcatons + SVD Andrew Nealen, utgers, 20 2/5/20 emnder: PCA Fnd prncpal components of data ponts Orthogonal drectons that are domnant n the data (have

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

A conic cutting surface method for linear-quadraticsemidefinite

A conic cutting surface method for linear-quadraticsemidefinite A coc cuttg surface method for lear-quadratcsemdefte programmg Mohammad R. Osoorouch Calfora State Uversty Sa Marcos Sa Marcos, CA Jot wor wth Joh E. Mtchell RPI July 3, 2008 Outle: Secod-order coe: defto

More information

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i

THE COMPLETE ENUMERATION OF FINITE GROUPS OF THE FORM R 2 i ={R i R j ) k -i=i ENUMERATON OF FNTE GROUPS OF THE FORM R ( 2 = (RfR^'u =1. 21 THE COMPLETE ENUMERATON OF FNTE GROUPS OF THE FORM R 2 ={R R j ) k -= H. S. M. COXETER*. ths paper, we vestgate the abstract group defed by

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Dr. Shalabh. Indian Institute of Technology Kanpur

Dr. Shalabh. Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Expermets-I MODULE -I LECTURE - SOME RESULTS ON LINEAR ALGEBRA, MATRIX THEORY AND DISTRIBUTIONS Dr. Shalabh Departmet t of Mathematcs t ad Statstcs t t Ida Isttute of Techology

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations Lecture 7 3. Parametrc ad No-Parametrc Ucertates, Radal Bass Fuctos ad Neural Network Approxmatos he parameter estmato algorthms descrbed prevous sectos were based o the assumpto that the system ucertates

More information

Centroids & Moments of Inertia of Beam Sections

Centroids & Moments of Inertia of Beam Sections RCH 614 Note Set 8 S017ab Cetrods & Momets of erta of Beam Sectos Notato: b C d d d Fz h c Jo L O Q Q = ame for area = ame for a (base) wdth = desgato for chael secto = ame for cetrod = calculus smbol

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

Out of sample extensions of PCA, kernel PCA, and MDS

Out of sample extensions of PCA, kernel PCA, and MDS Out of sample extesos of PCA, erel PCA, ad MDS Math 85 Project, Fall 05 Wlso A. Florero-Salas Da L ABLE OF CONENS. Itroducto.... Prcpal Compoet Aalyss (PCA).... he out of sample exteso of PCA... 3.3 he

More information

Matrix Algebra Tutorial With Examples in Matlab

Matrix Algebra Tutorial With Examples in Matlab Matr Algebra Tutoral Wth Eamples Matlab by Klaus Moelter Departmet of Agrcultural ad Appled Ecoomcs Vrga Tech emal: moelter@vt.edu web: http://faculty.ageco.vt.edu/moelter/ Specfcally desged as a / day

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Dimensionality Reduction

Dimensionality Reduction Dmesoalty Reducto Sav Kumar, Google Research, NY EECS-6898, Columba Uversty - Fall, 010 Sav Kumar 11/16/010 EECS6898 Large Scale Mache Learg 1 Curse of Dmesoalty May learg techques scale poorly wth data

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

On Singular Value Decomposition of Rectangular Matrices

On Singular Value Decomposition of Rectangular Matrices -Najah Natoal Uversty Faculty of Graduate Studes O Sgular Value Decomposto of Rectagular Matrces By Shree Najeh Issa Odeh Supervsor Dr"Mohammad Othma" Omra Ths thess s submtted Partal Fulfllmet of the

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006 Mult-Layer Refracto Problem Rafael Espercueta, Bakersfeld College, November, 006 Lght travels at dfferet speeds through dfferet meda, but refracts at layer boudares order to traverse the least-tme path.

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Motion Estimation Based on Unit Quaternion Decomposition of the Rotation Matrix

Motion Estimation Based on Unit Quaternion Decomposition of the Rotation Matrix Moto Estmato Based o Ut Qatero Decomposto of the Rotato Matrx Hag Y Ya Baozog (Isttte of Iformato Scece orther Jaotog Uversty Bejg 00044 PR Cha Abstract Based o the t qatero decomposto of rotato matrx

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific CIS 54 - Iterpolato Roger Crawfs Basc Scearo We are able to prod some fucto, but do ot kow what t really s. Ths gves us a lst of data pots: [x,f ] f(x) f f + x x + August 2, 25 OSU/CIS 54 3 Taylor s Seres

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Newton s Power Flow algorithm

Newton s Power Flow algorithm Power Egeerg - Egll Beedt Hresso ewto s Power Flow algorthm Power Egeerg - Egll Beedt Hresso The ewto s Method of Power Flow 2 Calculatos. For the referece bus #, we set : V = p.u. ad δ = 0 For all other

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

An Introduction to Relevant Graph Theory and Matrix Theory

An Introduction to Relevant Graph Theory and Matrix Theory Chapter 0 A Itroducto to Relevat Graph heory ad Matrx heory hs boo s cocered wth the calculato of the umber of spag trees of a multgraph usg algebrac ad aalytc techques. We also clude several results o

More information

Lebesgue Measure of Generalized Cantor Set

Lebesgue Measure of Generalized Cantor Set Aals of Pure ad Appled Mathematcs Vol., No.,, -8 ISSN: -8X P), -888ole) Publshed o 8 May www.researchmathsc.org Aals of Lebesgue Measure of Geeralzed ator Set Md. Jahurul Islam ad Md. Shahdul Islam Departmet

More information

Transforms that are commonly used are separable

Transforms that are commonly used are separable Trasforms s Trasforms that are commoly used are separable Eamples: Two-dmesoal DFT DCT DST adamard We ca the use -D trasforms computg the D separable trasforms: Take -D trasform of the rows > rows ( )

More information

n -dimensional vectors follow naturally from the one

n -dimensional vectors follow naturally from the one B. Vectors ad sets B. Vectors Ecoomsts study ecoomc pheomea by buldg hghly stylzed models. Uderstadg ad makg use of almost all such models requres a hgh comfort level wth some key mathematcal sklls. I

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions: Smplex ad Rectagle Elemets Mult-dex Notato = (,..., ), o-egatve tegers = = β = ( β,..., β ) the + β = ( + β,..., + β ) + x = x x x x = x x β β + D = D = D D x x x β β Defto: The set P of polyomals of degree

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET Abstract. The Permaet versus Determat problem s the followg: Gve a matrx X of determates over a feld of characterstc dfferet from

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

Decomposition of Hadamard Matrices

Decomposition of Hadamard Matrices Chapter 7 Decomposto of Hadamard Matrces We hae see Chapter that Hadamard s orgal costructo of Hadamard matrces states that the Kroecer product of Hadamard matrces of orders m ad s a Hadamard matrx of

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Pinaki Mitra Dept. of CSE IIT Guwahati

Pinaki Mitra Dept. of CSE IIT Guwahati Pak Mtra Dept. of CSE IIT Guwahat Hero s Problem HIGHWAY FACILITY LOCATION Faclty Hgh Way Farm A Farm B Illustrato of the Proof of Hero s Theorem p q s r r l d(p,r) + d(q,r) = d(p,q) p d(p,r ) + d(q,r

More information

Lecture Note to Rice Chapter 8

Lecture Note to Rice Chapter 8 ECON 430 HG revsed Nov 06 Lecture Note to Rce Chapter 8 Radom matrces Let Y, =,,, m, =,,, be radom varables (r.v. s). The matrx Y Y Y Y Y Y Y Y Y Y = m m m s called a radom matrx ( wth a ot m-dmesoal dstrbuto,

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

Solution of General Dual Fuzzy Linear Systems. Using ABS Algorithm

Solution of General Dual Fuzzy Linear Systems. Using ABS Algorithm Appled Mathematcal Sceces, Vol 6, 0, o 4, 63-7 Soluto of Geeral Dual Fuzzy Lear Systems Usg ABS Algorthm M A Farborz Aragh * ad M M ossezadeh Departmet of Mathematcs, Islamc Azad Uversty Cetral ehra Brach,

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information