SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

Size: px
Start display at page:

Download "SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE"

Transcription

1 D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the de o symptote o ucto s epded to polyomls Thee e gve omuls o coecets o the multoml symptote o the ucto d some emples o pbolc d cubc symptote Keywods: Hozotl symptote, slt symptote, pbolc symptote, cubc symptote, multoml symptote, tol ucto DOI: 56/dm34 Hozotl d slt symptote The tem symptote mes usully stght le, thus le l s symptote to cuve the dstce om pot P to the le l teds to zeo s P teds to ty log some ubouded pt o the cuve I the cuve s the gph o el ucto ths deto cludes vetcl, hozotl y, d slt symptote y (Clphm 996; Kudvcev 973) It s kow tht the hozotl symptote o ucto y hs ts pmete lm, t s vestgted s, the slt symptote hs ts pmetes: lm d lm Tdeusz Jszk Deptmet o themtcs d Cybeetcs, Wocłw Uvesty o Ecoomcs, Komdosk Steet 8/, Wocłw, Pold E-ml: tdueszjszk@uewocpl

2 46 Tdeusz Jszk I the cse the esult c be deet Fucto y ct hs two deet symptotes y d y The sme s the cse o slt, pbolc d polyoml symptote The ede cetly kows my emples o the ucto wth hozotl o slt symptote Emple The most smple emple o ucto whch hs the hozotl symptote y s y Emple The sum: () = cost + / hs the hozotl symptote y = cost Emple 3 The sum o the le ucto y b d the hypebol om emple s tol ucto d ts slt symptote s the le ucto: y : Souce: ow elboto Fg A tol ucto wth the slt symptote

3 Some emks bout hozotl, slt, pbolc d polyoml symptote 47 Emple 4 Fucto s s ot tol d hs the hozo- tl symptote y : Fg The ucto osclltes close d close oud ts hozotl symptote Souce: ow elboto s Emple 5 Let b whee Ths ucto osclltes close d close oud ts slt symptote y b Pbolc symptote The tem pbolc symptote s deed smlly (Jszk ) Deto A pbol y s pbolc symptote o the ucto y, s, I the cse lm the esult c be deet ()

4 48 Tdeusz Jszk Theoem Let ucto be gve y tevl m,, d hve the pbolc symptote deed by (), the thee est thee lmts: lm, () lm b, (3) c lm, (4) d the pmetes,, e equl:, b, c Poo The equltes () d (4) e equvlet s c Let ε be postve umbe By omul () thee ests umbe such tht o ech > equlty (5) whee, holds The equlty (5) c be dvded by >, the the sequece o equltes holds, hece, the equlty bove poves tht e lm thus the lmt (3) ests, d lm b (6), (7)

5 Some emks bout hozotl, slt, pbolc d polyoml symptote 49 Now we eed to pove tht the equlty () holds, d c Let, by (7) thee ests umbe such tht o ech > double equlty holds, whee Becuse the equlty below s tue: d, Now the bove equlty s dvded by > : We hve (8) The double equlty (8) mples the equlty () whee The poo s complete Coolly The ucto y hs the pbolc symptote, s, d oly the omuls (), (3), (4) hold; the pbol s gve by omul y b c Coolly Fucto hs t most oe pbolc symptote The poo c lso be mde dectly by deto I the omul () holds d the equlty c c c lm holds too, the the ddto o the let sde o () d (9) hs the lmt equl to zeo, e (9)

6 5 Tdeusz Jszk so c c c lm c c lm c, () ; () the omul () poves tht c, om hee t ollows tht the omul () s equvlet to e c c lm lm c c () ; (3) the omul (3) etls tht c, d the omul () s equvlet to lmc e c The dect poo o coolly s complete Emple 6 Let tol ucto be gve by the ollowg omul: Its decomposto hs the om: The pbolc symptote o s deed by y 6 wth the vete the pot 3, y Fucto hs the om: 3 The tble o sgs o helps to mde the plot o the ucto ; t us bove the -s o the tevls d below t o the tevls, ;, ; 3,, d, 3

7 Some emks bout hozotl, slt, pbolc d polyoml symptote 5 Smlly, t s locted bove ts pbolc symptote o the tevl,, d below o, I Fgue 3 thee s peseted gph o ucto, d ts pbolc symptote Souce: ow elboto Fg 3 A tol ucto wth ts pbolc symptote Emple 7 The ucto gve by the omul g s 6 hs the sme pbolc symptote s emple 6; s The gph o t s susod whch us close d close oud the pbol y 6 3 Polyoml symptote Smlly to pbolc symptote, thee s deed the tem polyoml symptote Deto A polyoml p (4)

8 5 Tdeusz Jszk s sd to be polyoml o multoml symptote o the ucto y, s, the equlty holds I the cse lm p the esult c be deet (5) Theoem Let polyoml p gve by (4) be multoml symptote o ucto d the dom o ucto cludes y tevl m, The thee ests + lmts: d so o d so o d o ech lm lm b, (6) b, (7) k lm k bk, (8) lm lm,, the equlty b holds b, (9) b, () Poo The poo s mde by ducto The st ducto step s tvl becuse the equltes (5) d () e equvlet whe b Secod ducto step: let the omul (8) be tue o ech k,,,, d b o ech,,, whee s tul umbe: such tht It eeds to be poved tht

9 Some emks bout hozotl, slt, pbolc d polyoml symptote 53 lm k () By the ducto ssumpto the omul lm () holds Let, by () thee ests k such tht o ech the double equlty below s tue:, whee The equlty bove c be bodeed: The lst equlty s dvded ow by : tht s ; the equlty bove poves tht

10 54 Tdeusz Jszk k lm k k (3) o ech k,, It s ecessy to pove tht Let t ow be oted lm lm (4) (5) Fo ech thee ests such tht o ech, d o the equlty holds Hece the equlty below holds too: (6) (7) Fo the cocluso o the poo, we eed to dvde (7) by d so the equlty (4) holds : (8) Coolly 3 Fucto hs t the most oe polyoml symptote The coecets o the polyoml e gve by the omuls (6)-() Theoem 3 Suppose the ucto y hs the polyoml symptote y p whch s gve by (4) The c be epeseted by the sum p (9)

11 Some emks bout hozotl, slt, pbolc d polyoml symptote 55 whee lm (3) The polyoml p s sd to be the pcpl pt o ucto, wth espect to the set o multomls, d the emde pt o t Poo By ssumpto the equlty (5) holds, ucto s gve by the omul om hee p the poo s complete whee Theoem 4 Let P d p (3) p p ; (3) be tol ucto: P Q (33) Q e polyomls The hs decomposto: P p (34) Q whee p d P e polyomls too, d the degee o P s less th Q The polyoml p s the pcpl o tege pt o the tol ucto P d s the emde o ctol pt o t Q Emple 8 The ucto s tol d hs the decomposto The polyoml y 3 4 s the multoml symptote o the ucto It s ot dcult to mke gph o the ucto d ts symptote

12 56 Tdeusz Jszk Souce: ow elboto Fg 4 A tol ucto wth cubc symptote Reeeces Clphm C (996) themtcs Ood Jszk T () Fukcje wymee Wydwctwo Akdem Ekoomczej we Wocłwu Kudvcev LD (973) атематический анализ Высшая школа oskw

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Chapter 17. Least Square Regression

Chapter 17. Least Square Regression The Islmc Uvest of Gz Fcult of Egeeg Cvl Egeeg Deptmet Numecl Alss ECIV 336 Chpte 7 Lest que Regesso Assocte Pof. Mze Abultef Cvl Egeeg Deptmet, The Islmc Uvest of Gz Pt 5 - CURVE FITTING Descbes techques

More information

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates.

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates. CURVE FITTING Descbes techques to ft cuves (cuve fttg) to dscete dt to obt temedte estmtes. Thee e two geel ppoches fo cuve fttg: Regesso: Dt ehbt sgfct degee of sctte. The stteg s to deve sgle cuve tht

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator

On Certain Classes of Analytic and Univalent Functions Based on Al-Oboudi Operator Boig Itetiol Joul o t Miig, Vol, No, Jue 0 6 O Ceti Clsses o Alytic d Uivlet Fuctios Bsed o Al-Oboudi Opeto TV Sudhs d SP Viylkshmi Abstct--- Followig the woks o [, 4, 7, 9] o lytic d uivlet uctios i this

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

φ (x,y,z) in the direction of a is given by

φ (x,y,z) in the direction of a is given by UNIT-II VECTOR CALCULUS Dectoal devatve The devatve o a pot ucto (scala o vecto) a patcula decto s called ts dectoal devatve alo the decto. The dectoal devatve o a scala pot ucto a ve decto s the ate o

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

Numerical Methods for Eng [ENGR 391] [Lyes KADEM 2007] Direct Method; Newton s Divided Difference; Lagrangian Interpolation; Spline Interpolation.

Numerical Methods for Eng [ENGR 391] [Lyes KADEM 2007] Direct Method; Newton s Divided Difference; Lagrangian Interpolation; Spline Interpolation. Nuecl Methods o Eg [ENGR 39 [Les KADEM 7 CHAPTER V Itepolto d Regesso Topcs Itepolto Regesso Dect Method; Newto s Dvded Deece; Lgg Itepolto; ple Itepolto Le d o-le Wht s tepolto? A ucto s ote gve ol t

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd.

GCE AS and A Level MATHEMATICS FORMULA BOOKLET. From September Issued WJEC CBAC Ltd. GCE AS d A Level MATHEMATICS FORMULA BOOKLET Fom Septeme 07 Issued 07 Pue Mthemtcs Mesuto Suce e o sphee = 4 Ae o cuved suce o coe = heght slt Athmetc Sees S = + l = [ + d] Geometc Sees S = S = o < Summtos

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS

SEPTIC B-SPLINE COLLOCATION METHOD FOR SIXTH ORDER BOUNDARY VALUE PROBLEMS VOL. 5 NO. JULY ISSN 89-8 RN Joul of Egeeg d ppled Sceces - s Resech ulshg Netok RN. ll ghts eseved..pouls.com SETIC -SLINE COLLOCTION METHOD FOR SIXTH ORDER OUNDRY VLUE ROLEMS K.N.S. Ks Vsdhm d. Mul Ksh

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM Joual o Mathematcal Sceces: Advaces ad Applcatos Volume 6 Numbe 00 Pages 77-9 PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM DAU XUAN LUONG ad TRAN VAN AN Depatmet o Natual Sceces Quag Nh

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Spectral Continuity: (p, r) - Α P And (p, k) - Q

Spectral Continuity: (p, r) - Α P And (p, k) - Q IOSR Joul of Mthemtcs (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X Volume 11, Issue 1 Ve 1 (J - Feb 215), PP 13-18 wwwosjoulsog Spectl Cotuty: (p, ) - Α P Ad (p, k) - Q D Sethl Kum 1 d P Mhesw Nk 2 1

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

Lecture 10: Condensed matter systems

Lecture 10: Condensed matter systems Lectue 0: Codesed matte systems Itoducg matte ts codesed state.! Ams: " Idstgushable patcles ad the quatum atue of matte: # Cosequeces # Revew of deal gas etopy # Femos ad Bosos " Quatum statstcs. # Occupato

More information

Mathematical Statistics

Mathematical Statistics 7 75 Ode Sttistics The ode sttistics e the items o the dom smple ed o odeed i mitude om the smllest to the lest Recetl the impotce o ode sttistics hs icesed owi to the moe equet use o opmetic ieeces d

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS

GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS GCE AS/A Level MATHEMATICS GCE AS/A Level FURTHER MATHEMATICS FORMULA BOOKLET Fom Septembe 07 Issued 07 Mesuto Pue Mthemtcs Sufce e of sphee = 4 Ae of cuved sufce of coe = slt heght Athmetc Sees S l d

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

Generalisation on the Zeros of a Family of Complex Polynomials

Generalisation on the Zeros of a Family of Complex Polynomials Ieol Joul of hemcs esech. ISSN 976-584 Volume 6 Numbe 4. 93-97 Ieol esech Publco House h://www.house.com Geelso o he Zeos of Fmly of Comlex Polyomls Aee sgh Neh d S.K.Shu Deme of hemcs Lgys Uvesy Fdbd-

More information

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY)

ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) ANOTHER INTEGER NUMBER ALGORITHM TO SOLVE LINEAR EQUATIONS (USING CONGRUENCY) Floet Smdche, Ph D Aocte Pofeo Ch of Deptmet of Mth & Scece Uvety of New Mexco 2 College Rod Gllup, NM 873, USA E-ml: md@um.edu

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

E-Companion: Mathematical Proofs

E-Companion: Mathematical Proofs E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth

More information

Chapter I Vector Analysis

Chapter I Vector Analysis . Chpte I Vecto nlss . Vecto lgeb j It s well-nown tht n vecto cn be wtten s Vectos obe the followng lgebc ules: scl s ) ( j v v cos ) ( e Commuttv ) ( ssoctve C C ) ( ) ( v j ) ( ) ( ) ( ) ( (v) he lw

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0. LECTURE 8: Topcs Chaos Rcker Equato (t ) = (t ) ep( (t )) Perod doulg urcato Perod doulg cascade 9....... A Quadratc Equato Rcker Equato (t ) = (t ) ( (t ) ). (t ) = (t ) ep( (t )) 6. 9 9. The perod doulg

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Chapter 2 Reciprocal Lattice. An important concept for analyzing periodic structures

Chapter 2 Reciprocal Lattice. An important concept for analyzing periodic structures Chpt Rcpocl Lttc A mpott cocpt o lyzg podc stuctus Rsos o toducg cpocl lttc Thoy o cystl dcto o x-ys, utos, d lctos. Wh th dcto mxmum? Wht s th tsty? Abstct study o uctos wth th podcty o Bvs lttc Fou tsomto.

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz

SOLUTIONS ( ) ( )! ( ) ( ) ( ) ( )! ( ) ( ) ( ) ( ) n r. r ( Pascal s equation ). n 1. Stepanov Dalpiaz STAT UIU Pctice Poblems # SOLUTIONS Stepov Dlpiz The followig e umbe of pctice poblems tht my be helpful fo completig the homewo, d will liely be vey useful fo studyig fo ems...-.-.- Pove (show) tht. (

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge ccog to the ut whch the e fst touce. Thus cte sttg ut m e eque to use the fomule tht wee touce peceg ut e.g. ctes sttg C mght e epecte to use

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Complete Classification of BKM Lie Superalgebras Possessing Strictly Imaginary Property

Complete Classification of BKM Lie Superalgebras Possessing Strictly Imaginary Property Appled Mthemtcs 4: -5 DOI: 59/m4 Complete Clssfcto of BKM Le Supelges Possessg Stctly Imgy Popety N Sthumoothy K Pydhs Rmu Isttute fo Advced study Mthemtcs Uvesty of Mds Che 6 5 Id Astct I ths ppe complete

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Certain Expansion Formulae Involving a Basic Analogue of Fox s H-Function

Certain Expansion Formulae Involving a Basic Analogue of Fox s H-Function vlle t htt:vu.edu l. l. Mth. ISSN: 93-9466 Vol. 3 Iue Jue 8. 8 36 Pevouly Vol. 3 No. lcto d led Mthetc: Itetol Joul M Cet Exo Foule Ivolvg c logue o Fox -Fucto S.. Puoht etet o c-scece Mthetc College o

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Lecture 5 Single factor design and analysis

Lecture 5 Single factor design and analysis Lectue 5 Sngle fcto desgn nd nlss Completel ndomzed desgn (CRD Completel ndomzed desgn In the desgn of expements, completel ndomzed desgns e fo studng the effects of one pm fcto wthout the need to tke

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

Counting Functions and Subsets

Counting Functions and Subsets CHAPTER 1 Coutig Fuctios ad Subsets This chapte of the otes is based o Chapte 12 of PJE See PJE p144 Hee ad below, the efeeces to the PJEccles book ae give as PJE The goal of this shot chapte is to itoduce

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

«A first lesson on Mathematical Induction»

«A first lesson on Mathematical Induction» Bcgou ifotio: «A fist lesso o Mtheticl Iuctio» Mtheticl iuctio is topic i H level Mthetics It is useful i Mtheticl copetitios t ll levels It hs bee coo sight tht stuets c out the poof b theticl iuctio,

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t

14. MRAC for MIMO Systems with Unstructured Uncertainties We consider affine-in-control MIMO systems in the form, x Ax B u f x t Lectue 8 14. MAC o MIMO Systes wth Ustuctued Ucetates We cosde ae--cotol MIMO systes the o, ABu t (14.1) whee s the syste state vecto, u s the cotol put, B s kow costat at, A ad (a dagoal at wth postve

More information

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013 Mth 4318 : Rel Anlysis II Mid-Tem Exm 1 14 Febuy 2013 Nme: Definitions: Tue/Flse: Poofs: 1. 2. 3. 4. 5. 6. Totl: Definitions nd Sttements of Theoems 1. (2 points) Fo function f(x) defined on (, b) nd fo

More information

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k = wwwskshieduciocom BINOMIAL HEOREM OBJEIVE PROBLEMS he coefficies of, i e esio of k e equl he k /7 If e coefficie of, d ems i e i AP, e e vlue of is he coefficies i e,, 7 ems i e esio of e i AP he 7 7 em

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

Loop-independent dependence: dependence exists within an iteration; i.e., if the loop is removed, the dependence still exists.

Loop-independent dependence: dependence exists within an iteration; i.e., if the loop is removed, the dependence still exists. Loop-depedet vs. loop-carred depedeces [ 3.] Loop-carred depedece: depedece exsts across teratos;.e., f the loop s removed, the depedece o loger exsts. Loop-depedet depedece: depedece exsts wth a terato;.e.,

More information

Gauss-Quadrature for Fourier-Coefficients

Gauss-Quadrature for Fourier-Coefficients Copote Techology Guss-Qudtue o Foue-Coecets A. Glg. Hezog. Pth P. Retop d U. Weve Cotet: The tusve method The o-tusve method Adptve Guss qudtue Embeddg to optmzto Applcto u ü tee Gebuch / Copyght Semes

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials

Permutations that Decompose in Cycles of Length 2 and are Given by Monomials Poceedgs of The Natoa Cofeece O Udegaduate Reseach (NCUR) 00 The Uvesty of Noth Caoa at Asheve Asheve, Noth Caoa Ap -, 00 Pemutatos that Decompose Cyces of Legth ad ae Gve y Moomas Lous J Cuz Depatmet

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

Lecture 6: October 16, 2017

Lecture 6: October 16, 2017 Ifomatio ad Codig Theoy Autum 207 Lectue: Madhu Tulsiai Lectue 6: Octobe 6, 207 The Method of Types Fo this lectue, we will take U to be a fiite uivese U, ad use x (x, x 2,..., x to deote a sequece of

More information

Transmuted Generalized Lindley Distribution

Transmuted Generalized Lindley Distribution Itetol Joul of Memtcs Teds d Techology- olume9 Numbe Juy 06 Tsmuted Geelzed Ldley Dstbuto M. Elghy, M.Rshed d A.W.Shwk 3, Buydh colleges, Deptmet of Memtcl Sttstcs, KSA.,, 3 Isttute of Sttstcl Studes d

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information