ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY

Size: px
Start display at page:

Download "ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY"

Transcription

1 IJRRAS 7 3 Deemer 203 wwwrressom/volumes/vol7issue3/ijrras_7_3_02 ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY Zlto Pvć & Ver Novosel 2 Mehl Egeerg Fulty Slvos Bro Uversty o Osje Trg Ive Brlć Mžurć Slvos Bro Crot Eml: ZltoPv@sshr 2 Mehl Egeerg Fulty Slvos Bro Uversty o Osje Trg Ive Brlć Mžurć Slvos Bro Crot Eml: VerNovosel@sshr ABSTRACT The rtle els wth the geerlztos o Jese s equlty the srete tegrl orm Oe geerlzto o Hermte-Hmr s equlty s lso resete The trsto rom srete to tegrl mes s relze usg the tegrl metho wth ove omtos Keywors: 26A5 26D5 28A25 52A40 ove omto e omto ove uto Jese s equlty Hermte-Hmr s equlty INTRODUCTION The tegrl equltes hve sel le the rh o mthemtl equltes Wth etesve mesure theory these equltes e wely use mthemts hyss Beses usg srete mesures tegrl equltes e esly resete the srete orm The reverse roeure tht strts rom the srete se roues the tegrl lso e mlemete y lyg the tegrl metho wth ove omtos The ltter s more ult Rell the two well-ow wely use tegrl equltes or rel vlue ove uto ee o oue lose tervl o rel umers Every ove uto :[ ] veres the equlty ow s Hermte-Hmr s equlty the equlty ow s the tegrl orm o Jese s equlty 2 2 Hermte-Hmr s equlty reers to the estmto o the tegrl rthmet me o ove uto I 883 Hermte hs sovere the oule equlty whh ws ulshe [3] Te yers lter Hmr hs resovere the let-h se o ths equlty whh ws resete [2] More etls o ths rmt story see [7] or [8 ges 62-63] I the srete se Jese s equlty s le to ove omtos o vetors rom ove set I the tegrl se Jese s equlty s wely le to ryeters tegrl mes I 906 Jese hs rove the verso o the equlty 2 usg Leesgue mesure whh ws ulshe [4] 2 INEQUALITIES WITH AFFINE COMBINATIONS Ths seto s rere org to Theorem A whh s oe o the m results o the sumtte er [0] Cove sets re geerlly oserve rel vetor se Alto to some vetor set s lytlly eresse y omtos o vetors ots The sum slrs oeets 2 263

2 IJRRAS 7 3 Deemer 203 Pvć & Novosel O Jese s & Hermte-Hmr s Iequlty elogs to the vetor suse l{ } the smllest vetor se tht ots ll t s lle the ler omto I tht ots ll the sum 3 elogs to the e hull { } the smllest trslte vetor se t s lle the e omto I ll [0] o{ the sum 3 elogs to the ove hull } the smllest ove vetor set tht ots ll t s lle the ove omto I wht ollows we use rel tervl [ ] ssumg < Every e uquely resete s the e omto 4 where Let : e ove uto B o the grh o I [ ] equlty I [ ] ho e the hor le ssg through the ots 5 { } A the the ove omto s ove we hve the hor ho { 6 the the reverse equlty s vl 6 ho Smlty o the hor le { } s the e uto h l wll e very useul to our wor For ths reso here s the ollowg lemm: Lemm 2 Let h :R R veres the equlty } e ots Let e oeets o the sum h h We wll eme the ehvor o ove utos o some sel tyes o e omtos Lemm 22 Let [ ] The every ove uto The every e uto e ot Let [0] [] e oeets o the sum :[ ] veres the equlty Proo Frst o ll let us show tht the e omto to e or oeets 8 elogs to [ ] Se [ ] te rom the ormuls 5 The we hve [ ] [ ] t hs The oeets squre rets re o-egtve wth the sum equls so the oserve eresso elogs to [ ] I 0 the equlty 8 s the Jese equlty or the three-memere ove omto

3 IJRRAS 7 3 Deemer 203 Pvć & Novosel O Jese s & Hermte-Hmr s Iequlty I 0 we use the equlty 6 the ty o the hor le ho { } ths wy: ho { } ho ho ho { } { } { } ho ho resetg tht [ ] { } ho { } Suet otos o the oeets Lemm 22 re: [0] otos ollows [] From these Fgure : Geometr terretto o the equlty 8 The lyt equlty wrtte the ormul 8 e esre y geometr gure Gve [ ] te the grh ots A B C eterme the osto o the ots P 0 or [0] We hve the rus-vetors equlty rp ra rb rc ra rb ra rb rc I 0 the let-h se o the equlty reresets the ove omtos o the vetors r A r B r C Iterrete geometrlly the ots P elog to the trgle o{ A B C} I 0 the oeets [0] wth the sum equl to Te the ot D The rght-h se o the equlty reresets the ove r A r B r D Ths mes tht the geometr loto o the ots P s just the o{ A B D So gve uto ot [ ] oeets o the sum the ots omtos o the vetors trgle } o the ormul 0 elog to the ove qurgle llustrte Fgure oa C D B 265

4 IJRRAS 7 3 Deemer 203 Pvć & Novosel O Jese s & Hermte-Hmr s Iequlty Theorem A Let [ ] e ots Let [0] [] The every ove uto :[ ] e oeets o the sums veres the equlty 2 For 0 the equlty 2 s reue to the Jese-Merer equlty see [5] Corollry 23 Let [ ] the equlty 2 s reue to the Jese equlty For e ots Let [0] 0 The every ove uto :[ ] R Proo Put suose < e oeets o the sum veres the equlty 3 The the e omto oes wth tht o Theorem A euse / 0 The equlty 3 ow ollows ter lyg Theorem A Remr 24 Let otg tht Suose tht e e omto wth the smllest ot the lrgest ot where [0] I 2 0] 4 2 [ wth > 0 2 < 0 the the oserve e omto elogs to the tervl { } It s true euse the ove omtos elog to { } Puttg we hve o / 2 / / 2 / o / 0 / 0 tht s the e omto wth the oeets The omto o{ } y Lemm 22 the sme s true or the omto

5 IJRRAS 7 3 Deemer 203 Pvć & Novosel O Jese s & Hermte-Hmr s Iequlty 4 3 TRANSITION FROM CONVEX COMBINATIONS TO INTEGRALS The turl wy o trsto rom srete to tegrl mes s oe tht volves ove omtos the tegrl metho Itegrl logy o the oet o ove omtos s the oet o ryeter Let us show how the ove omtos e mlemete to the tegrl metho Let e mesure ostve mesure org to [] o set S wth S > 0 S e rtto o rwse sjot -mesurle sets S s o the ove omto eters overges we get the set ryeter s the lmt I S s S lm B lm s Gve ostve teger let S e ots I the sequee So the -ryeter o S e ee wth : s ether o-egtve or o-ostve uto wth 0 the -ryeter o o S e ee wth B lm lm S rove tht the lmt ests Note tht the ove tegrl sum s the -memere ove omto o the ots wth o-egtve oeets I S s ove our se the tervl the B B elog to I ths wy t s ossle to me the trsto rom srete orm o Jese s equlty to the tegrl orm S S 7 S S I g : s -tegrle uto the -rthmet me o g o S s ee wth g M g lm g 8 rove tht the lmt ests I g s the otuous uto o the tervl ts -rthmet me elogs to

6 IJRRAS 7 3 Deemer 203 Pvć & Novosel O Jese s & Hermte-Hmr s Iequlty g 4 APPLICATIONS The m result ths seto s Theorem 45 whh etes the Hermte-Hmr equlty to e omtos rom the tervl The srete equlty 2 e le to ow tegrl equltes metoe Seto to tegrl qus-rthmet mes 4 Alto to Jese s Iequlty Alyg the equlty 2 wth the ove omtos o the eto 6 we hve the ollowg result: Corollry 4 Let e mesure o the tervl [ ] Let :[ ] e ether o-egtve or oostve -tegrle uto wth 0 Let [0] [] sum The the equlty e oeets o the 9 hols or every ove uto :[ ] rove tht the utos re - tegrle The equlty 7 s stll vl we susttute the etty uto wth uto equlty 9 e etee usg the uto g tht hs etreme vlues: g :[ ] The the Corollry 42 Let e mesure o the tervl [ ] Let :[ ] e ether o-egtve or oostve -tegrle uto wth 0 Let g :[ ] e -mesurle uto wth etreme vlues g g so g o{ g g } I or every [ ] hols or every ove uto tegrle 42 Alto to Hermte-Hmr s Iequlty g g g g g g The the equlty : rove tht the utos g g re - Lemm 43 Let e mesure o the tervl [ ] wth [ ] > 0 stsy the the oule equlty I oeets o the sum [ ]

7 IJRRAS 7 3 Deemer 203 Pvć & Novosel O Jese s & Hermte-Hmr s Iequlty 269 ] [ 22 hols or every ove uto ] [ : Proo The let-h se o the equlty 22 ollows rom Jese s equlty: ] [ ] [ The rght-h se o the equlty 22 ollows rom the hor equlty 6: l ho } { the ] [ ] [ } { l ho euse ho } { ho } { The equlty 22 ws stte or ove otuous utos rel Borel mesures [] lso or otuous mesures [9 Corollry 38] Remr 44 The oeets o the equlty 22 re uque e lulte y the ormuls 5 I ] [ / the ltertve resetto o the equlty 22 res s ollows: ] [ 23 The equlty 22 e geerlze y lto o the ormul 8: Theorem 45 Let e mesure o the tervl ] [ wth 0 > ] [ Let [0] ] [ e oeets o the sum Let ] [ : e ove uto I the equlty 2 s vl the the oule equlty ] [ 24 hols or 0 the oule equlty ] [ 25 hols or 0 Proo Puttg ] [ / we hve the reresetto

8 IJRRAS 7 3 Deemer 203 Pvć & Novosel O Jese s & Hermte-Hmr s Iequlty 270 Suose 0 Comg the lto o the ormul 8 wth the ove equlty t ollows ] [ Alyg the tegrl orm o Jees s equlty o the lst memer o the ove equlty the the rghth se o the equlty 22 we get ] [ ] [ ter whh rses the equlty 24 Suose 0 Usg the srete orm o Jese s equlty t ollows Ater usg the rght-h se o the equlty 22 multle y we ot ] [ esurg the equlty APPLICATION TO QUASI-ARITHMETIC MEANS Let e mesure o set wth 0 > : e strtly mootoe otuous uto tht s -tegrle o The -qus-ryeter o the set wth reset to the mesure e ee s the ot M 26 I s tervl the M elogs to euse / elogs to The ormul 26 lso e le to the -qus-ryeter eto o o-egtve or o-ostve -tegrle uto : wth 0 S M 27 ssumg -tegrlty o the uto Alyg the e o â â the revous ormul we ee ; ] [ M 28 lug Corollry 42 get: Corollry 46 Let e mesure o the tervl ] [ Let ] [ : e ether o-egtve or oostve -tegrle uto wth 0 Let [0] ] [ e oeets o the

9 IJRRAS 7 3 Deemer 203 Pvć & Novosel O Jese s & Hermte-Hmr s Iequlty sum Let :[ ] e strtly mootoe otuous utos I s ether -ove resg or -ove eresg the the equlty hols rove tht the utos M [ ] ; M [ ] ; 29 re -tegrle I s ether -ove eresg or -ove resg the the reverse equlty s vl 29 Proo Let us rove the se whe s -ove resg Usg the equlty 20 wth the ove uto the mootoe uto g whh se g we get The equlty 29 ollows ter lyg the resg uto o the ove equlty More o geerl orms reemets o the qus-rthmet mes e ou [6] 5 REFERENCES [] A M F "A est ossle Hmr equlty" Mthemtl Iequltes & Altos vol [2] J Hmr "Étue sur les rorétés es otos etères et e rtuler ue oto oserée r Rem" Jourl e Mthémtques Pures et Alquées vol [3] C Hermte "Sur eu lmtes ue tégrle ée" Mthess vol [4] J L W V Jese "Sur les otos ovees et les égltés etre les vleurs moyees" At Mthemt vol [5] A MD Merer "A vrt o Jese s equlty" Jourl o Iequltes Pure Ale Mthemts vol 4 o 4 Artle [6] J M Z Pv J Pe r "The equltes or qusrthmet mes" Astrt Ale Alyss vol 202 Artle ID ges 202 [7] D S Mtrov I B Lov "Hermte ovety" Aequtoes Mthemte vol [8] C P Nulesu L E Persso Cove Futos Ther Altos C Mthemtl Soety Srger New Yor USA 2006 [9] Z Pv "Cove omtos ryeters ove utos" Jourl o Iequltes Altos vol 203 Artle 6 3 ges 203 [0] Z Pv "Geerlztos o Jese s equlty" sumtte 0 ges 203 [] W Ru Rel Comle Alyss MGrw-Hll New Yor USA

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2. Chter Chter Syste of Rel uers Tertg Del frto: The del frto whh Gve fte uers of dgts ts del rt s lled tertg del frto. Reurrg ( o-tertg )Del frto: The del frto (No tertg) whh soe dgts re reeted g d g the

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Dual-Matrix Approach for Solving the Transportation Problem

Dual-Matrix Approach for Solving the Transportation Problem Itertol Jourl of Mthets Tres Tehology- Volue Nuer Jue 05 ul-mtr Aroh for Solvg the Trsortto Prole Vy Shr r Chr Bhus Shr ertet of Mthets, BBM College r, Jeh, (MU), INIA E-Prl, SS College Jeh, (MU), INIA

More information

CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD

CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD 67 CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD 7. INTRODUCTION The eso mers the setors le fl ororte lg routo lg mretg me seleto uversty lg stuet mssos

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chpter Vetor pes - Vetor pes Ler Comtos Vetor spe V V s set over fel F f V F! + V. Eg. R s vetor spe. For R we hek -4=-4-4R -7=-7-7R et. Eg. how tht the set of ll polomls PF wth oeffets from F s vetor

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

Keywords: Heptic non-homogeneous equation, Pyramidal numbers, Pronic numbers, fourth dimensional figurate numbers.

Keywords: Heptic non-homogeneous equation, Pyramidal numbers, Pronic numbers, fourth dimensional figurate numbers. [Gol 5: M 0] ISSN: 77-9655 IJEST INTENTIONL JOUNL OF ENGINEEING SCIENCES & ESECH TECHNOLOGY O the Hetc No-Hoogeeous Euto th Four Ukos z 6 0 M..Gol * G.Suth S.Vdhlksh * Dertet of MthetcsShrt Idr Gdh CollegeTrch

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM S. Res. Chem. Commu.: (3 8-88 ISSN 77-669 GENERLIZED OPERTIONL RELTIONS ND PROPERTIES OF FRCTIONL NKEL TRNSFORM R. D. TYWDE *. S. GUDDE d V. N. MLLE b Pro. Rm Meghe Isttute o Teholog & Reserh Bder MRVTI

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

GENERALIZATIONS OF JENSEN-MERCER S INEQUALITY

GENERALIZATIONS OF JENSEN-MERCER S INEQUALITY Joural o Pure ad led Matheatcs: dvaces ad lcatos Volue Nuer 204 Pages 9-36 GENERLIZTIONS OF JENSEN-MERER S INEQULITY ZLTKO PVIĆ Mechacal Egeerg Facult Slavosk rod Uverst o Osek Trg Ivae rlć Mañurać 2 35000

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

SOLUTION OF TWO DIMENSIONAL FRACTIONAL ORDER VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

SOLUTION OF TWO DIMENSIONAL FRACTIONAL ORDER VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS Jourl of Al-Nhr Uversty Vol. (4), Deeber, 009,.85-89 See SOLUTION OF TWO DIMENSIONAL FRACTIONAL ORDER VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS Mh A. Mohed * d Fdhel S. Fdhel ** * Dertet of Mthets, Ib-Al-Hth

More information

A Dynamical Quasi-Boolean System

A Dynamical Quasi-Boolean System ULETNUL Uestăţ Petol Gze Ploeşt Vol LX No / - 9 Se Mtetă - otă - Fză l Qs-oole Sste Gel Mose Petole-Gs Uest o Ploest ots etet est 39 Ploest 68 o el: ose@-loesto stt Ths e oes the esto o ol theoetl oet:

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +. Ler Trsfortos d Group Represettos Hoework #3 (06-07, Aswers Q-Q re further exerses oer dots, self-dot trsfortos, d utry trsfortos Q3-6 volve roup represettos Of these, Q3 d Q4 should e quk Q5 s espelly

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

GEOMETRY OF JENSEN S INEQUALITY AND QUASI-ARITHMETIC MEANS

GEOMETRY OF JENSEN S INEQUALITY AND QUASI-ARITHMETIC MEANS IJRRS ugust 3 wwwararesscom/volumes/volissue/ijrrs 4d GEOMETRY OF JENSEN S INEQULITY ND QUSI-RITHMETIC MENS Zlato avć Mechacal Egeerg Facult Slavos Brod Uverst o Osje Trg Ivae Brlć Mažurać 35 Slavos Brod

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

Useful R-norm Information Measure and its Properties

Useful R-norm Information Measure and its Properties IOS Jorl of Eletros Coto Eeer (IOS-JECE) e-issn: 7-34- ISSN: 7-735Vole Isse (No - De 03) PP 5-57 DS oo Keert Uyy DKSr 3 Jyee Uersty of Eeer Teoloy AB o or 4736 Dstt G MP (I) Astrt : I te reset oto ew sefl

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands Tlburg ceter for Cogto d Coucto P.O. Box 953 Tlburg Uversty 5 LE Tlburg, The Netherlds htt://www.tlburguversty.edu/reserch/sttutes-d-reserch-grous/tcc/cc/techcl-reorts/ El: tcc@uvt.l Coyrght A.J. v Zte,

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Learning Enhancement Team

Learning Enhancement Team Lernng Enhnement Tem Worsheet: The Cross Produt These re the model nswers for the worsheet tht hs questons on the ross produt etween vetors. The Cross Produt study gude. z x y. Loong t mge, you n see tht

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE

ONE GENERALIZED INEQUALITY FOR CONVEX FUNCTIONS ON THE TRIANGLE Joural of Pure ad Appled Mathematcs: Advaces ad Applcatos Volume 4 Number 205 Pages 77-87 Avalable at http://scetfcadvaces.co. DOI: http://.do.org/0.8642/jpamaa_7002534 ONE GENERALIZED INEQUALITY FOR CONVEX

More information

Density estimation II

Density estimation II CS 750 Mche Lerg Lecture 6 esty estmto II Mlos Husrecht mlos@tt.edu 539 Seott Squre t: esty estmto {.. } vector of ttrute vlues Ojectve: estmte the model of the uderlyg rolty dstruto over vrles X X usg

More information

Lecture 3: Review of Linear Algebra and MATLAB

Lecture 3: Review of Linear Algebra and MATLAB eture 3: Revew of er Aler AAB Vetor mtr otto Vetors tres Vetor spes er trsformtos Eevlues eevetors AAB prmer Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst Vetor mtr otto A -mesol (olum) vetor

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cper 7. Smpso s / Rule o Iegro Aer redg s per, you sould e le o. derve e ormul or Smpso s / rule o egro,. use Smpso s / rule o solve egrls,. develop e ormul or mulple-segme Smpso s / rule o egro,. use

More information

Properties and inequalities for the (h 1. )- and (h 1

Properties and inequalities for the (h 1. )- and (h 1 X & Q, Coget Mthetcs 6, 3: 766 htt://dxdoorg/8/338356766 PURE MATHEMATICS RESEARCH ARTICLE Proertes d equltes or the h - d h, -GA-covex uctos Bo-Y X * d Feg Q,3 Receved: 8 Mrch 6 Acceted: 7 Mrch 6 Frst

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

Tail Factor Convergence in Sherman s Inverse Power Curve Loss Development Factor Model

Tail Factor Convergence in Sherman s Inverse Power Curve Loss Development Factor Model T tor Covergee Sherm s Iverse Power Curve Loss Deveopmet tor Moe Jo Evs Astrt The fte prout of the ge-to-ge eveopmet ftors Sherm s verse power urve moe s prove to overge to fte umer whe the power prmeter

More information

The Algebraic Least Squares Fitting Of Ellipses

The Algebraic Least Squares Fitting Of Ellipses IOSR Jourl of Mthets (IOSR-JM) e-issn: 78-578 -ISSN: 39-765 Volue 4 Issue Ver II (Mr - Ar 8) PP 74-83 wwwosrjourlsorg he Algebr Lest Squres Fttg Of Ellses Abdelltf Betteb Dertet of Geerl Studes Jubl Idustrl

More information

The Z-Transform in DSP Lecture Andreas Spanias

The Z-Transform in DSP Lecture Andreas Spanias The Z-Trsform DSP eture - Adres Ss ss@su.edu 6 Coyrght 6 Adres Ss -- Poles d Zeros of I geerl the trsfer futo s rtol; t hs umertor d deomtor olyoml. The roots of the umertor d deomtor olyomls re lled the

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process Ru Probablty-Based Ital Captal of the Dsrete-Tme Surplus Proess by Parote Sattayatham, Kat Sagaroo, ad Wathar Klogdee AbSTRACT Ths paper studes a surae model uder the regulato that the surae ompay has

More information

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have ES4 Sold Mehs Z Suo Prpl stress Prpl Stress Imge mterl prtle stte o stress The stte o stress s xed, but we represet the mterl prtle my wys by uttg ubes deret orettos For y gve stte o stress, t s lwys possble

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

TEACHERS ASSESS STUDENT S MATHEMATICAL CREATIVITY COMPETENCE IN HIGH SCHOOL

TEACHERS ASSESS STUDENT S MATHEMATICAL CREATIVITY COMPETENCE IN HIGH SCHOOL Jourl o See d rs Yer 5, No., pp. 5-, 5 ORIGINL PPER TECHERS SSESS STUDENT S MTHEMTICL CRETIVITY COMPETENCE IN HIGH SCHOOL TRN TRUNG TINH Musrp reeved: 9..5; eped pper:..5; Pulsed ole:..5. sr. ssessme s

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

An Extended Mixture Inverse Gaussian Distribution

An Extended Mixture Inverse Gaussian Distribution Avlble ole t htt://wwwssstjscssructh Su Sudh Scece d Techology Jourl 016 Fculty o Scece d Techology, Su Sudh Rjbht Uversty A Eteded Mture Iverse Guss Dstrbuto Chookt Pudrommrt * Fculty o Scece d Techology,

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Steady State Solution of the Kuramoto-Sivashinsky PDE J. C. Sprott

Steady State Solution of the Kuramoto-Sivashinsky PDE J. C. Sprott Stey Stte Soltio of the Krmoto-Sivshisy PDE J. C. Srott The Krmoto-Sivshisy etio is simle oe-imesiol rtil ifferetil etio PDE tht ehiits hos er some oitios. I its simlest form, the etio is give y t 0 where

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Chapter Trapezoidal Rule of Integration

Chapter Trapezoidal Rule of Integration Cper 7 Trpezodl Rule o Iegro Aer redg s per, you sould e le o: derve e rpezodl rule o egro, use e rpezodl rule o egro o solve prolems, derve e mulple-segme rpezodl rule o egro, 4 use e mulple-segme rpezodl

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233, Surs n Inies Surs n Inies Curriulum Rey ACMNA:, 6 www.mthletis.om Surs SURDS & & Inies INDICES Inies n surs re very losely relte. A numer uner (squre root sign) is lle sur if the squre root n t e simplifie.

More information

PATTERNS IN CONTINUED FRACTION EXPANSIONS

PATTERNS IN CONTINUED FRACTION EXPANSIONS PATTERNS IN CONTINUED FRACTION EXPANSIONS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY SAMUEL WAYNE JUDNICK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/2008, pp THE PUBLISHIN HOUSE PROCEEDINS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Volume 9, Number 3/8, THE UNITS IN Stela Corelu ANDRONESCU Uversty of Pteşt, Deartmet of Mathematcs, Târgu Vale

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration Trpezoidl Rule o Itegrtio Civil Egieerig Mjors Authors: Autr Kw, Chrlie Brker http://umericlmethods.eg.us.edu Trsormig Numericl Methods Eductio or STEM Udergrdutes /0/00 http://umericlmethods.eg.us.edu

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Factorization of Finite Abelian Groups

Factorization of Finite Abelian Groups Iteratoal Joural of Algebra, Vol 6, 0, o 3, 0-07 Factorzato of Fte Abela Grous Khald Am Uversty of Bahra Deartmet of Mathematcs PO Box 3038 Sakhr, Bahra kamee@uobedubh Abstract If G s a fte abela grou

More information

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III.

( ) 2 3 ( ) I. Order of operations II. Scientific Notation. Simplify. Write answers in scientific notation. III. Assessmet Ceter Elemetry Alger Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

Introducing Sieve of Eratosthenes as a Theorem

Introducing Sieve of Eratosthenes as a Theorem ISSN(Ole 9-8 ISSN (Prt - Iteratoal Joural of Iovatve Research Scece Egeerg ad echolog (A Hgh Imact Factor & UGC Aroved Joural Webste wwwrsetcom Vol Issue 9 Setember Itroducg Seve of Eratosthees as a heorem

More information

University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences.

University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences. Uversty of Clfor t Berkeley College of Egeerg et. of Electrcl Egeerg Comuter Sceces EE 5 Mterm I Srg 6 Prof. Mg C. u Feb. 3, 6 Gueles Close book otes. Oe-ge formto sheet llowe. There re some useful formuls

More information

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF DISCRETE EQUATIONS ON DISCRETE REAL TIME SCALES

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF DISCRETE EQUATIONS ON DISCRETE REAL TIME SCALES ASYPTOTI BEHAVIOR OF SOLUTIONS OF DISRETE EQUATIONS ON DISRETE REAL TIE SALES J. Dlí B. Válvíová 2 Bro Uversy of Tehology Bro zeh Repul 2 Deprme of heml Alyss d Appled hems Fuly of See Uversy of Zl Žl

More information

SIMPLE NONLINEAR GRAPHS

SIMPLE NONLINEAR GRAPHS S i m p l e N o n l i n e r G r p h s SIMPLE NONLINEAR GRAPHS www.mthletis.om.u Simple SIMPLE Nonliner NONLINEAR Grphs GRAPHS Liner equtions hve the form = m+ where the power of (n ) is lws. The re lle

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Itrodutio to Mtri Alger George H Olso, Ph D Dotorl Progrm i Edutiol Ledership Applhi Stte Uiversit Septemer Wht is mtri? Dimesios d order of mtri A p q dimesioed mtri is p (rows) q (olums) rr of umers,

More information

Accuplacer Elementary Algebra Study Guide

Accuplacer Elementary Algebra Study Guide Testig Ceter Studet Suess Ceter Aupler Elemetry Alger Study Guide The followig smple questios re similr to the formt d otet of questios o the Aupler Elemetry Alger test. Reviewig these smples will give

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information