Tail Factor Convergence in Sherman s Inverse Power Curve Loss Development Factor Model

Size: px
Start display at page:

Download "Tail Factor Convergence in Sherman s Inverse Power Curve Loss Development Factor Model"

Transcription

1 T tor Covergee Sherm s Iverse Power Curve Loss Deveopmet tor Moe Jo Evs Astrt The fte prout of the ge-to-ge eveopmet ftors Sherm s verse power urve moe s prove to overge to fte umer whe the power prmeter s ess th - tertvey to verge to fty whe the power prmeter s - or greter or the overget prmeter vues smpe formu s erve terms of y fte prout of ge-to-ge ftors for the epots of terv otg the mt of the fte prout These epots overge to the mt s the fte tme utoff pot reses or y fte tme utoff the prout of ge-to-ge ftors es eow the terv thus the ower epot of the terv s wys etter estmte of the mt th the fte prout tsef Sever umer empes re ue for ustrto Keywors T tor Iverse Power Curve BACKGROUND AND INTRODUCTION t ft I 984 Sherm [5] fou tht verse power urve of the form empr ge-to-ge oss eveopmet ftors etter th sever other s futo forms he teste Lowe Mohrm 985 [3] epresse oer out the overgee of the prout of the ge-to-ge ftors Boor 2006 [ p 373] the CAS T tor Workg Prty 203 [2 p 52] ote tht there hs ee o kow ose form epresso tht ppromtes the t geerte y the verse power urve I prte the ge-to-ge eveopmet ftors proue y the urve re mutpe together out to some fte ge utoff suh s t = 80 to proue umutve eveopmet ftor The mpt of ftors eyo tht ge to utmte or the t ftor eyo the utoff ths se t = 8 s ssume to e egge Atertvey f the mpt of the t ftor s ot egge the some other moeg oserto must form the seeto of the utoff tme The potet ger the ssumpto of egge t ftor mpt s ustrte Te Two fferet sets of prmeters shre the sme t ge-to-ge ftor of 0 t t = the sme umutve ftor of 30 from t = to 00 However whe the umutve ftor for Empe usg power prmeter = 40 grows oy tte pst t = 00 Empe 2 usg = 05 ppers to zoom towr fty the t Csuty Atur Soety E-orum 204-Voume Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve

2 Covergee Of Sherm s Iverse Power Curve T tor Te : Empes of Apprety Coverget Dverget T tors for the Iverse Power Curve Moe Prmeter Vues Prmeters Empe Empe Cumutve Deveopmet tors rom to Empe Empe E E E+4 Ths pper uses s re yss ([4] eg str tetook referee to prove tht the fte prout of the ge-to-ge ftors overges to fte umer whe the power prmeter s ess th - verges to + whe - Note ths pper we refer to sequee tht reses wthout y upper ou s vergg to + or hvg mt of + urthermore whe < - for y fte prout of the ge-to-ge ftors up to spef ge there s smpe formu for terv otg the mt of the fte prout As reses the terv eomes tghter the epots eh overge to the mt of the fte prout The ower epot of ths terv s wys etter estmte of the fte prout th the fte prout of the ge-to-ge ftors whh s wys ess th the ower epot It s worth otg g tht t vergee oes ot eessry me the moe s v ut smpy tht y spef fte utoff pot shou e otherwse justfe or overget t ether utoff pot must st e justfe y some other oserto or re must e tke tht the t ftor pst the utoff s resoy ose to The terv 2 Csuty Atur Soety E-orum 204-Voume Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve

3 Covergee Of Sherm s Iverse Power Curve T tor estmte erve ths pper hep swer the tter questo The proof of overgee/vergee s out Seto 2 wth the proof of sever usefu emms Appe A The terv estmte s erve Seto 22 Numer empes of the progressve overgee/vergee of the fte prout the terv estmte of the fte prout for sever sets of prmeters re show Seto 23 2 CONVERGENCE THEOREM AND LIMIT ESTIMATION oowg the otto ovetos of the reet CAS workg prty [2] the remer of ths pper ste of t s use for ge or tme 2 Sttemet Proof of Prmry Theorem rst we w set up efto for the fte prout of the ge-to-ge ftors the verse power urve moe Defto: s postve teger where > 0 0 re re umers Note ths efto ues ses where egs t hgher vue th s the prmeter e rese to he suh ses It s so worth otg tht 0 tht w e use susequet ervtos Theorem key ft ( If - the m Csuty Atur Soety E-orum 204-Voume 3 Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve

4 Covergee Of Sherm s Iverse Power Curve T tor ( If < - the m ests Proof: ( or y sequee of umers 0 where 2 the equty hos org to Lemm A3 Appyg ths we hve If - the m org to Lemm A osequety m ( By Lemm A2 Summg over gves og for y 0 so og og og If < - the L m ests s ess th + org to Lemm A Now ote tht og s resg sequee euse og mpes tht 0 s oue y L Cosequety m og ess th + So m ests s ess th + ests s 4 Csuty Atur Soety E-orum 204-Voume Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve

5 Covergee Of Sherm s Iverse Power Curve T tor Csuty Atur Soety E-orum 204-Voume 5 Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve 22 A Iterv Estmte for the Ifte Prout Lmt or the overget se of < - t s posse to ostrut usefu terv estmte for the fte prout Defto: The t upper ou ftor s ep U Defto: The t ower ou ftor s L Theorem 2 Let m If < - the: ( ( m U ( ( m L ( U L Proof: ( + < 0 mpes tht 0 m osequety m ep

6 Covergee Of Sherm s Iverse Power Curve T tor 6 Csuty Atur Soety E-orum 204-Voume Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve ( + < 0 mpes m m ( Tkg the ogrthm of the t ftor ppyg oug tehques esre Lemms A A2 og Epoettg proues ep Cosequety ( ( ( U Smry usg tehques from Lemms A A3 proues Cosequety ( ( ( L Ths ompetes the proof of Theorem 2 The ower epot of the estmto terv s wys etter estmte of the fte prout se L osequety L The t ou ftors re omputtoy smpe eve for rge vues of gve mesure of the retve wth of the estmto terv pror to og the omputtoy tese uto of the fte prout or empe to heve ert trget U for the

7 Covergee Of Sherm s Iverse Power Curve T tor upper ou requres ogu A more reevt mesure of retve error ut wthout y smpe formu for tht the uthor s wre of s the rto of the t upper ou ftor to the t ower ou ftor U / L ep Empe : A upper ou ftor trget set t U = 0 for the prmeter vues = = -40 = requres 78 However y 29 the rto of the t upper ou ftor to the t ower ou ftor s out 0 23 More Numer Empes Te 2 shows s fferet sets of prmeters eh of whh proues ge-to-ge ftor t = of 0 umutve ftor from = to 00 of 30 The prmeter sets re ee y set of vues { } for the power prmeter or = - the vergee hppes very sowy ut for = - the overgee hppes remrky sowy To heve 0 U for the = - prmeter set wou requre though y U / L 0 st stroomy sow rte of overgee Csuty Atur Soety E-orum 204-Voume 7 Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve

8 Covergee Of Sherm s Iverse Power Curve T tor Te 2: Empes of te Deveopmet tor Prouts Iterv Estmtes or Ifte Deveopmet tor Prouts Prmeter Vues Prmeters Empe 3 Empe 4 Empe Cumutve Deveopmet tor Prout (Ifte Prout Lower Bou Ifte Prout Upper Bou Empe 3 Empe 4 Empe 5 00 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Prmeter Vues Prmeters Empe 6 Empe 7 Empe Cumutve Deveopmet tor Prout Empe 6 Empe 7 Empe E E E E+94 8 Csuty Atur Soety E-orum 204-Voume Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve

9 Covergee Of Sherm s Iverse Power Curve T tor Akowegmet The uthor s grety thkfu to Joh Roertso D Corro Le Herk for revew ommets o ths pper Appe A - Lemms Lemm A Let e postve teger 0 k ( If the m k k ( If the m k ests Proof: It suffes to show overgee or vergee for m k se k s fte umer k or k 0 k therefore m k or k 0 k s strty eresg futo of k therefore there s swh equty k k t t k k t k t osequety t t k k t t Sovg the tegrs whe Csuty Atur Soety E-orum 204-Voume 9 Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve

10 Covergee Of Sherm s Iverse Power Curve T tor k k or tkg mts proues m k k I ths se the upper ou of the equty s fte umer mpes overgee to fte umer se the sequee of prt sums the me s o-eresg k or 0 tkg mts resuts m k se ths se the ower ou of the erer equty verges m or the se tegrto of the erer equty es to og k k og Oe g tkg mts es to m k k from the ower ou of the equty vergg m og Lemm A2 If > 0 the og 0 Csuty Atur Soety E-orum 204-Voume Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve

11 Covergee Of Sherm s Iverse Power Curve T tor Csuty Atur Soety E-orum 204-Voume Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve Proof: If t the 0 / t osequety 0 / t t So 0 / t t t sovg the tegrs proues 0 og Lemm A3 for y sequee of umers 0 teger 2 Proof: We proee y uto or 2 se 0 2 t foows tht Assume the ouso of the emm s true for where 2 We w show tht the emm s the true for + I geer But so

12 whh estshes the emm Covergee Of Sherm s Iverse Power Curve T tor REERENCES [] Boor J Estmtg T Deveopmet tors: Wht to o Whe the Trge Rus Out Csuty Atur Soety orum Wter 2006 [2] CAS T tor Workg Prty The Estmto of Loss Deveopmet T tors: A Summry Report Csuty Atur Soety orum 203 [3] Lowe S P Mohrm D Dsusso of Etrpotg Smoothg Iterpotg Deveopmet tors PCAS LXXII 985 [4] Ru W Prpes of Mthemt Ayss 3r e MGrw-H I 976 [5] Sherm R E Etrpotg Smoothg Iterpotg Deveopmet tors PCAS LXXI 984 Bogrphy of the Author Joth Evs CAS SA CA CERA MAAA WCP s tury t the Nto Cou o Compesto Isure Bo Rto L Hs work prmry voves reserh eveopmet of NCCI s rtemkg reservg tstrophe moeg proeures 2 Csuty Atur Soety E-orum 204-Voume Copyrght 204 Nto Cou o Compesto Isure I A Rghts Reserve

Tail Factor Convergence in Sherman s Inverse Power Curve Loss Development Factor Model

Tail Factor Convergence in Sherman s Inverse Power Curve Loss Development Factor Model Tal Fator Covergee Sherma s Iverse Power Curve Loss Developmet Fator Model Jo Evas ABSTRACT The fte produt of the age-to-age developmet fators Sherma s verse power urve model s prove to overge to a fte

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Problem Set 4 Solutions

Problem Set 4 Solutions 4 Eoom Altos of Gme Theory TA: Youg wg /08/0 - Ato se: A A { B, } S Prolem Set 4 Solutos - Tye Se: T { α }, T { β, β} Se Plyer hs o rte formto, we model ths so tht her tye tke oly oe lue Plyer kows tht

More information

CS 4758 Robot Kinematics. Ashutosh Saxena

CS 4758 Robot Kinematics. Ashutosh Saxena CS 4758 Rt Kemt Ahuth Se Kemt tude the mt f de e re tereted tw emt tp Frwrd Kemt (ge t pt ht u re gve: he egth f eh he ge f eh t ht u fd: he pt f pt (.e. t (,, rdte Ivere Kemt (pt t ge ht u re gve: he

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chpter Vetor pes - Vetor pes Ler Comtos Vetor spe V V s set over fel F f V F! + V. Eg. R s vetor spe. For R we hek -4=-4-4R -7=-7-7R et. Eg. how tht the set of ll polomls PF wth oeffets from F s vetor

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

The Z-Transform in DSP Lecture Andreas Spanias

The Z-Transform in DSP Lecture Andreas Spanias The Z-Trsform DSP eture - Adres Ss ss@su.edu 6 Coyrght 6 Adres Ss -- Poles d Zeros of I geerl the trsfer futo s rtol; t hs umertor d deomtor olyoml. The roots of the umertor d deomtor olyomls re lled the

More information

An Introduction to Robot Kinematics. Renata Melamud

An Introduction to Robot Kinematics. Renata Melamud A Itrdut t Rt Kemt Ret Memud Kemt tude the mt f de A Empe -he UMA 56 3 he UMA 56 hsirevute t A revute t h E degree f freedm ( DF tht defed t ge 4 here re tw mre t the ed effetr (the grpper ther t Revute

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2. Chter Chter Syste of Rel uers Tertg Del frto: The del frto whh Gve fte uers of dgts ts del rt s lled tertg del frto. Reurrg ( o-tertg )Del frto: The del frto (No tertg) whh soe dgts re reeted g d g the

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Lecture 3: Review of Linear Algebra and MATLAB

Lecture 3: Review of Linear Algebra and MATLAB eture 3: Revew of er Aler AAB Vetor mtr otto Vetors tres Vetor spes er trsformtos Eevlues eevetors AAB prmer Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst Vetor mtr otto A -mesol (olum) vetor

More information

ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY

ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY IJRRAS 7 3 Deemer 203 wwwrressom/volumes/vol7issue3/ijrras_7_3_02 ON JENSEN S AND HERMITE-HADAMARD S INEQUALITY Zlto Pvć & Ver Novosel 2 Mehl Egeerg Fulty Slvos Bro Uversty o Osje Trg Ive Brlć Mžurć 2

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Pros Grh Moes 0708 Lerg Coeey Oserve Uree Grh Moes Er Xg Leure O 9 005 Reg: MJCh. 990 Re: or Bs I we ssue he reers or eh CPD re goy eee oes re uy oserve he he kehoo uo eooses o su o o ers oe er oe: D D

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

The linear system. The problem: solve

The linear system. The problem: solve The ler syste The prole: solve Suppose A s vertle, the there ests uue soluto How to effetly opute the soluto uerlly??? A A A evew of dret ethods Guss elto wth pvotg Meory ost: O^ Coputtol ost: O^ C oly

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES Joural of Sees Islam Republ of Ira 4(3): 7-75 (003) Uversty of Tehra ISSN 06-04 ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES HR Nl Sa * ad A Bozorga Departmet of Mathemats Brjad Uversty

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN Euroe Jour of Mthemtcs d omuter Scece Vo. No. 6 ISSN 59-995 ISSN 59-995 ON AN INVESTIGATION O THE MATRIX O THE SEOND PARTIA DERIVATIVE IN ONE EONOMI DYNAMIS MODE S. I. Hmdov Bu Stte Uverst ABSTRAT The

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Analysis of error propagation in profile measurement by using stitching

Analysis of error propagation in profile measurement by using stitching Ay o error propgto proe eureet y ug ttchg Ttuy KUME, Kzuhro ENAMI, Yuo HIGASHI, Kej UENO - Oho, Tuu, Ir, 35-8, JAPAN Atrct Sttchg techque whch ee oger eureet rge o proe ro eer eure proe hg prty oerppe

More information

Math 1313 Final Exam Review

Math 1313 Final Exam Review Mth 33 Fl m Revew. The e Compy stlled ew mhe oe of ts ftores t ost of $0,000. The mhe s depreted lerly over 0 yers wth srp vlue of $,000. Fd the vlue of the mhe fter 5 yers.. mufturer hs mothly fed ost

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Dual-Matrix Approach for Solving the Transportation Problem

Dual-Matrix Approach for Solving the Transportation Problem Itertol Jourl of Mthets Tres Tehology- Volue Nuer Jue 05 ul-mtr Aroh for Solvg the Trsortto Prole Vy Shr r Chr Bhus Shr ertet of Mthets, BBM College r, Jeh, (MU), INIA E-Prl, SS College Jeh, (MU), INIA

More information

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM S. Res. Chem. Commu.: (3 8-88 ISSN 77-669 GENERLIZED OPERTIONL RELTIONS ND PROPERTIES OF FRCTIONL NKEL TRNSFORM R. D. TYWDE *. S. GUDDE d V. N. MLLE b Pro. Rm Meghe Isttute o Teholog & Reserh Bder MRVTI

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

PART ONE. Solutions to Exercises

PART ONE. Solutions to Exercises PART ONE Soutos to Exercses Chapter Revew of Probabty Soutos to Exercses 1. (a) Probabty dstrbuto fucto for Outcome (umber of heads) 0 1 probabty 0.5 0.50 0.5 Cumuatve probabty dstrbuto fucto for Outcome

More information

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process

Ruin Probability-Based Initial Capital of the Discrete-Time Surplus Process Ru Probablty-Based Ital Captal of the Dsrete-Tme Surplus Proess by Parote Sattayatham, Kat Sagaroo, ad Wathar Klogdee AbSTRACT Ths paper studes a surae model uder the regulato that the surae ompay has

More information

Module 3: Element Properties Lecture 5: Solid Elements

Module 3: Element Properties Lecture 5: Solid Elements Modue : Eement Propertes eture 5: Sod Eements There re two s fmes of three-dmenson eements smr to two-dmenson se. Etenson of trngur eements w produe tetrhedrons n three dmensons. Smr retngur preeppeds

More information

An Improvement on Disc Separation of the Schur Complement and Bounds for Determinants of Diagonally Dominant Matrices

An Improvement on Disc Separation of the Schur Complement and Bounds for Determinants of Diagonally Dominant Matrices ISSN 746-7659, Egd, UK Jor of Iformo d Compg See Vo. 5, No. 3, 2, pp. 224-232 A Improveme o Ds Sepro of he Shr Compeme d Bods for Deerms of Dgoy Dom Mres Zhohog Hg, Tgzh Hg Shoo of Mhem Sees, Uversy of

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Modeling uncertainty using probabilities

Modeling uncertainty using probabilities S 1571 Itroduto to I Leture 23 Modelg uertty usg probbltes Mlos Huskreht mlos@s.ptt.edu 5329 Seott Squre dmstrto Fl exm: Deember 11 2006 12:00-1:50pm 5129 Seott Squre Uertty To mke dgost feree possble

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Study on the Normal and Skewed Distribution of Isometric Grouping

Study on the Normal and Skewed Distribution of Isometric Grouping Open Journ of Sttstcs 7-5 http://dx.do.org/.36/ojs..56 Pubshed Onne October (http://www.scp.org/journ/ojs) Study on the orm nd Skewed Dstrbuton of Isometrc Groupng Zhensheng J Wenk J Schoo of Economcs

More information

The Computation of Common Infinity-norm Lyapunov Functions for Linear Switched Systems

The Computation of Common Infinity-norm Lyapunov Functions for Linear Switched Systems ISS 746-7659 Egd UK Jour of Iformto d Comutg Scece Vo. 6 o. 4. 6-68 The Comutto of Commo Ifty-orm yuov Fuctos for er Swtched Systems Zheg Che Y Go Busess Schoo Uversty of Shgh for Scece d Techoogy Shgh

More information

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008 Alele Uverstăţ d Orde Fsul: Proteţ Medulu Vol. XIII 00 THEORETICAL AND COMPARATIVE STUDY REGARDING THE MECHANICS DISPLASCEMENTS UNDER THE STATIC LOADINGS FOR THE SQUARE PLATE MADE BY WOOD REFUSE AND MASSIF

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs

Diagonally Implicit Runge-Kutta Nystrom General Method Order Five for Solving Second Order IVPs WSEAS TRANSACTIONS o MATHEMATICS Fudzh Isml Dgoll Implt Ruge-Kutt Nstrom Geerl Method Order Fve for Solvg Seod Order IVPs FUDZIAH ISMAIL Deprtmet of Mthemts Uverst Putr Mls Serdg Selgor MALAYSIA fudzh@mth.upm.edu.m

More information

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005 Seto 2:00 ~ 2:50 pm Thursday Marylad 202 Sep. 29, 2005. Homework assgmets set ad 2 revews: Set : P. A box otas 3 marbles, red, gree, ad blue. Cosder a expermet that ossts of takg marble from the box, the

More information

Coding Theorems on New Fuzzy Information Theory of Order α and Type β

Coding Theorems on New Fuzzy Information Theory of Order α and Type β Progress Noear yamcs ad Chaos Vo 6, No, 28, -9 ISSN: 232 9238 oe Pubshed o 8 February 28 wwwresearchmathscorg OI: http://ddoorg/22457/pdacv6a Progress Codg Theorems o New Fuzzy Iormato Theory o Order ad

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers SECTION 8. SERIES 8. SERIES A Clck here for aswers. S Clck here for solutos. ; Fd at least 0 partal sums of the seres. Graph both the sequece of terms ad the sequece of partal sums o the same scree. Does

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Density estimation II

Density estimation II CS 750 Mche Lerg Lecture 6 esty estmto II Mlos Husrecht mlos@tt.edu 539 Seott Squre t: esty estmto {.. } vector of ttrute vlues Ojectve: estmte the model of the uderlyg rolty dstruto over vrles X X usg

More information

CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD

CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD 67 CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD 7. INTRODUCTION The eso mers the setors le fl ororte lg routo lg mretg me seleto uversty lg stuet mssos

More information

4.1 Schrödinger Equation in Spherical Coordinates

4.1 Schrödinger Equation in Spherical Coordinates Phs 34 Quu Mehs D 9 9 Mo./ Wed./ Thus /3 F./4 Mo., /7 Tues. / Wed., /9 F., /3 4.. -. Shodge Sphe: Sepo & gu (Q9.) 4..-.3 Shodge Sphe: gu & d(q9.) Copuo: Sphe Shodge s 4. Hdoge o (Q9.) 4.3 gu Moeu 4.4.-.

More information

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem Avll t http:pvu.u Appl. Appl. Mth. ISSN: 9-9466 Vol. 0 Issu Dr 05 pp. 007-08 Appltos Appl Mthts: A Itrtol Jourl AAM Etso oruls of Lurll s utos Appltos of Do s Suto Thor Ah Al Atsh Dprtt of Mthts A Uvrst

More information

Graphical rules for SU(N)

Graphical rules for SU(N) M/FP/Prours of Physque Théorque Invrnes n physs nd group theory Grph rues for SU(N) In ths proem, we de wth grph nguge, whh turns out to e very usefu when omputng group ftors n Yng-Ms fed theory onstruted

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Mjor: All Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

M2S1 - EXERCISES 8: SOLUTIONS

M2S1 - EXERCISES 8: SOLUTIONS MS - EXERCISES 8: SOLUTIONS. As X,..., X P ossoλ, a gve that T ˉX, the usg elemetary propertes of expectatos, we have E ft [T E fx [X λ λ, so that T s a ubase estmator of λ. T X X X Furthermore X X X From

More information

Chapter Trapezoidal Rule of Integration

Chapter Trapezoidal Rule of Integration Cper 7 Trpezodl Rule o Iegro Aer redg s per, you sould e le o: derve e rpezodl rule o egro, use e rpezodl rule o egro o solve prolems, derve e mulple-segme rpezodl rule o egro, 4 use e mulple-segme rpezodl

More information

STATISTICS 13. Lecture 5 Apr 7, 2010

STATISTICS 13. Lecture 5 Apr 7, 2010 STATISTICS 13 Leture 5 Apr 7, 010 Revew Shape of the data -Bell shaped -Skewed -Bmodal Measures of eter Arthmet Mea Meda Mode Effets of outlers ad skewess Measures of Varablt A quattatve measure that desrbes

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

He e e some s nd t icks o emoving g om v iety o su ces

He e e some s nd t icks o emoving g om v iety o su ces T B W d w T y The Br ke Wi w The ry tte tht whe re trt t l k u ightly, y r ke wi w tht e t get xe r gr tht t le e up, the re will ue t eteri rte. Th rete illu i i iffere e tht r t ri i l u e ir le eh i

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Calculating the Values of Multiple Integrals by Replacing the Integrands Interpolation by Interpolation Polynomial

Calculating the Values of Multiple Integrals by Replacing the Integrands Interpolation by Interpolation Polynomial Jour o omputtos & Modeg vo o -5 ISSN: 79-75 prt 79-5 oe Scepress Ltd cutg te Vues o Mutpe Itegrs by Repcg te Itegrds Iterpoto by Iterpoto Poyom S Nzrov d bduzzov bstrct Te or des t te costructo o mutdmeso

More information

Cooper and McGillem Chapter 4: Moments Linear Regression

Cooper and McGillem Chapter 4: Moments Linear Regression Cooper d McGllem Chpter 4: Momets Ler Regresso Chpter 4: lemets of Sttstcs 4-6 Curve Fttg d Ler Regresso 4-7 Correlto Betwee Two Sets of Dt Cocepts How close re the smple vlues to the uderlg pdf vlues?

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Design maintenanceand reliability of engineering systems: a probability based approach

Design maintenanceand reliability of engineering systems: a probability based approach Desg mateaead relablty of egeerg systems: a probablty based approah CHPTER 2. BSIC SET THEORY 2.1 Bas deftos Sets are the bass o whh moder probablty theory s defed. set s a well-defed olleto of objets.

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Maximum Walk Entropy Implies Walk Regularity

Maximum Walk Entropy Implies Walk Regularity Maxmum Walk Etropy Imples Walk Regularty Eresto Estraa, a José. e la Peña Departmet of Mathematcs a Statstcs, Uversty of Strathclye, Glasgow G XH, U.K., CIMT, Guaajuato, Mexco BSTRCT: The oto of walk etropy

More information

Introduction of Fourier Series to First Year Undergraduate Engineering Students

Introduction of Fourier Series to First Year Undergraduate Engineering Students Itertiol Jourl of Adved Reserh i Computer Egieerig & Tehology (IJARCET) Volume 3 Issue 4, April 4 Itrodutio of Fourier Series to First Yer Udergrdute Egieerig Studets Pwr Tejkumr Dtttry, Hiremth Suresh

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

( x y ) x y. a b. a b. Chapter 2Properties of Exponents and Scientific Notation. x x. x y, Example: (x 2 )(x 4 ) = x 6.

( x y ) x y. a b. a b. Chapter 2Properties of Exponents and Scientific Notation. x x. x y, Example: (x 2 )(x 4 ) = x 6. Chpter Properties of Epoets d Scietific Nottio Epoet - A umer or symol, s i ( + y), plced to the right of d ove other umer, vrile, or epressio (clled the se), deotig the power to which the se is to e rised.

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Classification of Rational Homotopy Type for 8-Cohomological Dimension Elliptic Spaces

Classification of Rational Homotopy Type for 8-Cohomological Dimension Elliptic Spaces Aves Pure Mthemts 0 5- http://xoorg/0/pm000 Publshe Ole Jury 0 (http://wwwsrporg/ourl/pm) Clssfto of Rtol Homotopy Type for -Cohomologl Dmeso Ellpt Spes Mohme Rh Hll Hss Lme My Isml Mmou Fulté es Sees

More information

On Testing Simple and Composite Goodness-of-Fit Hypotheses When Data are Censored

On Testing Simple and Composite Goodness-of-Fit Hypotheses When Data are Censored ALT`8 Jue 9- Bordeux O Testg mple d Composte Goodess-of-Ft Hypotheses Whe Dt re Cesored 35 EV Chmtov BYu Lemesho Novosbrs tte Tehl Uversty Russ Abstrt Problems of pplto of the oprmetr olmogorov Crmer-vo

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Computer Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt

More information