Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Size: px
Start display at page:

Download "Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen"

Transcription

1 omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee.

2 otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto o rel tegrl

3 Sequece & Sere Sequece { }: A ucto whoe dom the et o potve teger; other word, we g complex umber to ech teger,,, Ex. The equece { } lm Sequece { } coverget. 5 L

4 Sequece & Sere Or { } coverge to L, or ech potve umber ε, N c be oud uch tht L < ε wheever > N. A { } coverge to L, ll but te umber o t term re wth every ε -eghborhood o L. Ex. Sequece lm,,,, 5,

5 Sequece & Sere rtero or covergece Thm. { } coverge to complex umber L Re( ) coverge to Re(L) d Im( ) coverge to Im(L). Ex. Sequece Im Re 5

6 Sequece & Sere Sere A te ere o complex umber coverget the equece o prtl um {S }, where S, coverge. I S L, we y tht the um o the ere L. 6

7 Sequece & Sere Geometrc ere For the geometrc ere the -th term o the equece o prtl um S S For For S <,, S the ere dverge. ( ), 7

8 Sequece & Sere Two pecl geometrc ere I ddto, we hve vld or < 6 5 8

9 Sequece & Sere Ex. The geometrc ere < 9

10 Sequece & Sere Necery codto or covergece lm Thm. I coverge, the The -th term tet or dvergece lm Thm. I, the the ere dverge. 5 Ex. dverge ce. Ex. The geometrc ere () dverge whe.

11 Sequece & Sere Abolute covergece De. Ite ere coverget d to be bolutely coverge. Abolute covergece mple covergece. Ex. Sere bolutely coverget ce & the rel ere coverge. Alo, rel ere coverge or p > & p dverge or p.

12 Sequece & Sere Rto tet Thm. Suppoe complex term uch tht ere o oero lm L 7 () L <, the ere coverge bolutely. () L > or L, the ere dverge. () L, the tet cocluve.

13 Sequece & Sere Root tet Thm. Suppoe uch tht ere o complex term () L <, the ere coverge bolutely. () L > or L, the ere dverge. lm L 8 () L, the tet cocluve.

14 Sequece & Sere Power ere A te ere o the orm ( 9) where re complex cott, clled power ere. (9) d to be cetered t & the complex pot reerred to the ceter o the ere. From (9), oe c dee eve whe

15 Sequece & Sere rcle o covergece Every complex power ere h rdu o covergece R or h crcle o covergece deed by R or < R <. The power ere coverge bolutely or ll tyg < R & dverge or > R. A power ere my coverge t ome, ll, or oe o the pot o the crcle o covergece. R c be ero, te umber, or. 5

16 Sequece & Sere Ex. oder the power ere lm lm Thu the ere coverge bolutely or <. The crcle o covergece & the rdu o covergece R. O the crcle, the ere doe ot coverge bolutely, ce the ere o bolute vlue the dverget ere 6

17 Sequece & Sere At, the ere coverget. Ideed, the ere coverge t ll pot o the crcle except t. From bove, or power ere the lmt (7) deped o oly the coecet. Thu, lm lm α R α R lm R ( )

18 Sequece & Sere Ex. The power ere ( ) ( ) ( )!! lm lm!! R The power ere wth ceter coverge bolutely or ll. 8

19 Sequece & Sere Ex. The power ere The crcle o covergece /; the ere coverge bolutely or < / lm lm 5 6 R 9

20 Tylor Sere Here, we wll ume tht power ere h ether potve or te rdu R o covergece. otuty ( ) Thm. A power ere repreet cotuou ucto () wth t crcle o covergece R.

21 Tylor Sere Term-by-term tegrto Thm. A power ere ( ) c be tegrted term by term wth t crcle o covergece R, or every cotour lyg etrely wth the crcle o covergece. Term-by-term deretto Thm. A power ere ( ) c be deretted term by term wth t crcle o covergece R.

22 Tylor Sere Tylor ere Suppoe power ere repreet ucto () or < R ; tht

23 Tylor Sere The orgl power ere repreet deretble ucto wth t crcle o covergece. From bove, we coclude tht R, power ere repreet lytc ucto wth t crcle o covergece. Reltohp betwee & the dervtve o () ( ), ( )!, ( )!, ( ) ( ) ( )! ( ) ( )! or!

24 Tylor Sere Thu we hve ( ) whch clled Tylor ere or cetered t. A Tylor ere wth ceter, ( )! reerred to Mclur ere. ( ) ( )!

25 Tylor Sere Tylor theorem Let be lytc wth dom D & let be pot D. The h the ere repreetto ( ) ( )! vld or the lrget crcle cetered t & rdu R tht le etrely wth D. 5

26 Tylor Sere (proo) Let be xed pot wth & let deote the vrble o tegrto. decrbed by R. Ue the uchy tegrl ormul to obt the vlue o t : d d d 6

27 Tylor Sere Ug (6), we hve d d d d d 7

28 Tylor Sere Ug uchy tegrl ormul or dervtve, ( ) where R ( ) ( ) ( ) ( ) ( ) R ( )!! ( )( ) () clled Tylor ormul wth remder R.! d 8

29 Tylor Sere Sce lytc D, () h mx vlue M o. Bede, ce de, we hve < R, & coequetly, The ML-equlty the gve d R R d d R MR R R d R M d d R 9

30 Tylor Sere Thereore, the te ere ( ) ( ) ( )! coverge to (). I other word, the reult vld or y pot teror to.! ( ) ( )!

31 Tylor Sere Note tht R the dtce rom the ceter o the ere to the eret olted gulrty o (). A olted gulrty pot t whch () l to be lytc but lytc t ll other pot throughout ome eghborhood o the pot. Ex. 5 olted gulrty o () /( 5). I etre, the the rdu o covergece o Tylor ere cetered t y pot ecerly te.

32 Tylor Sere Ug () & the lt ct, we c y tht the Mclur ere repreetto e ( )!!! 5! 5! co!! re vld or ll. ( 5)! ( 6)!

33 Tylor Sere The power ere expo o ucto wth ceter uque. It me tht power ere expo o lytc ucto cetered t, rrepectve o the method ued to obt t, the Tylor ere expo o the ucto. Ex. Oe c lo obt (6) by mply derettg (5) term by term.

34 Tylor Sere Ex. Fd the Mclur expo. Note tht or <, The rdu o covergece o th lt ere the me the orgl ere, R.

35 Tylor Sere Ex. Expd ceter., ( )! ( ) ( )! ( ) ( ) ( ) Tylor ere wth, ( ), The crcle o covergece or the power ere 5 5

36 Tylor Sere Altertvely, we c wrte From (), we hve

37 Tylor Sere The ucto c be expded to The rt ere h ceter ero & R. The d ere h ceter & R. 5 7

38 Luret Sere I l to be lytc t, the th pot d to be gulrty or gulr pot o the ucto. Ex. () /( ) & Ex. L & ll egtve rel umber Iolted gulrte Suppoe tht gulrty o (). d to be olted gulrty o there ext ome puctured ope d < < R o throughout whch lytc. 8

39 Luret Sere A ew d o ere I gulrty o, the c ot be expded power ere wth t ceter. However, oe could repreet bout olted gulrty by ew ere volvg both egtve & oegtve teger power o ; tht, 7 9

40 Luret Sere The ere prt o the RHS (7) wth egtve power, tht ( ) ( ) clled the prcpl prt o the ere (7) & wll coverge or /( ) < r* or > /r* r. The prt cotg o the oegtve power, ( ) clled the lytc prt o (7) & wll coverge or < R.

41 Luret Sere Hece, the um o thee prt coverge whe both > r & < R, or whe pot ulr dom deed by r < < R. (7) c be wrtte compctly ( )

42 Luret Sere Ex. () ( )/ ot lytc t & hece cot be expded Mclur ere. However, etre ucto, & rom (5) coverge or ll.! 5 5! 7 7!! 5! 7! ( 8) Th ere coverge or ll except t, or or <.

43 Luret Sere Luret theorem Thm. Let be lytc wth the ulr dom D deed by r < < R. The h the ere repreetto ( ) ( ) d or ( 9) vld or r < < R. The coecet re, ±, ±, where mple cloed curve tht le etrely wth D & h t teror.

44 Luret Sere (proo) Let & be cocetrc crcle wth ceter & rd r & R, where r < r < R < R. Let be xed pot D tht lo te r < < R. By troducg cro cut betwee &, we d rom uchy tegrl ormul ( ) ( ) d d

45 Luret Sere Ug (6), we hve,,, or where d d d d d 5

46 Luret Sere,,, d R d R d or where 6

47 d Luret Sere Let d & let M deote the mx vlue o () o the cotour. Sce r, The ML-equlty the gve Thu, r d d r r d Mr r r d r M d d R 7

48 Luret Sere ombg the two term yeld ( ) ( ) ( ) ( ) ( ) where or, ±, ± Note tht we hve replced & by y mple cloed cotour D wth t teror. d, 8

49 Luret Sere Note tht Luret expo geerlto o Tylor ere. Some poble ulr dom: r, R te: the ere coverge the ulr dom < < R. r, R : r <. r, R : <. Regrdle o how Luret ere o ucto obted peced ulr dom, the obted Luret ere uque.

50 Luret Sere Ex. Expd Luret ere ( ) vld or () < < (b) < (c) < < (d) <. For () & (b), oe c repreet ere volvg oly egtve & oegtve teger power o. ( ) 5

51 Luret Sere < / < For (c) & (d), oe c repreet ere volvg egtve & oegtve teger power o. 5 5

52 Luret Sere coverge or < <. Smlrly, [ ]

53 Luret Sere coverge or /( ) < & lo <. 5 5

54 Luret Sere Ex. Expd Luret ere or () < < (b) < <. () 6 8 5

55 Luret Sere (b) [ ] 8 6!!! 55

56 Luret Sere Ex. Expd Luret ere vld or < <. The geometrc ere coverge or <. Thu, the reultg Luret ere vld or < <

57 Luret Sere Ex. Expd or < <. ( ) Luret ere The dom ceter pot o lytcty o. Oe c d two ere volvg teger power o : covergg or < & <, repectvely. 57

58 Luret Sere th ere coverge or ( )/ < or <. 58

59 Luret Sere coverge or /( ) < or <. ombg the reult o () & (), vld or < <. 59

60 Luret Sere Ex. Expd vld or <. From (), e e!! e!! Th ere vld or <. Luret ere or 6

61 Luret Sere Replcg the complex vrble wth, we ee tht whe, () or the Luret ere coecet yeld ( ) d or, ±, ±, d d 6

62 Zero & Pole lcto o olted gulr pot Deped o whether the prcpl prt (PP) o t Luret expo cot ero, te umber, or te umber o term. () I PP ero, removble gulrty. (b) I PP cot te umber o oero term, the pole. For the lt oero term wth ( ), pole o order. A pole o order commoly clled mple pole. (c) I PP cot tely my oero term, the eetl gulrty. 6

63 Zero & Pole Ex. Sce! 5! removble gulrty o (). I h removble gulrty t, the we c properly dee the vlue o ( ) o tht become lytc t the pot. Sce the RHS o () t, t me ee to dee (). Wth th deto, () ( )/ lytc t. 6

64 Zero & Pole Ex. From! 5! or <, we ee tht & o mple pole o () ( )/. Ex. For the exmple p.6, e or <!! PP o () e / cot te umber o term. Thu eetl gulrty. 6

65 Zero & Pole Ex. For prt (b) o the exmple p.5, The Luret expo o ( ) 5 or < However, NOT eetl gulrty o. From prt () o the exmple, we w tht or < < Hece, mple pole. 65

66 [ ] but,,,,, Zero & Pole Zero ero o ucto ( ). Alytc ucto h ero o order t Ex. For () ( 5) 5 ero o order. I lytc ucto h ero o order t, the Tylor ere expo o cetered t

67 Zero & Pole Ex. () h ero t. By replcg by (5), we obt 6!! 5! Hece, ero o order. 5! 8 67

68 Zero & Pole A ero o otrvl lytc ucto olted ce there ext ome eghborhood o or whch () t every pot tht eghborhood except t. Thereore, ero o otrvl lytc ucto, the the ucto / () h olted gulrty t. Pole o order Thm. I & g re lytc t d h ero o order t & g( ), the the ucto F() g()/ () h pole o order t. 68

69 Zero & Pole Ex. For the ucto F 5 ( )( 5)( ) F() h mple pole t & 5 d pole o order t. Ex. From the exmple p.67, we coclude tht the ucto F() /( ) h pole o order t. Note tht ucto h pole t, the () rom y drecto. 69

70 Redue & Redue Theorem Redue Recll, the complex ucto h olted gulrty t, the h Luret ere repreetto whch coverge or < < R. The coecet clled the redue o t the olted gulrty wth the otto Re (, ) 7

71 Redue & Redue Theorem I PP o the Luret ere vld or < < R cot te umber o term wth the lt oero coecet, the pole o order. I PP o the ere cot te umber o term wth oero coecet, the eetl gulrty. Ex. For the exmple p.6, eetl gulrty o () e /. The redue o t (, ) Re 7

72 lm, Re Redue & Redue Theorem Redue t mple pole Thm. I h mple pole t, the (proo) The Luret ere expo o bout the mple pole h the orm, Re lm 7

73 lm!, Re d d Redue & Redue Theorem Redue t pole o order Thm. I h pole o order t, the (proo) The Luret ere expo or < < R 7

74 Redue & Redue Theorem Derette tme d d d d d d lm!! lm!! 7

75 Redue & Redue Theorem Ex. h mple pole t ( ) & pole o order t. Fd the redue. Ue () or the mple pole t, Re(, ) lm( ) lm Ue () or the pole o order t, Re! d d ( ), lm lm ( ) lm d d 75

76 Redue & Redue Theorem For () g()/h(), where g & h re lytc t. I g( ) & h h ero o order t, the h mple pole t d g Re(, ) lm lm h Re (, ) lm g h h g h( ) ( ) ( ) ( 5) g h ( ) ( ) 76

77 Redue & Redue Theorem Ex. Ue (5) to compute the redue o e e e e e e e e, Re, Re, Re, Re,,, where

78 Redue & Redue Theorem Redue theorem Thm. Let D be mply coected dom & mply cloed cotour lyg etrely wth D. I lytc o & wth, except t te umber o gulr pot,,, wth, the d Re(, ) ( 6) (proo) From (), & () o h.8, d Re(, ) d d

79 Redue & Redue Theorem Ex. Evlute wth :. d 6 d d, Re d d 6 6 lm, Re

80 Redue & Redue Theorem Ex. Evlute ( ) where () the rectgle deed by x, x, y, y & (b) :. ( ) ( ) d d Re d [ Re(,) Re(, ) ] ( ) (,) ( b) 8

81 Redue & Redue Theorem Ex. Evlute wth :. e d 5 e e d 5 Re lm ( 5) (, ) lm! d d d ( 8 7) ( 5) ( 5) e e 7 5 8

82 Redue & Redue Theorem t d Ex. Evlute wth :. t d co d Re, Re ( ) ( ) [ ] ( ) ( ), 8

83 Redue & Redue Theorem e d Ex. Evlute wth :. From the exmple p.6, eetl gulrty o the tegrd. So ()-(5) re ot pplcble to d the redue o t. e d (, ) Re 6 I () g()/h(), where g & h re lytc t, g( ), h( ), & h ( ), the g g lm h h ( ) ( ) 8

84 Evluto o Rel Itegrl Itegrl o the orm The bc de to covert (7) to complex tegrl wth cotour the ut crcle cetered t the org. (: coθ θ e θ, θ ) Ue d dθ e θ d (7) become F, coθ dθ, coθ F e θ ( coθ,θ ) dθ ( 7) e θ, θ e θ ( ) (, θ ) d ( ) (, ) where e θ

85 Evluto o Rel Itegrl Ex. Evlute We c let where 85 ( coθ ) d dθ, d Re ( ) ( ) d ( ) (, )

86 Evluto o Rel Itegrl Sce pole o order & rom (), 6 lm lm lm, Re d d d d co 6 θ θ d d 86

87 Evluto o Rel Itegrl Itegrl o the orm Recll tht whe cotuou o (, ), both lmt ext, the tegrl d to be coverget; otherwe, the tegrl dverget. For coverget tegrl, we c evlute t by The lmt clled the uchy prcpl vlue o the tegrl & wrtte P.V. ( x) dx ( 8) ( x) dx lm ( x) dx lm ( x) r r R ( x) dx ( x) dx ( 9) lm R R R ( x) dx lm ( x) R R R R dx dx

88 Evluto o Rel Itegrl Note tht the ymmetrc lmt (9) my ext eve though the mproper tegrl dverget. Ex. However, ug (9) Thu, x dx dverget ce lm R R P.V. x dx R x dx R R lm x dx lm R R R lm R ( R) 88

89 Evluto o Rel Itegrl To ummre, whe tegrl o the orm (8) coverge, t uchy prcpl vlue equl the vlue o the tegrl. I the tegrl dverge, t my tll poe uchy prcpl vlue. To evlute ( x) dx wth (x) P(x)/Q(x) cotuou o (, ), replce x by & tegrte () over cloed cotour tht cot o [R, R] o the rel x & emcrcle R o rdu R lrge eough to ecloe ll the pole o () the upper hl-ple Im() >.

90 Evluto o Rel Itegrl By (6) we hve d d ( x) R Re (, ) where deote pole the upper hl-ple. R d I R, the we obt P.V. R R dx ( x) dx lm ( x) dx Re(, ) R R R 9

91 Evluto o Rel Itegrl Ex. Evlute Let be the cloed cotour how the gure. dx x x 9 P.V. 9 [ ] 8 6, Re, Re I I I I d x x dx d R R R

92 Evluto o Rel Itegrl O R, whch how tht I R, & o R R R d I R R R lm R I lm lm 9 lm 9 P.V. I I dx x x dx x x R R R R R 9

93 Re Evluto o Rel Itegrl Behvor o tegrl R P.V. Thm. Suppoe () P()/Q() wth P() o degree & Q() o degree m. I R emcrculr cotour Re θ, θ, d R. R Ex. Evlute P.V. x dx e d e (, ), Re(, ) x dx [ Re(, ) Re(, )] 9

94 Evluto o Rel Itegrl Itegrl o the orm They pper the rel & mgry prt the tegrl ( x) coαx dx ( ) ( x) αx dx ( ) wheever both tegrl o RHS coverge. Whe (x) P(x)/Q(x) cotuou o (, ) we c evlute both Fourer tegrl t the me tme by coderg α e d, where α > & cotg o [R, R] o rel x & emcrculr cotour R wth R lrge eough to ecloe the pole o () the upper hl-ple. αx x e dx ( x) coαx dx ( x) αx dx ( ) 9

95 Evluto o Rel Itegrl Behvor o tegrl R Thm. Suppoe () P()/Q() wth P() o degree & Q() o degree m. I R emcrculr cotour Re θ, θ, α >, the R α e d R. Ex. Evlute x x P.V. dx x 9 x x x x dx dx x 9 x 9 Wth α, we orm the cotour tegrl 9 e d

96 Evluto o Rel Itegrl From the bove theorem, e e e e dx x xe d e R R x R, 9 Re P.V. 9 P.V. 9 P.V. d 9 co P.V. 9 P.V. 9 e dx x x x dx x x x e dx x x x dx x x x e dx e x x R d e x R 96

97 Evluto o Rel Itegrl Ideted cotour So r, the mproper tegrl (8), (), () re cotuou o [, ]. Whe h pole o the rel x, the procedure ued the bove exmple mut be moded. oder whe () h pole t ( x)dx c, where c rel umber. r deote emcrculr cotour cetered t c oreted the potve drecto.

98 Evluto o Rel Itegrl Behvor o tegrl r Thm. Suppoe h mple pole c o the rel x. For cotour r deed by c re θ, θ, the (proo) lm r r d Re(, c) Sce h mple pole t c, t Luret ere g wth Re( (), c) c & g lytc t c. re re θ I θ r ( θ ) θ d dθ r g c re e dθ I

99 Evluto o Rel Itegrl Sce g lytc t c, t cotuou t th pot & bouded t eghborhood; tht, there ext M > or whch g(c re θ ) M. c d d re re I, Re θ θ θ θ [ ] lm lm lm lm I I I d I I rm Md r d e re c g r I r r r r r θ θ θ θ 99

100 Evluto o Rel Itegrl Ex. Evlute P.V. oder the cotour tegrl h mple pole t & ( ) the upper ple. where R r R Te R & r d recll the two precedg theorem. r x ( x x ) e d r R r x dx e Re r ( ) ( e, ) d

101 Evluto o Rel Itegrl x e ( P.V. ) dx Re e, x x x Re( e, ) Re P.V. P.V. P.V. ( e,), Re x ( x x ) x x e x co ( x x ) x x dx ( x x ) ( e, ) ( ) dx dx e e e e ( co) ( ) [ ( )] e co

102 opyrght Pge Wor Lcee Author/Source Shh-Yu he Shh-Yu he 5 Shh-Yu he Shh-Yu he

103 opyrght Pge Wor Lcee Author/Source 7 Shh-Yu he Shh-Yu he Shh-Yu he

104 opyrght Pge Wor Lcee Author/Source 5 Shh-Yu he 5 Shh-Yu he 57 Shh-Yu he 78 Shh-Yu he

105 opyrght Pge Wor Lcee Author/Source 89 Shh-Yu he 9 Shh-Yu he 97 Shh-Yu he Shh-Yu he 5

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION School Of Distce Eductio Questio Bk UNIVERSITY OF ALIUT SHOOL OF DISTANE EDUATION B.Sc MATHEMATIS (ORE OURSE SIXTH SEMESTER ( Admissio OMPLEX ANALYSIS Module- I ( A lytic fuctio with costt modulus is :

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order hpter Ite Sequeces d Seres. Sequeces A sequece s set o umers wrtte dete order,,,... The umer s clled the rst term, s clled the secod term, d geerl s th clled the term. Deto.. The sequece {,,...} s usull

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers SECTION 8. SERIES 8. SERIES A Clck here for aswers. S Clck here for solutos. ; Fd at least 0 partal sums of the seres. Graph both the sequece of terms ad the sequece of partal sums o the same scree. Does

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III Itrodcto to Nmercl Alyss Mrc, 9 Nmercl Metods or PDEs Lrry Cretto Meccl Egeerg 5B Semr Egeerg Alyss Mrc, 9 Otle Revew mdterm soltos Revew bsc mterl o mercl clcls Expressos or dervtves, error d error order

More information

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0. LECTURE 8: Topcs Chaos Rcker Equato (t ) = (t ) ep( (t )) Perod doulg urcato Perod doulg cascade 9....... A Quadratc Equato Rcker Equato (t ) = (t ) ( (t ) ). (t ) = (t ) ep( (t )) 6. 9 9. The perod doulg

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Review Exam II Complex Analysis

Review Exam II Complex Analysis Revew Exam II Complex Aalyss Uderled Propostos or Theorems: Proofs May Be Asked for o Exam Chapter 3. Ifte Seres Defto: Covergece Defto: Absolute Covergece Proposto. Absolute Covergece mples Covergece

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 6, Number 1/2005, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 6, Number 1/2005, pp THE PUBLISHING HOUSE PROCEEDINGS OF THE ROANIAN ACADEY, Sere A, OF THE ROANIAN ACADEY Volume 6, Number /005,. 000-000 ON THE TRANSCENDENCE OF THE TRACE FUNCTION Vctor ALEXANDRU Faculty o athematc, Uverty

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

Basic Structures: Sets, Functions, Sequences, and Sums

Basic Structures: Sets, Functions, Sequences, and Sums ac Structure: Set, Fucto, Sequece, ad Sum CSC-9 Dcrete Structure Kotat uch - LSU Set et a uordered collecto o object Eglh alphabet vowel: V { a, e,, o, u} a V b V Odd potve teger le tha : elemet o et member

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

A Study on New Sequence of Functions Involving the Generalized Contour Integral

A Study on New Sequence of Functions Involving the Generalized Contour Integral Globl Jourl of Scece Froter Reerch Mthetc d Deco Scece Volue 3 Iue Vero. Yer 23 Type : Double Bld Peer Revewed Itertol Reerch Jourl Publher: Globl Jourl Ic. (USA Ole ISS: 2249-4626 & Prt ISS: 975-5896

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Infinite Sequences and Series. Sequences. Sequences { } { } A sequence is a list of number in a definite order: a 1, a 2, a 3,, a n, or {a n } or

Infinite Sequences and Series. Sequences. Sequences { } { } A sequence is a list of number in a definite order: a 1, a 2, a 3,, a n, or {a n } or Mth 0 Clculus II Ifiite Sequeces d Series -- Chpter Ifiite Sequeces d Series Mth 0 Clculus II Ifiite Sequeces d Series: Sequeces -- Chpter. Sequeces Mth 0 Clculus II Ifiite Sequeces d Series: Sequeces

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists. ANALYSIS HW 3 CLAY SHONKWILER () Fid ll smooth fuctios f : R R with the property f(x + y) = f(x) + f(y) for ll rel x, y. Demostrtio: Let f be such fuctio. Sice f is smooth, f exists. The The f f(x + h)

More information

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II Awer Key Nme: Dte: UNIT # SEQUENCES AND SERIES COMMON CORE ALGEBRA II Prt I Quetio. For equece defied by f? () () 08 6 6 f d f f, which of the followig i the vlue of f f f f f f 0 6 6 08 (). I the viul

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen omplex Varables hapter 8 Integraton n the omplex Plane March, Lecturer: Shh-Yuan hen Except where otherwse noted, content s lcensed under a BY-N-SA. TW Lcense. ontents ontour ntegrals auchy-goursat theorem

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGREION ANALYSIS MODULE II Lecture - 5 Smple Lear Regreo Aaly Dr Shalabh Departmet of Mathematc Stattc Ida Ittute of Techology Kapur Jot cofdece rego for A jot cofdece rego for ca alo be foud Such

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

b a 2 ((g(x))2 (f(x)) 2 dx

b a 2 ((g(x))2 (f(x)) 2 dx Clc II Fll 005 MATH Nme: T3 Istructios: Write swers to problems o seprte pper. You my NOT use clcultors or y electroic devices or otes of y kid. Ech st rred problem is extr credit d ech is worth 5 poits.

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION

COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION OMPLEX ANALYSIS AND POBABILITY DISTIBUTION ONTENTS omple Fuctos Ad Deretto omple Itegrto Power Seres Epso O omple Fucto Sgle dom Vrbles Probblt Dstrbutos TEXT BOOKS Erw Kresg Advced Egeerg Mmtcs Joh Wle

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

Course 121, , Test III (JF Hilary Term)

Course 121, , Test III (JF Hilary Term) Course 2, 989 9, Test III (JF Hilry Term) Fridy 2d Februry 99, 3. 4.3pm Aswer y THREE questios. Let f: R R d g: R R be differetible fuctios o R. Stte the Product Rule d the Quotiet Rule for differetitig

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

15 DEFINITE INTEGRALS

15 DEFINITE INTEGRALS 5 DEFINITE INTEGRAL DEFINITION OF A DEFINITE INTEGRAL Let f(x) e defned n n ntervl 5 x 5. Dvde the ntervl nto n equl prt of length Ax = ( )/n. Then the defnte ntegrl of f(x) etween z = nd x = defned 5.

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

Linear Approximating to Integer Addition

Linear Approximating to Integer Addition Lear Approxmatg to Iteger Addto L A-Pg Bejg 00085, P.R. Cha apl000@a.com Abtract The teger addto ofte appled cpher a a cryptographc mea. I th paper we wll preet ome reult about the lear approxmatg for

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Module 2: Introduction to Numerical Analysis

Module 2: Introduction to Numerical Analysis CY00 Itroducto to Computtol Chemtr Autum 00-0 Module : Itroducto to umercl Al Am of the preet module. Itroducto to c umercl l. Developg mple progrm to mplemet the umercl method opc of teret. Iterpolto:

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES AND DIVERGENT INTEGRALS s d s Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EHU (Uversty of Bsque coutry

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EU (Uversty of Bsque coutry) I Sold Stte Physcs Addres: Prctctes

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Chapter Newton-Raphson Method of Solving Simultaneous Nonlinear Equations

Chapter Newton-Raphson Method of Solving Simultaneous Nonlinear Equations Chapter 7 Newto-Rapho Method o Solg Smltaeo Nolear Eqato Ater readg th chapter o hold be able to: dere the Newto-Rapho method ormla or mltaeo olear eqato deelop the algorthm o the Newto-Rapho method or

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES SUMMARY OF TE ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT SERIES AND DIVERGENT INTEGRALS Joe Jver Grc Moret Grdute tudet of Phyc t the UPV/EU (Uverty of Bque coutry) I Sold Stte Phyc

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

Analysis of error propagation in profile measurement by using stitching

Analysis of error propagation in profile measurement by using stitching Ay o error propgto proe eureet y ug ttchg Ttuy KUME, Kzuhro ENAMI, Yuo HIGASHI, Kej UENO - Oho, Tuu, Ir, 35-8, JAPAN Atrct Sttchg techque whch ee oger eureet rge o proe ro eer eure proe hg prty oerppe

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1 CS473-Algorthm I Lecture b Dyamc Table CS 473 Lecture X Why Dyamc Table? I ome applcato: We do't kow how may object wll be tored a table. We may allocate pace for a table But, later we may fd out that

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information