Basic Structures: Sets, Functions, Sequences, and Sums

Size: px
Start display at page:

Download "Basic Structures: Sets, Functions, Sequences, and Sums"

Transcription

1 ac Structure: Set, Fucto, Sequece, ad Sum CSC-9 Dcrete Structure Kotat uch - LSU Set et a uordered collecto o object Eglh alphabet vowel: V { a, e,, o, u} a V b V Odd potve teger le tha : elemet o et member o et O {,,,7,9} Kotat uch - LSU

2 Other et repreetato Set o potve teger le tha : {,,,,99} Odd potve teger le tha : O {,,,7,9} O { omtted elemet a odd potve teger le tha } O { Z odd ad } Kotat uch - LSU Ve Dagram Uvere U O 7 9 U { O { a potve teger le tha } a odd potve teger le tha } Kotat uch - LSU

3 Ueul et N {,,,, } Natural umber Z {,,,,,, } Iteger Z {,,, } Potve teger Q { p / q p Z, q Z, q } Ratoal umber R {et o Real umber} Real umber Kotat uch - LSU Empty et {} {} Kotat uch - LSU

4 Cardalty ze o et Fte et S { a, e,, o, } u S { a, b, c,, z} S {,,,,99} Number o elemet S S S 99 {} { } Ite et N {,,,, } te ze Kotat uch - LSU 7 Equal et Eample: {,,} {,, } {,,} {,,,,,,,} {,,,7,9} { Z odd ad } Kotat uch - LSU

5 Subet Eample: {,,} {,,, } N Z For ay et S : S S S Kotat uch - LSU 9 Proper Subet y y y y Eample: {,,} {,,, } N Z Kotat uch - LSU

6 equvalet to Kotat uch - LSU Power et The power et o S cota all poble ubet o S ad the empty et S {,,} Power et P S {,{},{},{},{,},{,},{,},{,,}} P S S Sze o power et Specal cae P { } P{ } {,{ }} Kotat uch - LSU

7 Ordered tuple relato Ordered -tuple a, a,, a ordered lt o elemet a, a,, a b, b,, b a b Eample:,, Kotat uch - LSU Cartea product Cartea product o two et { a, b a b }, Eample: {, } { a, b, c} {, a,, b,, c,, a,, b,, c} { a,, b,, c,, a,, b,, c,} For th cae: Sze: Kotat uch - LSU 7

8 Cartea product o et,,, { a, a,, a a } Eample: {, } { a, b, c} C {, y} C {, a,,, b,,, c,,, a,,, b,,, c,,, a, y,, b, y,, c, y,, a, y,, b, y,, c, y} Sze: C C Kotat uch - LSU Set ad propoto S P S P horthad or horthad or S P S P Truth et o propoto P { Doma P } all elemet o the doma whch aty P Kotat uch - LSU

9 Set operato Uo { } U {,,} {,, } {,,, } Kotat uch - LSU 7 Iterecto { } U {,,} {,, } {, } Kotat uch - LSU 9

10 Djot et, U {,,} {,9} Kotat uch - LSU 9 Set derece { } U {,,} {,, } {} Kotat uch - LSU

11 Complemet { } U {,,} U {,,,, } {,} Kotat uch - LSU Sze o uo U {,,} {,, } {,,,} {,} Kotat uch - LSU

12 Kotat uch - LSU De Morga law Show that ad Kotat uch - LSU Theorem: Proo: Part : De Morga law rom logc

13 Kotat uch - LSU Part : Ed o Proo De Morga law rom logc Kotat uch - LSU Set dette U Idetty law U U Domato law Idempotet law Complemetato law Complemet law U De Morga law

14 Kotat uch - LSU 7 Commutatve law C C C C ocatve law borpto law C C C C Dtrbutve law Kotat uch - LSU Geeralzed uo ad terecto

15 Eample: {,,, } {,,, } {,,, } {,,, } {,,, } Kotat uch - LSU 9 Computer repreetato o et Repreet et a bary trg U {,,,,,,7,,9,} {,,,7,9} {,,,,} Kotat uch - LSU

16 Set operato become bary trg operato {,,,,} {,,,7,9} {,,,,,7,9} {,,} twe OR twe ND Kotat uch - LSU Poweret PS o S a, a, a,, a, a } { PS bt elemet : { a }: { a }: S : combato P S S Kotat uch - LSU

17 Fucto dam Chou Goodred Rodrguez Steve Name Grade C D F Chou C Rodrguez Kotat uch - LSU : Doma a Codoma a b map to Every elemet o doma ha eactly oe mage Image o a Kotat uch - LSU 7

18 Doma dam Chou Goodred Rodrguez Steve Codoma C D F Doma {dam,chou,goodred,rodrguez,steve} Codoma {,,C, D,F} Rage {,,C,F} et o all mage Kotat uch - LSU : Z Z Doma Z Codoma Z Rage {,,,9, } Kotat uch - LSU

19 Equal ucto : g : C D g D ame doma ame codoma, g ame mappg Kotat uch - LSU 7 I ome programmg laguage, doma ad codoma are eplctly deed t t a { retur a*a; } Kotat uch - LSU 9

20 Kotat uch - LSU 9 dd ad multply ucto R : Real umber R : Eample: Kotat uch - LSU Image o et } { } { S t S t S Eample: {,,9},,} { Set S

21 Oe-to-oe jecto ucto For every, y doma y mple y a Eample: b c d Each elemet o rage mage o oe elemet o doma oe-to-oe g ot oe-to-oe: g g Kotat uch - LSU Icreag ucto: y y Strctly creag: y y Strctly creag ucto are oe-to-oe Kotat uch - LSU

22 Oto urjecto ucto For every uch that Eample: y there y a b c d oto g ot oto: Z, g : Rage = Codoma Kotat uch - LSU Oe-to-oe correpodece bjecto ucto a ucto whch oe-to-oe ad oto a b c d Eample: bjecto Idetty ucto g ot bjecto bjecto Kotat uch - LSU

23 a b oe-to-oe ot oto c ot oe-to-oe oto a b c d a b c d oe-to-oe oto a b c d ot oe-to-oe ot oto ot a ucto a b c Kotat uch - LSU Ivere o a bjecto ucto y y whe doma a b c d codoma Eample: codoma doma a b c d vertble ucto y y Kotat uch - LSU

24 b a b b a a Kotat uch - LSU 7 Compoto o ucto : C g : C g : g g Eample: g g g g g g Kotat uch - LSU

25 detty ucto Suppoe y y y y y Kotat uch - LSU 9 Floor ad Celg Let be real Floor ucto: larget teger le or equal to Celg ucto: mallet teger greater or equal to Eample: Kotat uch - LSU

26 Factoral ucto : N Z!!!!! 7! 9,,9,,7,, Strlg ormula:! e Kotat uch - LSU Sequece Sequece: ucto rom a ubet o teger to a et S Fte equece Ite equece,,,,,,9,7,, a, a, a, a, a lterate repreetato a a a k a, k { a } a, a, a, a, a,,,9,7,, Kotat uch - LSU

27 te equece: a, a,, a Strg: a a a a all elemet o equece cocateated Legth o trg: a a a Empty trg ull: Kotat uch - LSU rthmetc progreo a, a d, a d,, a d, Ital term a Commo derece d Eample: { } tart wth,,7,, Kotat uch - LSU 7

28 Geometrc progreo a, ar, ar Ital term a Commo rato r,, ar, Eample: { c } tart wth,,,,, Kotat uch - LSU Summato Sequece: a, a m, am, am, Sum: a m a m a m a m a Eample: Kotat uch - LSU

29 9 Kotat uch - LSU 7 Theorem: Proo: } { } { } { c b a b a S S b a c S Ed o Proo Kotat uch - LSU Theorem: I are real umber ad, the a,r r {,} r a ar ar Proo: ar S Let

30 Kotat uch - LSU 9 a ar S a ar ar ar ar ar r rs k k k k a ar S rs r a ar S Ed o Proo Kotat uch - LSU Ueul Summato Formula, {,}, r r a ar ar

31 Coutable Set Coutable te et: y te et coutable by deault Coutable te et: S te et coutable there a oe-to-oe correpodece rom to S Z Potve teger Kotat uch - LSU Theorem: Proo: Eve potve teger: Eve potve teger are coutable,,,, Oe-to-oe Correpodece: Potve teger:,,,, correpod to Ed o Proo Kotat uch - LSU

32 Theorem: The et o ratoal umber coutable Proo: We eed to d a method to lt all ratoal umber:,, 7, Kotat uch - LSU Naïve pproach Ratoal umber: Oe-to-oe correpodece: Start wth omator=,,, Potve teger:,,, Doe t work: we wll ever lt umber wth omator :, Kotat uch - LSU,,

33 Kotat uch - LSU etter pproach: ca dagoal Nom= Nom= Nom= Nom= Kotat uch - LSU rt dagoal

34 Kotat uch - LSU 7 ecod dagoal Kotat uch - LSU thrd dagoal

35 ourth dagoal Every elemet wll be evetually caed Kotat uch - LSU 9 Ratoal Number: Dagoal ltg,,,,, Oe-to-oe correpodece: Potve Iteger:,,,,, Ed o Proo Kotat uch - LSU 7

36 Kotat uch - LSU 7 Theorem: Set ucoutable S R, Proo: ume that coutable, S the we ca lt t elemet },,, { S Elemet o S Kotat uch - LSU Lt the elemet o, S

37 7 Kotat uch - LSU t Create ew elemet baed o dagoal 7 9 Kotat uch - LSU t 7 9 I dagoal elemet the et dgt to

38 Kotat uch - LSU t 7 9 I dagoal elemet ot the et dgt to Kotat uch - LSU t 7 9 I dagoal elemet the et dgt to

39 9 Kotat uch - LSU t 7 9 I dagoal elemet the et dgt to Kotat uch - LSU t 7 9 I dagoal elemet ot the et dgt to

40 Kotat uch - LSU 79 t 7 9 y repeatg proce we obta ew umber, Kotat uch - LSU t 7 9 t der o rt dgt Obervato:

41 Kotat uch - LSU t 7 9 t der o ecod dgt Obervato: Kotat uch - LSU t 7 9 t der o thrd dgt Obervato:

42 Obervato: t der o dgt or every t S {,, }, Cotradcto! t, Ed o Proo Kotat uch - LSU We have prove:, R ucoutable It ca be prove: Every ubet o a coutable et coutable It ollow that the et o real umber ucoutable R Kotat uch - LSU

43 The prevou proo techque kow a: Cator dagoalzato argumet The ame techque ca be ued other proo Kotat uch - LSU S Theorem: I a te coutable et, the the power et PS ucoutable Proo: Sce S coutable, we ca lt t elemet S {,,, } Elemet o S Kotat uch - LSU

44 Elemet o the power et have the orm: { } {, },, { {, 7, 9, } } PS Kotat uch - LSU 7 We ecode each elemet o the poweret wth a bary trg o ad Poweret elemet { } PS arbtrary order ary ecodg {, } {,, } Kotat uch - LSU

45 Obervato: Every te bary trg correpod to a elemet o the power et Eample: Correpod to:,,,, } P { S Kotat uch - LSU 9 Let aume or cotradcto that the power et PS coutable The: we ca eumerate the elemet o the poweret P S { t, t, t, } Kotat uch - LSU 9

46 Power et elemet PS uppoe that th the repectve ary ecodg t t t t Kotat uch - LSU 9 Take the bary trg whoe bt are the complemet o the dagoal t t t t Complemet o dagoal ary trg: t Kotat uch - LSU 9

47 The bary trg t correpod to a elemet o the power et PS : t,, } P { S Kotat uch - LSU 9 t Thu, mut be equal to ome : t PS t t t However, the -th bt the bary trg o deret tha the -th bt o, thu: t P S { t, t Cotradcto!!! t,, t t t Kotat uch - LSU 9 t } Ed o Proo 7

Linear Approximating to Integer Addition

Linear Approximating to Integer Addition Lear Approxmatg to Iteger Addto L A-Pg Bejg 00085, P.R. Cha apl000@a.com Abtract The teger addto ofte appled cpher a a cryptographc mea. I th paper we wll preet ome reult about the lear approxmatg for

More information

Lebesgue Measure of Generalized Cantor Set

Lebesgue Measure of Generalized Cantor Set Aals of Pure ad Appled Mathematcs Vol., No.,, -8 ISSN: -8X P), -888ole) Publshed o 8 May www.researchmathsc.org Aals of Lebesgue Measure of Geeralzed ator Set Md. Jahurul Islam ad Md. Shahdul Islam Departmet

More information

Design maintenanceand reliability of engineering systems: a probability based approach

Design maintenanceand reliability of engineering systems: a probability based approach Desg mateaead relablty of egeerg systems: a probablty based approah CHPTER 2. BSIC SET THEORY 2.1 Bas deftos Sets are the bass o whh moder probablty theory s defed. set s a well-defed olleto of objets.

More information

On Signed Product Cordial Labeling

On Signed Product Cordial Labeling Appled Mathematcs 55-53 do:.436/am..6 Publshed Ole December (http://www.scrp.or/joural/am) O Sed Product Cordal Label Abstract Jayapal Baskar Babujee Shobaa Loaatha Departmet o Mathematcs Aa Uversty Chea

More information

Introduction to Probability

Introduction to Probability Itroducto to Probablty Nader H Bshouty Departmet of Computer Scece Techo 32000 Israel e-mal: bshouty@cstechoacl 1 Combatorcs 11 Smple Rules I Combatorcs The rule of sum says that the umber of ways to choose

More information

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1 CS473-Algorthm I Lecture b Dyamc Table CS 473 Lecture X Why Dyamc Table? I ome applcato: We do't kow how may object wll be tored a table. We may allocate pace for a table But, later we may fd out that

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology It J Pure Appl Sc Techol, () (00), pp 79-86 Iteratoal Joural of Pure ad Appled Scece ad Techology ISSN 9-607 Avalable ole at wwwjopaaat Reearch Paper Some Stroger Chaotc Feature of the Geeralzed Shft Map

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Major Themes. Sets and Logic. Sets and cardinality. Basic terminology. Dr Papalaskari 1. Sets. CSC 1300 Discrete Structures. Villanova University

Major Themes. Sets and Logic. Sets and cardinality. Basic terminology. Dr Papalaskari 1. Sets. CSC 1300 Discrete Structures. Villanova University Major hemes ets ad Logic Villaova iversity ets Ways of defiig sets ubsets, complemets, the uiversal set Ve diagrams et idekkes Cartesia product ParKKos Basic termiology A set is a uordered collecko of

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Asymptotics of Pattern Avoidance in the Klazar Set Partition and Permutation-Tuple Settings

Asymptotics of Pattern Avoidance in the Klazar Set Partition and Permutation-Tuple Settings Aymptotc of Patter Avodace the Klazar Set Partto ad Permutato-Tuple Settg arxv:707.07809v [math.co] 25 Jul 207 Bejam Guby Departmet of Mathematc Harvard Uverty Cambrdge, Maachuett, U.S.A. bguby@g.harvard.edu

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES Joural of Algebra Number Theory: Advaces ad Applcatos Volume 6 Number 6 Pages 5-7 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/.864/ataa_77 A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150 CMPT- Itroducto to Computer Desg SFU Harbour Cetre Sprg 7 Lecture : Ja. 6 7 Stadard orms or boolea uctos Sum o Products Product o Sums Stadard Forms or Boolea Fuctos (cot ) It s useul to spec Boolea uctos

More information

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 6, Number 1/2005, pp

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 6, Number 1/2005, pp THE PUBLISHING HOUSE PROCEEDINGS OF THE ROANIAN ACADEY, Sere A, OF THE ROANIAN ACADEY Volume 6, Number /005,. 000-000 ON THE TRANSCENDENCE OF THE TRACE FUNCTION Vctor ALEXANDRU Faculty o athematc, Uverty

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics CS56 Itro to Computer Graphcs Geometrc Modelg art II Geometrc Modelg II hyscal Sples Curve desg pre-computers Cubc Sples Stadard sple put set of pots { } =, No dervatves specfed as put Iterpolate by cubc

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

CHARACTERIZATION OF SOFT COMPACT SPACES BASED ON SOFT FILTER

CHARACTERIZATION OF SOFT COMPACT SPACES BASED ON SOFT FILTER CHRCTERIZTION O SOT COMPCT SPCES BSED ON SOT ILTER 1,2 PEI WNG, 1 JILI HE 1 Departmet of Mathematcs ad Iformato Scece, Yul Normal versty, Yul, Guagx, 537000, PRCha 2 School of Mathematcs ad Iformato Scece;

More information

Cardinality Homework Solutions

Cardinality Homework Solutions Cardiality Homework Solutios April 16, 014 Problem 1. I the followig problems, fid a bijectio from A to B (you eed ot prove that the fuctio you list is a bijectio): (a) A = ( 3, 3), B = (7, 1). (b) A =

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Fibonacci Identities as Binomial Sums

Fibonacci Identities as Binomial Sums It. J. Cotemp. Math. Sceces, Vol. 7, 1, o. 38, 1871-1876 Fboacc Idettes as Bomal Sums Mohammad K. Azara Departmet of Mathematcs, Uversty of Evasvlle 18 Lcol Aveue, Evasvlle, IN 477, USA E-mal: azara@evasvlle.edu

More information

Sets. Sets. Operations on Sets Laws of Algebra of Sets Cardinal Number of a Finite and Infinite Set. Representation of Sets Power Set Venn Diagram

Sets. Sets. Operations on Sets Laws of Algebra of Sets Cardinal Number of a Finite and Infinite Set. Representation of Sets Power Set Venn Diagram Sets MILESTONE Sets Represetatio of Sets Power Set Ve Diagram Operatios o Sets Laws of lgebra of Sets ardial Number of a Fiite ad Ifiite Set I Mathematical laguage all livig ad o-livig thigs i uiverse

More information

IRREDUCIBLE COVARIANT REPRESENTATIONS ASSOCIATED TO AN R-DISCRETE GROUPOID

IRREDUCIBLE COVARIANT REPRESENTATIONS ASSOCIATED TO AN R-DISCRETE GROUPOID UPB Sc Bull Sere A Vol 69 No 7 ISSN 3-77 IRREDUCIBLE COVARIANT REPRESENTATIONS ASSOCIATED TO AN R-DISCRETE GROUPOID Roxaa VIDICAN Ue perech covarate poztv defte ( T ) relatv la u grupod r-dcret G e poate

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Computability and computational complexity

Computability and computational complexity Computability ad computatioal complexity Lecture 4: Uiversal Turig machies. Udecidability Io Petre Computer Sciece, Åbo Akademi Uiversity Fall 2015 http://users.abo.fi/ipetre/computability/ 21. toukokuu

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Algorithms Design & Analysis. Hash Tables

Algorithms Design & Analysis. Hash Tables Algorthms Desg & Aalyss Hash Tables Recap Lower boud Order statstcs 2 Today s topcs Drect-accessble table Hash tables Hash fuctos Uversal hashg Perfect Hashg Ope addressg 3 Symbol-table problem Symbol

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Chapter 5. Curve fitting

Chapter 5. Curve fitting Chapter 5 Curve ttg Assgmet please use ecell Gve the data elow use least squares regresso to t a a straght le a power equato c a saturato-growthrate equato ad d a paraola. Fd the r value ad justy whch

More information

Isolated Word Recogniser

Isolated Word Recogniser Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger.

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger. Homewor 1 Solutios Math 171, Sprig 2010 Hery Adams The exercises are from Foudatios of Mathematical Aalysis by Richard Johsobaugh ad W.E. Pfaffeberger. 2.2. Let h : X Y, g : Y Z, ad f : Z W. Prove that

More information

Simple Linear Regression Analysis

Simple Linear Regression Analysis LINEAR REGREION ANALYSIS MODULE II Lecture - 5 Smple Lear Regreo Aaly Dr Shalabh Departmet of Mathematc Stattc Ida Ittute of Techology Kapur Jot cofdece rego for A jot cofdece rego for ca alo be foud Such

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

Class notes on sec+ons 4.2, 5.1, 5.2 and 5.3

Class notes on sec+ons 4.2, 5.1, 5.2 and 5.3 Class otes o sec+os 4.2, 5.1, 5.2 ad 5.3 Topics covered: Recursive defii1o Rudimetary discussio o rela1os Fuc1os: ijec1ve, surjec1ve ad bijec1ve Recursive Defii+os Recursively defied sequece Cosider the

More information

Introduction to Matrices and Matrix Approach to Simple Linear Regression

Introduction to Matrices and Matrix Approach to Simple Linear Regression Itroducto to Matrces ad Matrx Approach to Smple Lear Regresso Matrces Defto: A matrx s a rectagular array of umbers or symbolc elemets I may applcatos, the rows of a matrx wll represet dvduals cases (people,

More information

ADAPTIVE CLUSTER SAMPLING USING AUXILIARY VARIABLE

ADAPTIVE CLUSTER SAMPLING USING AUXILIARY VARIABLE Joural o Mathematcs ad tatstcs 9 (3): 49-55, 03 I: 549-3644 03 cece Publcatos do:0.3844/jmssp.03.49.55 Publshed Ole 9 (3) 03 (http://www.thescpub.com/jmss.toc) ADAPTIVE CLUTER AMPLIG UIG AUXILIARY VARIABLE

More information

D. VQ WITH 1ST-ORDER LOSSLESS CODING

D. VQ WITH 1ST-ORDER LOSSLESS CODING VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) Varable-Rate VQ = Quatzato + Lossless Varable-Legth Bary Codg A rage of optos -- from smple to complex A. Uform scalar quatzato wth varable-legth codg, oe

More information

What is Probability?

What is Probability? Quatificatio of ucertaity. What is Probability? Mathematical model for thigs that occur radomly. Radom ot haphazard, do t kow what will happe o ay oe experimet, but has a log ru order. The cocept of probability

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

(b) By independence, the probability that the string 1011 is received correctly is

(b) By independence, the probability that the string 1011 is received correctly is Soluto to Problem 1.31. (a) Let A be the evet that a 0 s trasmtted. Usg the total probablty theorem, the desred probablty s P(A)(1 ɛ ( 0)+ 1 P(A) ) (1 ɛ 1)=p(1 ɛ 0)+(1 p)(1 ɛ 1). (b) By depedece, the probablty

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS4: Discrete Mathematics for Computer Sciece I Dept. Iformatio & Computer Sci., Ja Stelovsky based o slides by Dr. aek ad Dr. Still Origials by Dr. M. P. Frak ad Dr. J.L. Gross Provided by McGraw-Hill

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0. LECTURE 8: Topcs Chaos Rcker Equato (t ) = (t ) ep( (t )) Perod doulg urcato Perod doulg cascade 9....... A Quadratc Equato Rcker Equato (t ) = (t ) ( (t ) ). (t ) = (t ) ep( (t )) 6. 9 9. The perod doulg

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Page ( Aswers at he ed of all questios ) ( ) If = a, y = b, z = c, where a, b, c are i A.P. ad = 0 = 0 = 0 l a l

More information

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers. PROBLEMS A real umber s represeted appromately by 63, ad we are told that the relatve error s % What s? Note: There are two aswers Ht : Recall that % relatve error s What s the relatve error volved roudg

More information

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A

for each of its columns. A quick calculation will verify that: thus m < dim(v). Then a basis of V with respect to which T has the form: A Desty of dagoalzable square atrces Studet: Dael Cervoe; Metor: Saravaa Thyagaraa Uversty of Chcago VIGRE REU, Suer 7. For ths etre aer, we wll refer to V as a vector sace over ad L(V) as the set of lear

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =.

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =. Exercse 13 (a Proe Soutos for HW4 (1 + x 1 + x 2 1 + (1 + x 2 + x 2 2 + (1 + x + x 2 + by ducto o M(Sν x S x ν(x Souto: Frst ote that sce the mutsets o {x 1 } are determed by ν(x 1 the set of mutsets o

More information

Signal Recovery - Prof. S. Cova - Exam 2016/02/16 - P1 pag.1

Signal Recovery - Prof. S. Cova - Exam 2016/02/16 - P1 pag.1 gal Recovery - Pro.. Cova - Exam 06/0/6 - P pag. PROBEM Data ad Note Appled orce F rt cae: tep ple ecod cae: rectaglar ple wth drato p = 5m Pezoelectrc orce eor A q =0pC/N orce-to-charge covero C = 500pF

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS Course Project: Classcal Mechacs (PHY 40) Suja Dabholkar (Y430) Sul Yeshwath (Y444). Itroducto Hamltoa mechacs s geometry phase space. It deals

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

STK3100 and STK4100 Autumn 2018

STK3100 and STK4100 Autumn 2018 SK3 ad SK4 Autum 8 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Cofdece tervals by vertg tests Cosder a model wth a sgle arameter β We may obta a ( α% cofdece terval for

More information

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers ELEMENTS OF NUMBER THEORY I the followg we wll use aly tegers a ostve tegers Ζ = { ± ± ± K} - the set of tegers Ν = { K} - the set of ostve tegers Oeratos o tegers: Ato Each two tegers (ostve tegers) ay

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

STK3100 and STK4100 Autumn 2017

STK3100 and STK4100 Autumn 2017 SK3 ad SK4 Autum 7 Geeralzed lear models Part III Covers the followg materal from chaters 4 ad 5: Sectos 4..5, 4.3.5, 4.3.6, 4.4., 4.4., ad 4.4.3 Sectos 5.., 5.., ad 5.5. Ørulf Borga Deartmet of Mathematcs

More information

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K ROOT-LOCUS ANALYSIS Coder a geeral feedback cotrol yte wth a varable ga. R( Y( G( + H( Root-Locu a plot of the loc of the pole of the cloed-loop trafer fucto whe oe of the yte paraeter ( vared. Root locu

More information

Generalization of the Dissimilarity Measure of Fuzzy Sets

Generalization of the Dissimilarity Measure of Fuzzy Sets Iteratoal Mathematcal Forum 2 2007 o. 68 3395-3400 Geeralzato of the Dssmlarty Measure of Fuzzy Sets Faramarz Faghh Boformatcs Laboratory Naobotechology Research Ceter vesa Research Isttute CECR Tehra

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probability. Set defiitios 2. Set operatios 3. Probability itroduced through sets ad relative frequecy 4. Joit ad coditioal probability 5. Idepedet evets 6. Combied experimets 7. Beroulli trials

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers SECTION 8. SERIES 8. SERIES A Clck here for aswers. S Clck here for solutos. ; Fd at least 0 partal sums of the seres. Graph both the sequece of terms ad the sequece of partal sums o the same scree. Does

More information

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(8), 2014, Available online through   ISSN Iteratoal Joural of Mathematcal Archve-5(8) 204 25-29 Avalable ole through www.jma.fo ISSN 2229 5046 COMMON FIXED POINT OF GENERALIZED CONTRACTION MAPPING IN FUZZY METRIC SPACES Hamd Mottagh Golsha* ad

More information

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions: Smplex ad Rectagle Elemets Mult-dex Notato = (,..., ), o-egatve tegers = = β = ( β,..., β ) the + β = ( + β,..., + β ) + x = x x x x = x x β β + D = D = D D x x x β β Defto: The set P of polyomals of degree

More information

PATTERNS IN NUMBER THEORY Theophanes E. Raptis Computational Applications Group Division of Applied Technologies NCSR Demokritos 2015

PATTERNS IN NUMBER THEORY Theophanes E. Raptis Computational Applications Group Division of Applied Technologies NCSR Demokritos 2015 PATTERNS IN NUMBER THEORY Theohaes E. Rats Comutatoal Alcatos Grou Dvso of Aled Techologes NCSR Demokrtos 205 WHY NUMBER THEORY? Comuters are based o tegers eve for smulatos of cotuous systems ad yet they

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501 INTEGRATION THEORY AND FUNCTIONAL ANALYSIS M.A./M.Sc. Mathematcs (Fal) MM-50 Drectorate of Dstace Educato Maharsh Dayaad Uversty ROHTAK 4 00 Copyrght 004, Maharsh Dayaad Uversty, ROHTAK All Rghts Reserved.

More information

Graphs and graph models-graph terminology and special types of graphs-representing graphs and graph isomorphism -connectivity-euler and Hamilton

Graphs and graph models-graph terminology and special types of graphs-representing graphs and graph isomorphism -connectivity-euler and Hamilton Prepare by Dr. A.R.VIJAYALAKSHMI Graphs a graph moels-graph termology a specal types of graphs-represetg graphs a graph somorphsm -coectty-euler a Hamlto paths Graph Graph: A graph G = (V, E) cossts of

More information

Lecture 5: Interpolation. Polynomial interpolation Rational approximation

Lecture 5: Interpolation. Polynomial interpolation Rational approximation Lecture 5: Iterpolato olyomal terpolato Ratoal appromato Coeffcets of the polyomal Iterpolato: Sometme we kow the values of a fucto f for a fte set of pots. Yet we wat to evaluate f for other values perhaps

More information

Mean Cordial Labeling of Certain Graphs

Mean Cordial Labeling of Certain Graphs J Comp & Math Sc Vol4 (4), 74-8 (03) Mea Cordal Labelg o Certa Graphs ALBERT WILLIAM, INDRA RAJASINGH ad S ROY Departmet o Mathematcs, Loyola College, Chea, INDIA School o Advaced Sceces, VIT Uversty,

More information

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois

Random Variables. ECE 313 Probability with Engineering Applications Lecture 8 Professor Ravi K. Iyer University of Illinois Radom Varables ECE 313 Probablty wth Egeerg Alcatos Lecture 8 Professor Rav K. Iyer Uversty of Illos Iyer - Lecture 8 ECE 313 Fall 013 Today s Tocs Revew o Radom Varables Cumulatve Dstrbuto Fucto (CDF

More information

Computations with large numbers

Computations with large numbers Comutatos wth large umbers Wehu Hog, Det. of Math, Clayto State Uversty, 2 Clayto State lvd, Morrow, G 326, Mgshe Wu, Det. of Mathematcs, Statstcs, ad Comuter Scece, Uversty of Wscos-Stout, Meomoe, WI

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Galois and Post Algebras of Compositions (Superpositions)

Galois and Post Algebras of Compositions (Superpositions) Pure ad Appled Mathematcs Joural 07; 6(): -9 http://www.scecepublshggroup.com/j/pamj do: 0.68/j.pamj.07060. IN: 6-9790 (Prt); IN: 6-98 (Ole) Galos ad Post Algebras of Compostos (uperpostos) Maydm Malkov

More information

Sets and Probabilistic Models

Sets and Probabilistic Models ets ad Probabilistic Models Berli Che Departmet of Computer ciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Referece: - D. P. Bertsekas, J. N. Tsitsiklis, Itroductio to Probability, ectios 1.1-1.2

More information

2017 PRACTICE MIDTERM SOLUTIONS

2017 PRACTICE MIDTERM SOLUTIONS CSE303 2017 PRACTICE MIDTERM SOLUTIONS 1 YES/NO questios 1. For a biar relatio R A A, R exists. Justif: defiitio 2. For a biar relatio R A A, R 1 exists. Justif: The set R 1 = {(b, a) : (a, b) R} alwas

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information