Isolated Word Recogniser

Size: px
Start display at page:

Download "Isolated Word Recogniser"

Transcription

1 Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier Hypothei Geerator cat Laguage Model pr(w) w Preproceor Acoutic Model pd( w) Preproceor Idetifie tart/ed of each word Covert peech ito a equece of feature vector at iterval of aroud 0 m. Hypothei Geerator Try each poible word i tur Laguage Model Etimate the probability of the word Ca deped o the precedig word Acoutic Model Calculate the probability deity that a oberved equece of feature vector correpod to the choe word 8. core

2 8.5 Speech Productio Model c c c a a a t t t c a t Each phoeme i a word correpod to a umber of model tate. Each model tate repreet a ditict oud with it ow acoutic pectrum. For each tate, we tore the mea value ad variace for each of F feature. Whe ayig a word, the peaker tay i each tate for oe or more frame ad the goe o to the ext tate. The time i each tate will vary accordig to how fat he/he i peakig. Some peech oud lat loger tha other 8.6 State Traitio Aume that the probability of proceedig oto the ext tate i p ad the probability of tayig i the ame tate i p. The probability of beig i ay tate for the ext frame deped oly o the curret tate ad ot o ay previou hitory thi i a Markov proce More realitic aumptio icreae computatio without improvig performace a a t State Duratio (frame) Probability The legth of time, D, pet i ay tate follow a egative expoetial ditributio with a average duratio of /p frame. pr( D ) p ( p ) Sice by differetiatig E( D ) 0 x x p ( p ) 0 x p ( x )

3 8.7 Aligmet Probabilitie We ca calculate the probability of havig: frame i the firt tate, a a t 0. i the ecod tate, ad 6 i the third tate A complete pecificatio of which frame are i each tate i a aligmet. A before we ca ue log probabilitie ad add them itead of multiplyig Avoid dyamic rage problem Hidde Markov Model c a t c c c a a a t t t To calculate the probability deity (pd) that a obervatio matche a particular word with a give aligmet, we multiply together: the probability of the aligmet the output pd of each frame Try thi for every poible aligmet of every poible word equece ad chooe the oe with highet probability. Hidde Markov Model the correct aligmet i hidde: we ca t oberve it directly. We talk of the probability deity of the model geeratig the oberved frame equece.

4 8.9 Hidde Markov Model Parameter c c c a a a t t t c a t A Hidde Markov Model for a word mut pecify the followig parameter for tate : The mea ad variace for each of the F elemet of the parameter vector: µ ad σ. Thee allow u to calculate d (x): the output probability deity of iput frame x i tate. The traitio probabilitie a,j to every poible ucceor tate. a,j i ofte zero for all j except j ad j+ it i the called a left-to-right, o kip model. For a Hidde Markov Model with S tate we therefore have aroud (F+)S parameter. A typical word might have S5 ad F9 givig 00 parameter i all. 8.0 Miimum Cot Path Suppoe we wat to fid the cheapet path through a toll road ytem: Start Fiih I each circle we will eter the lowet cot of a jourey from Start Start Fiih 5 Begi by puttig 0 i the Start circle Now put,, i the d colum circle ad mark all three egmet i bold. Thi how the lowet cot to each of thee circle ad the route by which you go. Put 6,, 6 i the rd colum circle ad, i each cae, mark the bet egmet from the previou colum i bold. Put 5, ad 6 i the th colum. Put 7 i the Fiih circle. We ca trace bold egmet backward from Fiih to fid the bet overall path.

5 8. Dyamic Programmig Thi techique for fidig the miimum cot path through a graph i kow a dyamic programmig. Three coditio mut be true: All path through the graph mut go from left to right. The cot of each egmet of a path mut be fixed i advace: it mut ot deped o which of the other egmet are icluded i the route. The total cot of a path mut jut be the um of each of it egmet cot. Dyamic programmig i guarateed to fid the path with miimum cot. We ca alo fid the maximum cot path i the ame way: i thi cae the cot are uually called utilitie itead. We ca ue Dyamic Programmig to fid the bet aligmet of a equece of feature vector with a word model. bet mea the aligmet with the highet productio probability deity. 8. Aligmet Graph Start Fiih We ca draw a aligmet graph (or lattice): The colum correpod to peech frame The row correpod to model tate Each poible path from Start to Fiih correpod to a aligmet of the peech frame with the model. All valid path pa through each colum i tur. I goig to the ext colum, a path i retricted to the tate traitio allowed by the tate diagram I the above example a path mut either remai i the ame tate or ele go o to the ext tate.

6 8. Segmet Utilitie x 0 Start Fiih Segmet prob deity a, d (x 0 ) The probability deity of a path egmet goig from tate i to tate j i the product of: The probability of the traitio: a i,j The output probability deity of the correpodig iput frame i tate j: d j (x) The probability deity of the etire aligmet i the product of it cotituet egmet pd. Thi equal the pd that the model geerate the oberved equece of feature vector with thi particular aligmet. 8. Dyamic Programmig Step x 0 Start B(,9) B(,9) B(,9) B(,0) Defie B(,t) to be the probability deity of the bet partial aligmet begiig at Start ad edig with frame t i tate. Ay aligmet goig through (,0) mut go through either (,9), (,9) or (,9). Hece:,, ( ) B(,0) max B(,9) a d ( x ) 0 I geeral, we ca calculate B(*,t) from B(*,t ): ( ) Bkt (, ) max Bt (, ) ak dk( x t) Iitialie thi recurio by ettig B(,)d ()

7 8.5 Viterbi Aligmet Start a S Fiih Thi procedure i called Viterbi Aligmet: B(,) d (x ); B(,) 0 for > for t:t for k:s z(k,t)jargmax(b(,t-) a k ) for all with a k 0 B(k,t)B(j,t-) a jk d k (x t ) ed ed The bet path ha prob deity B(S,T) a S a S i the exit probability from the fial tate The z(k,t) array tore the iformatio eeded to trace back the bet path. 8.6 Iolated Word Recogitio Require the peaker to iert a gap betwee each word Ued for budget ytem with little CPU power Recogitio: Extract a word-log egmet of peech,, from the iput igal. Covert it ito a equece of frame. Calculate pr(w ) pr(w) pr( w) for each poible word, w, i the recogitio vocabulary. pr(w) i the prior probability of the word: get thi from word frequecie or word-pair frequecie (e.g. miiter ofte follow prime ). pr( w) i obtaied by uig the Viterbi aligmet algorithm to fid the log probability deity of the bet aligmet of with the model for w. Chooe the word with the highet probability Need to create a eparate Hidde Markov model for each word i the vocabulary. Log

Hidden Markov Model Parameters

Hidden Markov Model Parameters .PPT 5/04/00 Lecture 6 HMM Traiig Traiig Hidde Markov Model Iitial model etimate Viterbi traiig Baum-Welch traiig 8.7.PPT 5/04/00 8.8 Hidde Markov Model Parameter c c c 3 a a a 3 t t t 3 c a t A Hidde

More information

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49 C22.0103 Sprig 2011 Homework 7 olutio 1. Baed o a ample of 50 x-value havig mea 35.36 ad tadard deviatio 4.26, fid a 95% cofidece iterval for the populatio mea. SOLUTION: The 95% cofidece iterval for the

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014 Aigmet - Solutio ECSE 420 Parallel Computig Fall 204 ovember 2, 204. (%) Decribe briefly the followig term, expoe their caue, ad work-aroud the idutry ha udertake to overcome their coequece: (i) Memory

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

10-716: Advanced Machine Learning Spring Lecture 13: March 5

10-716: Advanced Machine Learning Spring Lecture 13: March 5 10-716: Advaced Machie Learig Sprig 019 Lecture 13: March 5 Lecturer: Pradeep Ravikumar Scribe: Charvi Ratogi, Hele Zhou, Nicholay opi Note: Lae template courtey of UC Berkeley EECS dept. Diclaimer: hee

More information

Lecture 30: Frequency Response of Second-Order Systems

Lecture 30: Frequency Response of Second-Order Systems Lecture 3: Frequecy Repoe of Secod-Order Sytem UHTXHQF\ 5HVSRQVH RI 6HFRQGUGHU 6\VWHPV A geeral ecod-order ytem ha a trafer fuctio of the form b + b + b H (. (9.4 a + a + a It ca be table, utable, caual

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation Société de Calcul Mathématique S A Algorithme et Optimiatio Radom amplig of proportio Berard Beauzamy Jue 2008 From time to time we fid a problem i which we do ot deal with value but with proportio For

More information

Confidence Intervals: Three Views Class 23, Jeremy Orloff and Jonathan Bloom

Confidence Intervals: Three Views Class 23, Jeremy Orloff and Jonathan Bloom Cofidece Iterval: Three View Cla 23, 18.05 Jeremy Orloff ad Joatha Bloom 1 Learig Goal 1. Be able to produce z, t ad χ 2 cofidece iterval baed o the correpodig tadardized tatitic. 2. Be able to ue a hypothei

More information

Math 213b (Spring 2005) Yum-Tong Siu 1. Explicit Formula for Logarithmic Derivative of Riemann Zeta Function

Math 213b (Spring 2005) Yum-Tong Siu 1. Explicit Formula for Logarithmic Derivative of Riemann Zeta Function Math 3b Sprig 005 Yum-og Siu Expliit Formula for Logarithmi Derivative of Riema Zeta Futio he expliit formula for the logarithmi derivative of the Riema zeta futio i the appliatio to it of the Perro formula

More information

18.05 Problem Set 9, Spring 2014 Solutions

18.05 Problem Set 9, Spring 2014 Solutions 18.05 Problem Set 9, Sprig 2014 Solutio Problem 1. (10 pt.) (a) We have x biomial(, θ), o E(X) =θ ad Var(X) = θ(1 θ). The rule-of-thumb variace i jut 4. So the ditributio beig plotted are biomial(250,

More information

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Review of the Air Force Academy No. (34)/7 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Aca Ileaa LUPAŞ Military Techical Academy, Bucharet, Romaia (lua_a@yahoo.com) DOI:.96/84-938.7.5..6 Abtract:

More information

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm.

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm. } CHAPTER 6 Cofidece Iterval 6.1 (a) y = 1269; = 145; = 8. The tadard error of the mea i SE ȳ = = 145 8 = 51.3 g/gm. (b) y = 1269; = 145; = 30. The tadard error of the mea i ȳ = 145 = 26.5 g/gm. 30 6.2

More information

IntroEcono. Discrete RV. Continuous RV s

IntroEcono. Discrete RV. Continuous RV s ItroEcoo Aoc. Prof. Poga Porchaiwiekul, Ph.D... ก ก e-mail: Poga.P@chula.ac.th Homepage: http://pioeer.chula.ac.th/~ppoga (c) Poga Porchaiwiekul, Chulalogkor Uiverity Quatitative, e.g., icome, raifall

More information

Chapter 8.2. Interval Estimation

Chapter 8.2. Interval Estimation Chapter 8.2. Iterval Etimatio Baic of Cofidece Iterval ad Large Sample Cofidece Iterval 1 Baic Propertie of Cofidece Iterval Aumptio: X 1, X 2,, X are from Normal ditributio with a mea of µ ad tadard deviatio.

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE 20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE If the populatio tadard deviatio σ i ukow, a it uually will be i practice, we will have to etimate it by the ample tadard deviatio. Sice σ i ukow,

More information

13.4 Scalar Kalman Filter

13.4 Scalar Kalman Filter 13.4 Scalar Kalma Filter Data Model o derive the Kalma filter we eed the data model: a 1 + u < State quatio > + w < Obervatio quatio > Aumptio 1. u i zero mea Gauia, White, u } σ. w i zero mea Gauia, White,

More information

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions M7 Chapter 9 Sectio 1 OBJECTIVES Tet two mea with idepedet ample whe populatio variace are kow. Tet two variace with idepedet ample. Tet two mea with idepedet ample whe populatio variace are equal Tet

More information

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2 Tetig Hypothee COMPARISONS INVOLVING TWO SAMPLE MEANS Two type of hypothee:. H o : Null Hypothei - hypothei of o differece. or 0. H A : Alterate Hypothei hypothei of differece. or 0 Two-tail v. Oe-tail

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former) Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC 1 Advaced Digital Sigal Proceig Sidelobe Caceller (Beam Former) Erick L. Obertar 001 Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

TESTS OF SIGNIFICANCE

TESTS OF SIGNIFICANCE TESTS OF SIGNIFICANCE Seema Jaggi I.A.S.R.I., Library Aveue, New Delhi eema@iari.re.i I applied ivetigatio, oe i ofte itereted i comparig ome characteritic (uch a the mea, the variace or a meaure of aociatio

More information

Tools Hypothesis Tests

Tools Hypothesis Tests Tool Hypothei Tet The Tool meu provide acce to a Hypothei Tet procedure that calculate cofidece iterval ad perform hypothei tet for mea, variace, rate ad proportio. It i cotrolled by the dialog box how

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

Difference tests (1): parametric

Difference tests (1): parametric NST B Eperimetal Pychology Statitic practical Differece tet (): parametric Rudolf Cardial & Mike Aitke / 3 December 003; Departmet of Eperimetal Pychology Uiverity of Cambridge Hadout: Awer to Eample (from

More information

SEQUENCE AND SERIES NCERT

SEQUENCE AND SERIES NCERT 9. Overview By a sequece, we mea a arragemet of umbers i a defiite order accordig to some rule. We deote the terms of a sequece by a, a,..., etc., the subscript deotes the positio of the term. I view of

More information

Confidence Intervals. Confidence Intervals

Confidence Intervals. Confidence Intervals A overview Mot probability ditributio are idexed by oe me parameter. F example, N(µ,σ 2 ) B(, p). I igificace tet, we have ued poit etimat f parameter. F example, f iid Y 1,Y 2,...,Y N(µ,σ 2 ), Ȳ i a poit

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

11 Hidden Markov Models

11 Hidden Markov Models Hidde Markov Models Hidde Markov Models are a popular machie learig approach i bioiformatics. Machie learig algorithms are preseted with traiig data, which are used to derive importat isights about the

More information

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc. Table ad Formula for Sulliva, Fudametal of Statitic, e. 008 Pearo Educatio, Ic. CHAPTER Orgaizig ad Summarizig Data Relative frequecy frequecy um of all frequecie Cla midpoit: The um of coecutive lower

More information

Brief Review of Linear System Theory

Brief Review of Linear System Theory Brief Review of Liear Sytem heory he followig iformatio i typically covered i a coure o liear ytem theory. At ISU, EE 577 i oe uch coure ad i highly recommeded for power ytem egieerig tudet. We have developed

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

1. (a) If u (I : R J), there exists c 0 in R such that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hence, if j J, for all q 0, j q (cu q ) =

1. (a) If u (I : R J), there exists c 0 in R such that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hence, if j J, for all q 0, j q (cu q ) = Math 615, Witer 2016 Problem Set #5 Solutio 1. (a) If u (I : R J), there exit c 0 i R uch that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hece, if j J, for all q 0, j q (cu q ) = c(ju) q I [q], o

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

TI-83/84 Calculator Instructions for Math Elementary Statistics

TI-83/84 Calculator Instructions for Math Elementary Statistics TI-83/84 Calculator Itructio for Math 34- Elemetary Statitic. Eterig Data: Data oit are tored i Lit o the TI-83/84. If you have't ued the calculator before, you may wat to erae everythig that wa there.

More information

Chapter 9: Hypothesis Testing

Chapter 9: Hypothesis Testing Chapter 9: Hypothei Tetig Chapter 5 dicued the cocept of amplig ditributio ad Chapter 8 dicued how populatio parameter ca be etimated from a ample. 9. Baic cocept Hypothei Tetig We begi by makig a tatemet,

More information

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders) VIII. Iterval Etimatio A. A Few Importat Defiitio (Icludig Some Remider) 1. Poit Etimate - a igle umerical value ued a a etimate of a parameter.. Poit Etimator - the ample tatitic that provide the poit

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Performance-Based Plastic Design (PBPD) Procedure

Performance-Based Plastic Design (PBPD) Procedure Performace-Baed Platic Deig (PBPD) Procedure 3. Geeral A outlie of the tep-by-tep, Performace-Baed Platic Deig (PBPD) procedure follow, with detail to be dicued i ubequet ectio i thi chapter ad theoretical

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Queueing Theory (Part 3)

Queueing Theory (Part 3) Queueig Theory art 3 M/M/ Queueig Sytem with Variatio M/M/, M/M///K, M/M//// Queueig Theory- M/M/ Queueig Sytem We defie λ mea arrival rate mea ervice rate umber of erver > ρ λ / utilizatio ratio We require

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

On the 2-Domination Number of Complete Grid Graphs

On the 2-Domination Number of Complete Grid Graphs Ope Joural of Dicrete Mathematic, 0,, -0 http://wwwcirporg/oural/odm ISSN Olie: - ISSN Prit: - O the -Domiatio Number of Complete Grid Graph Ramy Shahee, Suhail Mahfud, Khame Almaea Departmet of Mathematic,

More information

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser Sytem Cotrol Leo #9a 76 Sytem Cotrol Baic roblem Say you have a ytem which you ca ot alter but it repoe i ot optimal Example Motor cotrol for exokeleto Robotic cotrol roblem that ca occur Utable Traiet

More information

The Performance of Feedback Control Systems

The Performance of Feedback Control Systems The Performace of Feedbac Cotrol Sytem Objective:. Secify the meaure of erformace time-domai the firt te i the deig roce Percet overhoot / Settlig time T / Time to rie / Steady-tate error e. ut igal uch

More information

Statistical Equations

Statistical Equations Statitical Equatio You are permitted to ue the iformatio o thee page durig your eam. Thee page are ot guarateed to cotai all the iformatio you will eed. If you fid iformatio which you believe hould be

More information

11/19/ Chapter 10 Overview. Chapter 10: Two-Sample Inference. + The Big Picture : Inference for Mean Difference Dependent Samples

11/19/ Chapter 10 Overview. Chapter 10: Two-Sample Inference. + The Big Picture : Inference for Mean Difference Dependent Samples /9/0 + + Chapter 0 Overview Dicoverig Statitic Eitio Daiel T. Laroe Chapter 0: Two-Sample Iferece 0. Iferece for Mea Differece Depeet Sample 0. Iferece for Two Iepeet Mea 0.3 Iferece for Two Iepeet Proportio

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Sums, products and sequences

Sums, products and sequences Sums, products ad sequeces How to write log sums, e.g., 1+2+ (-1)+ cocisely? i=1 Sum otatio ( sum from 1 to ): i 3 = 1 + 2 + + If =3, i=1 i = 1+2+3=6. The ame ii does ot matter. Could use aother letter

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Last time: Ground rules for filtering and control system design

Last time: Ground rules for filtering and control system design 6.3 Stochatic Etimatio ad Cotrol, Fall 004 Lecture 7 Lat time: Groud rule for filterig ad cotrol ytem deig Gral ytem Sytem parameter are cotaied i w( t ad w ( t. Deired output i grated by takig the igal

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

MTH 212 Formulas page 1 out of 7. Sample variance: s = Sample standard deviation: s = s

MTH 212 Formulas page 1 out of 7. Sample variance: s = Sample standard deviation: s = s MTH Formula age out of 7 DESCRIPTIVE TOOLS Poulatio ize = N Samle ize = x x+ x +... + x x Poulatio mea: µ = Samle mea: x = = N ( µ ) ( x x) Poulatio variace: = Samle variace: = N Poulatio tadard deviatio:

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

Frequency Domain Filtering

Frequency Domain Filtering Frequecy Domai Filterig Raga Rodrigo October 19, 2010 Outlie Cotets 1 Itroductio 1 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform 1 3 The 2-D Discrete Fourier Trasform

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance S T A T 4 - R a c h e l L. W e b b, P o r t l a d S t a t e U i v e r i t y P a g e Commo Symbol = Sample Size x = Sample Mea = Sample Stadard Deviatio = Sample Variace pˆ = Sample Proportio r = Sample

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Lecture 5: April 17, 2013

Lecture 5: April 17, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 5: April 7, 203 Scribe: Somaye Hashemifar Cheroff bouds recap We recall the Cheroff/Hoeffdig bouds we derived i the last lecture idepedet

More information

Statistics 511 Additional Materials

Statistics 511 Additional Materials Cofidece Itervals o mu Statistics 511 Additioal Materials This topic officially moves us from probability to statistics. We begi to discuss makig ifereces about the populatio. Oe way to differetiate probability

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

ECEN 655: Advanced Channel Coding Spring Lecture 7 02/04/14. Belief propagation is exact on tree-structured factor graphs.

ECEN 655: Advanced Channel Coding Spring Lecture 7 02/04/14. Belief propagation is exact on tree-structured factor graphs. ECEN 655: Advaced Chael Codig Sprig 014 Prof. Hery Pfister Lecture 7 0/04/14 Scribe: Megke Lia 1 4-Cycles i Gallager s Esemble What we already kow: Belief propagatio is exact o tree-structured factor graphs.

More information

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve Statitic ad Chemical Meauremet: Quatifyig Ucertaity The bottom lie: Do we trut our reult? Should we (or ayoe ele)? Why? What i Quality Aurace? What i Quality Cotrol? Normal or Gauia Ditributio The Bell

More information

Chapter 1 Econometrics

Chapter 1 Econometrics Chapter Ecoometric There are o exercie or applicatio i Chapter. 0 Pearo Educatio, Ic. Publihig a Pretice Hall Chapter The Liear Regreio Model There are o exercie or applicatio i Chapter. 0 Pearo Educatio,

More information

( ) (( ) ) ANSWERS TO EXERCISES IN APPENDIX B. Section B.1 VECTORS AND SETS. Exercise B.1-1: Convex sets. are convex, , hence. and. (a) Let.

( ) (( ) ) ANSWERS TO EXERCISES IN APPENDIX B. Section B.1 VECTORS AND SETS. Exercise B.1-1: Convex sets. are convex, , hence. and. (a) Let. Joh Riley 8 Jue 03 ANSWERS TO EXERCISES IN APPENDIX B Sectio B VECTORS AND SETS Exercise B-: Covex sets (a) Let 0 x, x X, X, hece 0 x, x X ad 0 x, x X Sice X ad X are covex, x X ad x X The x X X, which

More information

multiplies all measures of center and the standard deviation and range by k, while the variance is multiplied by k 2.

multiplies all measures of center and the standard deviation and range by k, while the variance is multiplied by k 2. Lesso 3- Lesso 3- Scale Chages of Data Vocabulary scale chage of a data set scale factor scale image BIG IDEA Multiplyig every umber i a data set by k multiplies all measures of ceter ad the stadard deviatio

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS So far i the tudie of cotrol yte the role of the characteritic equatio polyoial i deteriig the behavior of the yte ha bee highlighted. The root of that polyoial are the pole of the cotrol yte, ad their

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Introduction to Computational Biology Homework 2 Solution

Introduction to Computational Biology Homework 2 Solution Itroductio to Computatioal Biology Homework 2 Solutio Problem 1: Cocave gap pealty fuctio Let γ be a gap pealty fuctio defied over o-egative itegers. The fuctio γ is called sub-additive iff it satisfies

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

ECE 6980 An Algorithmic and Information-Theoretic Toolbox for Massive Data

ECE 6980 An Algorithmic and Information-Theoretic Toolbox for Massive Data ECE 6980 A Algorithmic ad Iformatio-Theoretic Toolbo for Massive Data Istructor: Jayadev Acharya Lecture # Scribe: Huayu Zhag 8th August, 017 1 Recap X =, ε is a accuracy parameter, ad δ is a error parameter.

More information

The Structure of Z p when p is Prime

The Structure of Z p when p is Prime LECTURE 13 The Structure of Z p whe p is Prime Theorem 131 If p > 1 is a iteger, the the followig properties are equivalet (1) p is prime (2) For ay [0] p i Z p, the equatio X = [1] p has a solutio i Z

More information

The Expectation-Maximization (EM) Algorithm

The Expectation-Maximization (EM) Algorithm The Expectatio-Maximizatio (EM) Algorithm Readig Assigmets T. Mitchell, Machie Learig, McGraw-Hill, 997 (sectio 6.2, hard copy). S. Gog et al. Dyamic Visio: From Images to Face Recogitio, Imperial College

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

Lecture 4 February 16, 2016

Lecture 4 February 16, 2016 MIT 6.854/18.415: Advaced Algorithms Sprig 16 Prof. Akur Moitra Lecture 4 February 16, 16 Scribe: Be Eysebach, Devi Neal 1 Last Time Cosistet Hashig - hash fuctios that evolve well Radom Trees - routig

More information

Further Investigation of alternative Formulation of RP Model with Response Error. Ed Stanek

Further Investigation of alternative Formulation of RP Model with Response Error. Ed Stanek Further vetigatio of alterative Formulatio of RP odel with Repoe Error Ed Staek TRODCTO We explore the predictor that will reult i a imple radom ample with repoe error whe a differet model i potulated

More information

Generalized Likelihood Functions and Random Measures

Generalized Likelihood Functions and Random Measures Pure Mathematical Sciece, Vol. 3, 2014, o. 2, 87-95 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pm.2014.437 Geeralized Likelihood Fuctio ad Radom Meaure Chrito E. Koutzaki Departmet of Mathematic

More information

Introduction to Computational Molecular Biology. Gibbs Sampling

Introduction to Computational Molecular Biology. Gibbs Sampling 18.417 Itroductio to Computatioal Molecular Biology Lecture 19: November 16, 2004 Scribe: Tushara C. Karuarata Lecturer: Ross Lippert Editor: Tushara C. Karuarata Gibbs Samplig Itroductio Let s first recall

More information

L = n i, i=1. dp p n 1

L = n i, i=1. dp p n 1 Exchageable sequeces ad probabilities for probabilities 1996; modified 98 5 21 to add material o mutual iformatio; modified 98 7 21 to add Heath-Sudderth proof of de Fietti represetatio; modified 99 11

More information

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 4 Dr Amir G Aghdam Cocordia Uiverity Part of thee ote are adapted from the material i the followig referece: Moder Cotrol Sytem by Richard C Dorf ad Robert H Bihop, Pretice Hall

More information

The multiplicative structure of finite field and a construction of LRC

The multiplicative structure of finite field and a construction of LRC IERG6120 Codig for Distributed Storage Systems Lecture 8-06/10/2016 The multiplicative structure of fiite field ad a costructio of LRC Lecturer: Keeth Shum Scribe: Zhouyi Hu Notatios: We use the otatio

More information

x c the remainder is Pc ().

x c the remainder is Pc (). Algebra, Polyomial ad Ratioal Fuctios Page 1 K.Paulk Notes Chapter 3, Sectio 3.1 to 3.4 Summary Sectio Theorem Notes 3.1 Zeros of a Fuctio Set the fuctio to zero ad solve for x. The fuctio is zero at these

More information