Fig. 1: Streamline coordinates

Size: px
Start display at page:

Download "Fig. 1: Streamline coordinates"

Transcription

1 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate, thi equatio give iformatio about ot oly about the preure-velocity relatiohip alog a treamlie (Beroulli equatio), but alo about how thee quatitie are related a oe move i the directio travere to the treamlie. The travere relatiohip i ofte overlooked i textbook, but i every bit a importat for udertadig may importat flow pheomea, a good example beig how lift i geerated o wig. A treamlie i a lie draw at a give itat i time o that it taget i at every poit i the directio of the local fluid velocity (Fig. 1). Streamlie idicate local flow directio, ot peed, which uually varie alog a treamlie. I teady flow the treamlie patter remai fixed with time; i uteady flow the treamlie patter may chage from itat to itat. Fig. 1: Streamlie coordiate I what follow, we implify the expoitio by coiderig oly teady, ivicid flow with a coervative body force (of which gravity i a example). A coervative force per uit ma G i oe that may be expreed a the gradiet of a time-ivariat calar fuctio, G = U(r ), (1)

2 2 ad the teady-tate Euler equatio reduce to 1 V V = p U(r). (2) ρ A uiform gravitatioal force per uit ma g poitig i the egative z directio i repreeted by the potetial U = gz. (3) A treamlie coordiate ytem i ot choe arbitrarily, but follow from the velocity field (which, we ote, i ot kow à priori). Aociated uiquely with ay poit r ad time t i a flow field are (Fig. 2): the treamlie that pae through the poit (treamlie caot cro), the treamlie local radiu of curvature ad ceter of curvature, ad the followig triad of orthogoal uit vector: i : i the flow directio i : i the ormal directio, away from the local ceter of curvature i l : i the bi-ormal directio, ( i l = i i ). The uit vector defie icremetal ditace d meaured alog the treamlie i the flow directio, d meaured i the ormal directio, away from the ceter of curvature, ad dl meaured i the bi-ormal directio. The radiu of curvature i defied a poitive if i poit away from the ceter of curvature, ad egative if i poit toward it. The uit vector, the radiu of curvature, ad the ceter of curvature all chage from poit to poit ad i uteady flow from time to time, depedig o the velocity field. To traform Euler equatio ito treamlie coordiate, we ote that i thoe coordiate 1, ad = i + i + i (4) l V = i V (5) where V i the magitude of the velocity vector V. From (4) ad (5), V = V (6) 1 f f f The gradiet of a calar fuctio f (,,l ) i defied by f dr df (,, l ) = d + d + dl. Equatio (4) follow l from thi defiitio ad the expreio dr = i d + i d + i l dl for a icremetal diplacemet i treamlie coordiate.

3 3 ad thu V 2 i (V )V = V (Vi ) = i + V 2 2. (7) The uit vector i the lat term of (7) chage orietatio a oe move alog the treamlie. The chage di i i from to +d i obtaied with the cotructio how i Fig. 2 a d di = i dθ = i (8) Fig. 2: Icremetal chage i the treamwie uit vector from to +d. from which we ee that i = i (9) Uig (9) i (7), we obtai the covective acceleratio a ( V ) V = i V 2 2 V 2 i (10) The firt term o the right i the covective acceleratio i the directio of the velocity, ad the ecod i the cetripetal acceleratio, toward the ceter of curvature. The preure gradiet i treamlie coordiate i p p p p = i + i + i l (11) l

4 4 Uig (10) ad (11) i (2), we obtai the equatio of motio i treamlie coordiate for teady, ivicid flow a -directio: V 2 = 1 p 2 ρ U (12) -directio: V 2 = 1 p ρ U l-directio: 0 = 1 p ρ l U l (13) (14) I a uiform gravitatioal field U=gz ad thee equatio read -directio: 1 ( 2 ρv 2 ) = 1 p ρ g z (15) -directio: V 2 = 1 p ρ g z l-directio: 0 = 1 p ρ l g z l (16) (17) For cotat-deity flow i a uiform gravitatioal field, the equatio implify further to ρv 2 -directio: p + ρgz + = 0 (18) 2 -directio: ( p + ρgz) = ρv 2 (19) l-directio: ( p + ρgz) = 0 (20) l The -directio equatio (18) tate Beroulli theorem: the total preure the um p + ρgz + ρv 2 2 of the tatic, gravitatioal, ad dyamic preure remai ivariat alog a treamlie. The -directio equatio (19) tate that whe there i flow ad the treamlie curve, the um p + ρgz (which i cotat i whe the fluid i tatic) icreae i the - directio, that i, a oe move away from the local ceter of curvature.

5 5 The l-directio equatio (20) tate that p + ρgz remai cotat for mall tep i the biormal directio, that i, the preure ditributio i quai-hydrotatic ditributio i the l-directio. EXAMPLE Coider the imple cae of 2D, ivicid air flow over a mooth hill (Fig. 3). Far uptream of the hill the icidet velocity i uiform at V. The hill deflect the air aroud it, ad a uiform flow i agai etablihed far dowtream. Far uptream, above, ad dowtream of the hill, the preure i cotat at p ad the treamlie are traight (the hill doe ot perturb the flow at ifiity ). We hall aume that gravitatioal effect are egligible (the medium i air ad the hill elevatio i modet) ad the free tream Mach umber i mall, o that ad the deity ca be take a cotat. Baed o the available equatio, what ca we ay about the preure ad velocity ditributio over the hill where i the velocity higher tha V, for example, ad where lower? Fig. 3: Sketch of treamlie i a 2D flow over a hill. To awer thi quetio accurately we eed to kow the hape of the treamlie throughout the flow field or, at leat, i the regio that i perturbed by the hill. We do t have thi iformatio, o we proceed by drawig a rough etimate of the treamlie patter, a how i Fig. 3. The differece betwee the preure at ifiity ad at the top of the hill, poit (3), ca be etimated by itegratig equatio (19) alog the vertical path from (3) to ( ). Sice thi path follow the local -directio, >0 everywhere alog it. Neglectig the gravitatioal term, (19) give from which we ee that p ρv 2 = (21)

6 6 ρv 2 d p p 3 = > 0 (22) 3 Thu p 3 < p, ad accordig to Beroulli equatio (18), it follow that V 3 > V. Uig imilar argumet, we coclude that p 1 = p adv 1 = V, ad p 2 > p ad V 2 < V, etc. I priciple, if () ad V() ca be etablihed or etimated, the itegral i (21) ca be evaluated. For example if we fid that the flow perturbatio caued by the hill i egligible at elevatio greater tha ome multiple of the height of the hilltop, we might write for the path from (3) to ( ) H hill e (23) where hill i the treamlie radiu of curvature i the viciity of the hilltop, i meaured from the top of the hill upward, ad H = βh i ome multiple β of the actual height h of the hilltop, the coefficiet β beig a empirical umber. From Beroulli equatio (18) we alo have that ρv 2 ρv 2 p + = p +, (24) 2 2 Subtitutig for ad V ito (21) from (23) ad (24), repectively, we itegrate (23) ad obtai 2 2 H p p 3 = ρv e hill 1 (25) 2 For a low hill uch that 2H<< hill, the expoetial term ca be expaded ad (25) implified to ρv 2 H p p 3 (26) hill The velocity at poit (3) ow follow from (24) ad (25) a or, i the ame low-hill approximatio a (26), H V hill 3 = V e (27) V 3 V 1 + H hill (28)

7 MIT OpeCoureWare Advaced Fluid Mechaic Fall 2013 For iformatio about citig thee material or our Term of Ue, viit:

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

Chapter 7, Solution 1C.

Chapter 7, Solution 1C. hapter 7, Solutio 1. he velocity of the fluid relative to the immered olid body ufficietly far away from a body i called the free-tream velocity,. he uptream or approach velocity i the velocity of the

More information

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i 0 Dirichlet Serie & Logarithmic Power Serie. Defiitio & Theorem Defiitio.. (Ordiary Dirichlet Serie) Whe,a,,3, are complex umber, we call the followig Ordiary Dirichlet Serie. f() a a a a 3 3 a 4 4 Note

More information

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation Société de Calcul Mathématique S A Algorithme et Optimiatio Radom amplig of proportio Berard Beauzamy Jue 2008 From time to time we fid a problem i which we do ot deal with value but with proportio For

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

TUTORIAL 6. Review of Electrostatic

TUTORIAL 6. Review of Electrostatic TUTOIAL 6 eview of Electrotatic Outlie Some mathematic Coulomb Law Gau Law Potulatio for electrotatic Electric potetial Poio equatio Boudar coditio Capacitace Some mathematic Del operator A operator work

More information

Brief Review of Linear System Theory

Brief Review of Linear System Theory Brief Review of Liear Sytem heory he followig iformatio i typically covered i a coure o liear ytem theory. At ISU, EE 577 i oe uch coure ad i highly recommeded for power ytem egieerig tudet. We have developed

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

Lecture 30: Frequency Response of Second-Order Systems

Lecture 30: Frequency Response of Second-Order Systems Lecture 3: Frequecy Repoe of Secod-Order Sytem UHTXHQF\ 5HVSRQVH RI 6HFRQGUGHU 6\VWHPV A geeral ecod-order ytem ha a trafer fuctio of the form b + b + b H (. (9.4 a + a + a It ca be table, utable, caual

More information

Isolated Word Recogniser

Isolated Word Recogniser Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

Performance-Based Plastic Design (PBPD) Procedure

Performance-Based Plastic Design (PBPD) Procedure Performace-Baed Platic Deig (PBPD) Procedure 3. Geeral A outlie of the tep-by-tep, Performace-Baed Platic Deig (PBPD) procedure follow, with detail to be dicued i ubequet ectio i thi chapter ad theoretical

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Weak formulation and Lagrange equations of motion

Weak formulation and Lagrange equations of motion Chapter 4 Weak formulatio ad Lagrage equatio of motio A mot commo approach to tudy tructural dyamic i the ue of the Lagrage equatio of motio. Thee are obtaied i thi chapter tartig from the Cauchy equatio

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE 20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE If the populatio tadard deviatio σ i ukow, a it uually will be i practice, we will have to etimate it by the ample tadard deviatio. Sice σ i ukow,

More information

Time Response. First Order Systems. Time Constant, T c We call 1/a the time constant of the response. Chapter 4 Time Response

Time Response. First Order Systems. Time Constant, T c We call 1/a the time constant of the response. Chapter 4 Time Response Time Repoe Chapter 4 Time Repoe Itroductio The output repoe of a ytem i the um of two repoe: the forced repoe ad the atural repoe. Although may techique, uch a olvig a differetial equatio or takig the

More information

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS So far i the tudie of cotrol yte the role of the characteritic equatio polyoial i deteriig the behavior of the yte ha bee highlighted. The root of that polyoial are the pole of the cotrol yte, ad their

More information

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes Explicit cheme So far coidered a fully explicit cheme to umerically olve the diffuio equatio: T + = ( )T + (T+ + T ) () with = κ ( x) Oly table for < / Thi cheme i ometime referred to a FTCS (forward time

More information

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Review of the Air Force Academy No. (34)/7 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Aca Ileaa LUPAŞ Military Techical Academy, Bucharet, Romaia (lua_a@yahoo.com) DOI:.96/84-938.7.5..6 Abtract:

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 4 Dr Amir G Aghdam Cocordia Uiverity Part of thee ote are adapted from the material i the followig referece: Moder Cotrol Sytem by Richard C Dorf ad Robert H Bihop, Pretice Hall

More information

We will conclude the chapter with the study a few methods and techniques which are useful

We will conclude the chapter with the study a few methods and techniques which are useful Chapter : Coordiate geometry: I this chapter we will lear about the mai priciples of graphig i a dimesioal (D) Cartesia system of coordiates. We will focus o drawig lies ad the characteristics of the graphs

More information

18.05 Problem Set 9, Spring 2014 Solutions

18.05 Problem Set 9, Spring 2014 Solutions 18.05 Problem Set 9, Sprig 2014 Solutio Problem 1. (10 pt.) (a) We have x biomial(, θ), o E(X) =θ ad Var(X) = θ(1 θ). The rule-of-thumb variace i jut 4. So the ditributio beig plotted are biomial(250,

More information

Queueing Theory (Part 3)

Queueing Theory (Part 3) Queueig Theory art 3 M/M/ Queueig Sytem with Variatio M/M/, M/M///K, M/M//// Queueig Theory- M/M/ Queueig Sytem We defie λ mea arrival rate mea ervice rate umber of erver > ρ λ / utilizatio ratio We require

More information

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w:

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w: Stat 400, ectio 7. Large Sample Cofidece Iterval ote by Tim Pilachowki a Large-Sample Two-ided Cofidece Iterval for a Populatio Mea ectio 7.1 redux The poit etimate for a populatio mea µ will be a ample

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

3.185 Problem Set 7. Fluid Dynamics. Solutions CORRECTED

3.185 Problem Set 7. Fluid Dynamics. Solutions CORRECTED 3.185 Problem Set 7 Fluid yamic Solutio CORRECTE 1. Power-law o-newtoia fluid behavior (a) If the fluid i peudoplatic, the a we icreae the hear trai rate, the ratio of trai rate to tre ux y /τ yx decreae,

More information

TESTS OF SIGNIFICANCE

TESTS OF SIGNIFICANCE TESTS OF SIGNIFICANCE Seema Jaggi I.A.S.R.I., Library Aveue, New Delhi eema@iari.re.i I applied ivetigatio, oe i ofte itereted i comparig ome characteritic (uch a the mea, the variace or a meaure of aociatio

More information

Fractional parts and their relations to the values of the Riemann zeta function

Fractional parts and their relations to the values of the Riemann zeta function Arab. J. Math. (08) 7: 8 http://doi.org/0.007/40065-07-084- Arabia Joural of Mathematic Ibrahim M. Alabdulmohi Fractioal part ad their relatio to the value of the Riema zeta fuctio Received: 4 Jauary 07

More information

} = 0 [ III-2b ] [ ] a exp [ i k r. [ ] a t. { } n, a r. ( ) = i ˆ. ( ) = i. ( ) exp i r. a exp i k r. a, etc...

} = 0 [ III-2b ] [ ] a exp [ i k r. [ ] a t. { } n, a r. ( ) = i ˆ. ( ) = i. ( ) exp i r. a exp i k r. a, etc... THE INTERACTION OF RADIATION AND MATTER: QUANTUM THEORY PAGE 19 III. REPRESENTATIONS OF PHOTON STATES 1. Fock or Number State:. 11 A we have ee, the Fock or umber tate { } r k σ r k σ [ III-1 ] are complete

More information

Generalized Likelihood Functions and Random Measures

Generalized Likelihood Functions and Random Measures Pure Mathematical Sciece, Vol. 3, 2014, o. 2, 87-95 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pm.2014.437 Geeralized Likelihood Fuctio ad Radom Meaure Chrito E. Koutzaki Departmet of Mathematic

More information

APPENDIX F Complex Numbers

APPENDIX F Complex Numbers APPENDIX F Complex Numbers Operatios with Complex Numbers Complex Solutios of Quadratic Equatios Polar Form of a Complex Number Powers ad Roots of Complex Numbers Operatios with Complex Numbers Some equatios

More information

Fluid Physics 8.292J/12.330J % (1)

Fluid Physics 8.292J/12.330J % (1) Fluid Physics 89J/133J Problem Set 5 Solutios 1 Cosider the flow of a Euler fluid i the x directio give by for y > d U = U y 1 d for y d U + y 1 d for y < This flow does ot vary i x or i z Determie the

More information

September 2012 C1 Note. C1 Notes (Edexcel) Copyright - For AS, A2 notes and IGCSE / GCSE worksheets 1

September 2012 C1 Note. C1 Notes (Edexcel) Copyright   - For AS, A2 notes and IGCSE / GCSE worksheets 1 September 0 s (Edecel) Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright

More information

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49 C22.0103 Sprig 2011 Homework 7 olutio 1. Baed o a ample of 50 x-value havig mea 35.36 ad tadard deviatio 4.26, fid a 95% cofidece iterval for the populatio mea. SOLUTION: The 95% cofidece iterval for the

More information

Salmon: Lectures on partial differential equations. 3. First-order linear equations as the limiting case of second-order equations

Salmon: Lectures on partial differential equations. 3. First-order linear equations as the limiting case of second-order equations 3. First-order liear equatios as the limitig case of secod-order equatios We cosider the advectio-diffusio equatio (1) v = 2 o a bouded domai, with boudary coditios of prescribed. The coefficiets ( ) (2)

More information

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS EULER-MACLAURI SUM FORMULA AD ITS GEERALIZATIOS AD APPLICATIOS Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre: Practicate Ada y Grijalba

More information

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders) VIII. Iterval Etimatio A. A Few Importat Defiitio (Icludig Some Remider) 1. Poit Etimate - a igle umerical value ued a a etimate of a parameter.. Poit Etimator - the ample tatitic that provide the poit

More information

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s CONTROL SYSTEMS Chapter 7 : Bode Plot GATE Objective & Numerical Type Solutio Quetio 6 [Practice Book] [GATE EE 999 IIT-Bombay : 5 Mark] The aymptotic Bode plot of the miimum phae ope-loop trafer fuctio

More information

Solutions to Homework 1

Solutions to Homework 1 Solutios to Homework MATH 36. Describe geometrically the sets of poits z i the complex plae defied by the followig relatios /z = z () Re(az + b) >, where a, b (2) Im(z) = c, with c (3) () = = z z = z 2.

More information

10-716: Advanced Machine Learning Spring Lecture 13: March 5

10-716: Advanced Machine Learning Spring Lecture 13: March 5 10-716: Advaced Machie Learig Sprig 019 Lecture 13: March 5 Lecturer: Pradeep Ravikumar Scribe: Charvi Ratogi, Hele Zhou, Nicholay opi Note: Lae template courtey of UC Berkeley EECS dept. Diclaimer: hee

More information

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions M7 Chapter 9 Sectio 1 OBJECTIVES Tet two mea with idepedet ample whe populatio variace are kow. Tet two variace with idepedet ample. Tet two mea with idepedet ample whe populatio variace are equal Tet

More information

Chapter 1 Econometrics

Chapter 1 Econometrics Chapter Ecoometric There are o exercie or applicatio i Chapter. 0 Pearo Educatio, Ic. Publihig a Pretice Hall Chapter The Liear Regreio Model There are o exercie or applicatio i Chapter. 0 Pearo Educatio,

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECE60: etwork Theory Broadbad Circuit Deig Fall 04 Lecture 3: PLL Aalyi Sam Palermo Aalog & Mixed-Sigal Ceter Texa A&M Uiverity Ageda & Readig PLL Overview & Applicatio PLL Liear Model Phae & Frequecy

More information

13.4 Scalar Kalman Filter

13.4 Scalar Kalman Filter 13.4 Scalar Kalma Filter Data Model o derive the Kalma filter we eed the data model: a 1 + u < State quatio > + w < Obervatio quatio > Aumptio 1. u i zero mea Gauia, White, u } σ. w i zero mea Gauia, White,

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

CHAPTER 8 SYSTEMS OF PARTICLES

CHAPTER 8 SYSTEMS OF PARTICLES CHAPTER 8 SYSTES OF PARTICLES CHAPTER 8 COLLISIONS 45 8. CENTER OF ASS The ceter of mass of a system of particles or a rigid body is the poit at which all of the mass are cosidered to be cocetrated there

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former) Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC 1 Advaced Digital Sigal Proceig Sidelobe Caceller (Beam Former) Erick L. Obertar 001 Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS ME 40 MECHANICAL ENGINEERING REGRESSION ANALYSIS Regreio problem deal with the relatiohip betwee the frequec ditributio of oe (depedet) variable ad aother (idepedet) variable() which i (are) held fied

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Hidden Markov Model Parameters

Hidden Markov Model Parameters .PPT 5/04/00 Lecture 6 HMM Traiig Traiig Hidde Markov Model Iitial model etimate Viterbi traiig Baum-Welch traiig 8.7.PPT 5/04/00 8.8 Hidde Markov Model Parameter c c c 3 a a a 3 t t t 3 c a t A Hidde

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

The axial dispersion model for tubular reactors at steady state can be described by the following equations: dc dz R n cn = 0 (1) (2) 1 d 2 c.

The axial dispersion model for tubular reactors at steady state can be described by the following equations: dc dz R n cn = 0 (1) (2) 1 d 2 c. 5.4 Applicatio of Perturbatio Methods to the Dispersio Model for Tubular Reactors The axial dispersio model for tubular reactors at steady state ca be described by the followig equatios: d c Pe dz z =

More information

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations Differece Equatios to Differetial Equatios Sectio. Calculus: Areas Ad Tagets The study of calculus begis with questios about chage. What happes to the velocity of a swigig pedulum as its positio chages?

More information

New integral representations. . The polylogarithm function

New integral representations. . The polylogarithm function New itegral repreetatio of the polylogarithm fuctio Djurdje Cvijović Atomic Phyic Laboratory Viča Ititute of Nuclear Sciece P.O. Box 5 Belgrade Serbia. Abtract. Maximo ha recetly give a excellet ummary

More information

Confidence Intervals: Three Views Class 23, Jeremy Orloff and Jonathan Bloom

Confidence Intervals: Three Views Class 23, Jeremy Orloff and Jonathan Bloom Cofidece Iterval: Three View Cla 23, 18.05 Jeremy Orloff ad Joatha Bloom 1 Learig Goal 1. Be able to produce z, t ad χ 2 cofidece iterval baed o the correpodig tadardized tatitic. 2. Be able to ue a hypothei

More information

HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT. Examples:

HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT. Examples: 5.6 4 Lecture #3-4 page HE ATOM & APPROXIMATION METHODS MORE GENERAL VARIATIONAL TREATMENT Do t restrict the wavefuctio to a sigle term! Could be a liear combiatio of several wavefuctios e.g. two terms:

More information

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing

Physics 116A Solutions to Homework Set #1 Winter Boas, problem Use equation 1.8 to find a fraction describing Physics 6A Solutios to Homework Set # Witer 0. Boas, problem. 8 Use equatio.8 to fid a fractio describig 0.694444444... Start with the formula S = a, ad otice that we ca remove ay umber of r fiite decimals

More information

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun ECE 4 Power Sytem Operatio & Plaig 6 Small Sigal Stability Sprig 15 Itructor: Kai Su 1 Referece Saadat Chapter 11.4 EPRI Tutorial Chapter 8 Power Ocillatio Kudur Chapter 1 Power Ocillatio The power ytem

More information

Two or more points can be used to describe a rigid body. This will eliminate the need to define rotational coordinates for the body!

Two or more points can be used to describe a rigid body. This will eliminate the need to define rotational coordinates for the body! OINTCOORDINATE FORMULATION Two or more poits ca be used to describe a rigid body. This will elimiate the eed to defie rotatioal coordiates for the body i z r i i, j r j j rimary oits: The coordiates of

More information

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014 Aigmet - Solutio ECSE 420 Parallel Computig Fall 204 ovember 2, 204. (%) Decribe briefly the followig term, expoe their caue, ad work-aroud the idutry ha udertake to overcome their coequece: (i) Memory

More information

4. The critical magnetic field

4. The critical magnetic field 4. The critical magetic field The critical curret deity ad the critical magetic field The upercurret deity ha a limit: J C Whe the upercoductor i applied with a magetic field, a upercurret i geerated o

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistat Professor Departmet of Mathematics Uiversity Of Kalyai West Begal, Idia E-mail : sahoopulak1@gmail.com 1 Module-2: Stereographic Projectio 1 Euler

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

On the 2-Domination Number of Complete Grid Graphs

On the 2-Domination Number of Complete Grid Graphs Ope Joural of Dicrete Mathematic, 0,, -0 http://wwwcirporg/oural/odm ISSN Olie: - ISSN Prit: - O the -Domiatio Number of Complete Grid Graph Ramy Shahee, Suhail Mahfud, Khame Almaea Departmet of Mathematic,

More information

The Interval of Convergence for a Power Series Examples

The Interval of Convergence for a Power Series Examples The Iterval of Covergece for a Power Series Examples To review the process: How to Test a Power Series for Covergece. Fid the iterval where the series coverges absolutely. We have to use the Ratio or Root

More information

Notes on the GSW function gsw_geostrophic_velocity (geo_strf,long,lat,p)

Notes on the GSW function gsw_geostrophic_velocity (geo_strf,long,lat,p) Notes o gsw_geostrophic_velocity Notes o the GSW fuctio gsw_geostrophic_velocity (geo_strf,log,lat,p) Notes made 7 th October 2, ad updated 8 th April 2. This fuctio gsw_geostrophic_velocity(geo_strf,log,lat,p)

More information

Notes The Incremental Motion Model:

Notes The Incremental Motion Model: The Icremetal Motio Model: The Jacobia Matrix I the forward kiematics model, we saw that it was possible to relate joit agles θ, to the cofiguratio of the robot ed effector T I this sectio, we will see

More information

The Stokes Theorem. (Sect. 16.7) The curl of a vector field in space

The Stokes Theorem. (Sect. 16.7) The curl of a vector field in space The tokes Theorem. (ect. 6.7) The curl of a vector field i space. The curl of coservative fields. tokes Theorem i space. Idea of the proof of tokes Theorem. The curl of a vector field i space Defiitio

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

Cascade theory. The theory in this lecture comes from: Fluid Mechanics of Turbomachinery by George F. Wislicenus Dover Publications, INC.

Cascade theory. The theory in this lecture comes from: Fluid Mechanics of Turbomachinery by George F. Wislicenus Dover Publications, INC. Caade theory The theory i thi leture ome from: Fluid Mehai of Turbomahiery by George F. Wilieu Dover Publiatio, INC. 1965 d = dt 0 = + Y ρ 0 = p + = kot. F Y d F X X Cotour i the hage of loity due to the

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 1206 Calculus Sec 1: Estimatig with Fiite Sums Abbreviatios: wrt with respect to! for all! there exists! therefore Def defiitio Th m Theorem sol solutio! perpedicular iff or! if ad oly if pt poit

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

Introduction to Control Systems

Introduction to Control Systems Itroductio to Cotrol Sytem CLASSIFICATION OF MATHEMATICAL MODELS Icreaig Eae of Aalyi Static Icreaig Realim Dyamic Determiitic Stochatic Lumped Parameter Ditributed Parameter Liear Noliear Cotat Coefficiet

More information

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c)

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c) Problem. Compute the itegrals C r d for Z, where C r = ad r >. Recall that C r has the couter-clockwise orietatio. Solutio: We will use the idue Theorem to solve this oe. We could istead use other (perhaps

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

True Nature of Potential Energy of a Hydrogen Atom

True Nature of Potential Energy of a Hydrogen Atom True Nature of Potetial Eergy of a Hydroge Atom Koshu Suto Key words: Bohr Radius, Potetial Eergy, Rest Mass Eergy, Classical Electro Radius PACS codes: 365Sq, 365-w, 33+p Abstract I cosiderig the potetial

More information

ES.182A Topic 40 Notes Jeremy Orloff

ES.182A Topic 40 Notes Jeremy Orloff ES.182A opic 4 Notes Jeremy Orloff 4 Flux: ormal form of Gree s theorem Gree s theorem i flux form is formally equivalet to our previous versio where the lie itegral was iterpreted as work. Here we will

More information

Mathematics Extension 2

Mathematics Extension 2 009 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Etesio Geeral Istructios Readig time 5 miutes Workig time hours Write usig black or blue pe Board-approved calculators may be used A table of stadard

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser Sytem Cotrol Leo #9a 76 Sytem Cotrol Baic roblem Say you have a ytem which you ca ot alter but it repoe i ot optimal Example Motor cotrol for exokeleto Robotic cotrol roblem that ca occur Utable Traiet

More information

2015 Fermat Contest (Grade 11)

2015 Fermat Contest (Grade 11) The CENTRE for EDUCATION i MATHEMATICS ad COMPUTING cemc.uwaterloo.ca 015 Fermat Cotet (Grade 11) Tueday, February 4, 015 (i North America ad South America) Wededay, February 5, 015 (outide of North America

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

More information

Appendix F: Complex Numbers

Appendix F: Complex Numbers Appedix F Complex Numbers F1 Appedix F: Complex Numbers Use the imagiary uit i to write complex umbers, ad to add, subtract, ad multiply complex umbers. Fid complex solutios of quadratic equatios. Write

More information