10-716: Advanced Machine Learning Spring Lecture 13: March 5

Size: px
Start display at page:

Download "10-716: Advanced Machine Learning Spring Lecture 13: March 5"

Transcription

1 10-716: Advaced Machie Learig Sprig 019 Lecture 13: March 5 Lecturer: Pradeep Ravikumar Scribe: Charvi Ratogi, Hele Zhou, Nicholay opi Note: Lae template courtey of UC Berkeley EECS dept. Diclaimer: hee ote have ot bee ubjected to the uual crutiy reerved for formal publicatio. hey may be ditributed outide thi cla oly with the permiio of the Itructor. I the previou clae aw that i the oiy ettig we ca o loger expect to achieve perfect recovery. Itead we focu o boudig the l error betwee a Lao olutio ˆθ ad the ukow regreio vector θ log p ˆθ θ = c, where deote the parity, p deote the ambiet dimeio ad i the umber of ample obtaied. Note that thi i a huge reductio from the liear rate i p to a logarithmic rate of covergece. We eed to udertad if covergece of l orm i a ufficiet metric for recovery of pare liear model. For example, coider the cae where θ = 0, ˆθ = 1 I. So, ˆθ θ 1, but Sˆθ = {1,, p} = Sθ. hi example illutrate that jut a good covergece rate i ot ufficiet, the upport et hould match too kow a variable electio coitecy. We will how i the ret of the lecture that uder ome aumptio the Lao olutio eure that the upport et are the ame i the limitig cae, ie, Sˆθ = Sθ Lao Solutio A1 Aumptio 1: Retricted Eigevalue Coditio tate that, if S = upportθ the λ S S mi c mi > hi aumptio i alo kow a the idetifiability coditio. We ote that the retricted eigevalue coditio aloe oly aure l covergece. Aother way to tate thi i c mi > 0 : S c = A Aumptio : he irrepreetability aumptio tate that S S 1 S j 1 1 α < 1 j S c hi aumptio ca be udertood a the olutio ŵ for the ordiary leat quare OLS problem ŵ = arg if w j. hi coditio implie that the vector j i ot too related to the upport vector i ad hece caot be repreeted by them. Keepig thee aumptio i mid, we tate oe of the mai theorem for the Lao olutio. 13-1

2 13- Lecture 13: March 5 heorem 13.1 Coider a S-pare liear regreio model for which the deig matrix atifie coditio A1 ad A. he for ay choice of regularizatio parameter uch that the Lagragia Lao ha the followig propertie: λ α S c Π S w a uique ˆθ that olve the lao problem. Sˆθ Sθ. 3. ˆθ θ S S 1 S w + λ S 1 S = r 4. No fale excluio of all j Sθ for which θ j > r I equatio 13.4, λ give a upper boud o the maximum oie level i the p elemet i S c. o udertad thi theorem, we firt look at the what the projectio matrix Π S i equatio 13.4 mea. Π S = S S S 1 S, where S i a matrix ad hece Π S i a matrix. he projectio matrix that o pre-multiplyig project a vector u to the S pace. hi ca be ee a follow - ˆβ = arg if u Sβ β = S S 1 S u S ˆβ = S S S 1 S u 13.5 Note that Π S = I Π S Π S c. Poit 4 follow from 3 i that if ˆθ θ r, the for a fale excluio to occur θj would have to be maller tha r to go udetected, which directly lead to the cocluio i tatemet Side ote: Norm Defiitio Before provig the ret of theorem, let have a quick recap of the defiitio of differet matrix ad vector orm Vector l p orm : u p = p 1 j=1 u j p p Matrix operator orm : A p = up u 0 Au p u p Spectral Norm : A = max igular valuea Matrix Ifiity orm : A = max j p k=1 A jk Variable Selectio Coitecy for the Lao with Gauia Noie heorem 13.1 i a reult that applie to ay et of liear regreio equatio. Now, uppoe that the oie i.i.d. i Gauia, i.e., w i N0, σ. here are a few part to thi example:

3 Lecture 13: March Part 1: We will firt derive a upper boud for the lower boud of λ i heorem Part : he, lookig at Property 3 i heorem 13.1, we will derive a upper boud for Put part 1 ad together ad make ome obervatio. 1. Part 1: I order to boud S cπ S w which ha dimeio p 1, we coider oe elemet i the vector at a time, ad the boud the maximum acro all elemet. Let Z j refer to the jth etry of the vector: Z j = j Π S w = a w for ome j S c, ad where a = j Π S. Sice a i determiitic ad w i i Gauia, we kow that Z j i Gauia with mea 0 ad variace σ a. hat i, Z j N0, σ a where a = j Π S. If you aume that the colum are ormalized, i.e., max p j=1 j c, the ice projectio i ever expaive the L orm ever icreae, a = j Π S he, Z j i ubgauia with parameter cσ. Uig the Gauia tail boud ad uio boud, we get j c. P max z j > t j S c = max j S c z j cσ t p exp c σ logp + δ w.p. 1 exp δ hu, S cπ S w logp cσ + δ. Part : We alo have to boud 1 a 1 vector. o do thi, we itroduce z j = e j 1 = a w 1 for ome j {1,,..., } where a = e j. Note that e j i the jth tadard bai vector 0 everywhere ad a 1 i the jth dimeio. A before, we compute a :

4 13-4 Lecture 13: March 5 a = a a = e j 1 1 e j 1 e j = 1 e j 1 1 = c mi / where c mi = 1. hu, uig a imilar boud o the maximum abolute value of z j, we ca boud the l orm a follow: 1 { } 1 log + σ cmi Puttig both part together: We have bouded with high probability that S cπ S w max j S c z j cσ logp + δ ad that 1 { } 1 log + σ cmi Pluggig ito heorem 13.1, we ee that we get withi log p of the bet poible rate Side Note: Sub-gradiet Let f be a covex fuctio. Whe f i differetiable, the lie fθ = fθ 0 + fθ 0 θ θ 0 lie below fθ. However, thi require differetiability. z i a ub-gradiet of f at θ 0 iff fθ fθ 0 + z, θ θ 0 θ Θ. Whe f i ot differetiable, we could have everal z value that atify thi. he ub-differetial i the et of all uch z value. A ub-gradiet i oe uch z value. If fθ i the L-1 orm, the whe θ i o-zero, it i differetiable ad it gradiet i the ig of θ. Whe θ = 0, ay taget lie with lope betwee 1 to 1 lie below fθ ee Figure

5 Lecture 13: March Figure 13.1: Subgradiet for the L1 orm fuctio. Whe olvig for a tatioary poit mi θ fθ, oe ormally et the derivative to 0 fθ = 0 ad the olve. Whe f i ot differetiable, ca itead require that 0 i i the ub-gradiet of θ Proof of Lagragia Lao Propertie heorem 13.1 o olve 1 y θ 1 + λ θ 1, let u ue the ub-gradiet: θ y + λ z = 0 for ome z ˆθ 1. We eed to how that for ay ˆθ that atifie the above, ˆθ S c = 0 i.e., o irrelevat coordiate are picked. Will cotruct a ˆθ, ẑ pair uch that the coditio are already atified: 1. ˆθ c = 0.. he firt part of the tatioary coditio i atified. 3. ẑ ˆθ 1 with high probability. We ue a cotructive procedure, called the primal-dual wite techique. hi create a ˆθ, ẑ pair which i primal-dual optimal ad atifie the required coditio. he cotructio procedure i a follow: 1. ˆθ c = 0.. Set ˆθ by olvig: ˆθ = if θ y θ + λ θ Chooe ẑ δ ˆθ 1 uch that 1 ˆθ y + λ ẑ = c ˆθ y + λ ẑ = 0. Referece [waiwright] M. Waiwright, Chapter 7, High Dimeioal Statitic, Prereleae, 019

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49 C22.0103 Sprig 2011 Homework 7 olutio 1. Baed o a ample of 50 x-value havig mea 35.36 ad tadard deviatio 4.26, fid a 95% cofidece iterval for the populatio mea. SOLUTION: The 95% cofidece iterval for the

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

Generalized Likelihood Functions and Random Measures

Generalized Likelihood Functions and Random Measures Pure Mathematical Sciece, Vol. 3, 2014, o. 2, 87-95 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pm.2014.437 Geeralized Likelihood Fuctio ad Radom Meaure Chrito E. Koutzaki Departmet of Mathematic

More information

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions M7 Chapter 9 Sectio 1 OBJECTIVES Tet two mea with idepedet ample whe populatio variace are kow. Tet two variace with idepedet ample. Tet two mea with idepedet ample whe populatio variace are equal Tet

More information

Lecture 12: February 28

Lecture 12: February 28 10-716: Advaced Machie Learig Sprig 2019 Lecture 12: February 28 Lecturer: Pradeep Ravikumar Scribes: Jacob Tyo, Rishub Jai, Ojash Neopae Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Collective Support Recovery for Multi-Design Multi-Response Linear Regression

Collective Support Recovery for Multi-Design Multi-Response Linear Regression IEEE TRANACTION ON INFORMATION THEORY, VOL XX, NO XX, XX 4 Collective upport Recovery for Multi-Deig Multi-Repoe Liear Regreio eiguag ag, Yigbi Liag, Eric P Xig Abtract The multi-deig multi-repoe MDMR

More information

TESTS OF SIGNIFICANCE

TESTS OF SIGNIFICANCE TESTS OF SIGNIFICANCE Seema Jaggi I.A.S.R.I., Library Aveue, New Delhi eema@iari.re.i I applied ivetigatio, oe i ofte itereted i comparig ome characteritic (uch a the mea, the variace or a meaure of aociatio

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

Isolated Word Recogniser

Isolated Word Recogniser Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier

More information

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE 20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE If the populatio tadard deviatio σ i ukow, a it uually will be i practice, we will have to etimate it by the ample tadard deviatio. Sice σ i ukow,

More information

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS EULER-MACLAURI SUM FORMULA AD ITS GEERALIZATIOS AD APPLICATIOS Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre: Practicate Ada y Grijalba

More information

18.05 Problem Set 9, Spring 2014 Solutions

18.05 Problem Set 9, Spring 2014 Solutions 18.05 Problem Set 9, Sprig 2014 Solutio Problem 1. (10 pt.) (a) We have x biomial(, θ), o E(X) =θ ad Var(X) = θ(1 θ). The rule-of-thumb variace i jut 4. So the ditributio beig plotted are biomial(250,

More information

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2

COMPARISONS INVOLVING TWO SAMPLE MEANS. Two-tail tests have these types of hypotheses: H A : 1 2 Tetig Hypothee COMPARISONS INVOLVING TWO SAMPLE MEANS Two type of hypothee:. H o : Null Hypothei - hypothei of o differece. or 0. H A : Alterate Hypothei hypothei of differece. or 0 Two-tail v. Oe-tail

More information

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve

Statistics and Chemical Measurements: Quantifying Uncertainty. Normal or Gaussian Distribution The Bell Curve Statitic ad Chemical Meauremet: Quatifyig Ucertaity The bottom lie: Do we trut our reult? Should we (or ayoe ele)? Why? What i Quality Aurace? What i Quality Cotrol? Normal or Gauia Ditributio The Bell

More information

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes Explicit cheme So far coidered a fully explicit cheme to umerically olve the diffuio equatio: T + = ( )T + (T+ + T ) () with = κ ( x) Oly table for < / Thi cheme i ometime referred to a FTCS (forward time

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

TI-83/84 Calculator Instructions for Math Elementary Statistics

TI-83/84 Calculator Instructions for Math Elementary Statistics TI-83/84 Calculator Itructio for Math 34- Elemetary Statitic. Eterig Data: Data oit are tored i Lit o the TI-83/84. If you have't ued the calculator before, you may wat to erae everythig that wa there.

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

8.6 Order-Recursive LS s[n]

8.6 Order-Recursive LS s[n] 8.6 Order-Recurive LS [] Motivate ti idea wit Curve Fittig Give data: 0,,,..., - [0], [],..., [-] Wat to fit a polyomial to data.., but wic oe i te rigt model?! Cotat! Quadratic! Liear! Cubic, Etc. ry

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

1 Duality revisited. AM 221: Advanced Optimization Spring 2016

1 Duality revisited. AM 221: Advanced Optimization Spring 2016 AM 22: Advaced Optimizatio Sprig 206 Prof. Yaro Siger Sectio 7 Wedesday, Mar. 9th Duality revisited I this sectio, we will give a slightly differet perspective o duality. optimizatio program: f(x) x R

More information

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former) Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC 1 Advaced Digital Sigal Proceig Sidelobe Caceller (Beam Former) Erick L. Obertar 001 Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC

More information

Confidence Intervals: Three Views Class 23, Jeremy Orloff and Jonathan Bloom

Confidence Intervals: Three Views Class 23, Jeremy Orloff and Jonathan Bloom Cofidece Iterval: Three View Cla 23, 18.05 Jeremy Orloff ad Joatha Bloom 1 Learig Goal 1. Be able to produce z, t ad χ 2 cofidece iterval baed o the correpodig tadardized tatitic. 2. Be able to ue a hypothei

More information

Confidence Intervals. Confidence Intervals

Confidence Intervals. Confidence Intervals A overview Mot probability ditributio are idexed by oe me parameter. F example, N(µ,σ 2 ) B(, p). I igificace tet, we have ued poit etimat f parameter. F example, f iid Y 1,Y 2,...,Y N(µ,σ 2 ), Ȳ i a poit

More information

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS So far i the tudie of cotrol yte the role of the characteritic equatio polyoial i deteriig the behavior of the yte ha bee highlighted. The root of that polyoial are the pole of the cotrol yte, ad their

More information

UNIVERSITY OF CALICUT

UNIVERSITY OF CALICUT Samplig Ditributio 1 UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION BSc. MATHEMATICS COMPLEMENTARY COURSE CUCBCSS 2014 Admiio oward III Semeter STATISTICAL INFERENCE Quetio Bak 1. The umber of poible

More information

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance

S T A T R a c h e l L. W e b b, P o r t l a n d S t a t e U n i v e r s i t y P a g e 1. = Population Variance S T A T 4 - R a c h e l L. W e b b, P o r t l a d S t a t e U i v e r i t y P a g e Commo Symbol = Sample Size x = Sample Mea = Sample Stadard Deviatio = Sample Variace pˆ = Sample Proportio r = Sample

More information

IntroEcono. Discrete RV. Continuous RV s

IntroEcono. Discrete RV. Continuous RV s ItroEcoo Aoc. Prof. Poga Porchaiwiekul, Ph.D... ก ก e-mail: Poga.P@chula.ac.th Homepage: http://pioeer.chula.ac.th/~ppoga (c) Poga Porchaiwiekul, Chulalogkor Uiverity Quatitative, e.g., icome, raifall

More information

Chapter 9: Hypothesis Testing

Chapter 9: Hypothesis Testing Chapter 9: Hypothei Tetig Chapter 5 dicued the cocept of amplig ditributio ad Chapter 8 dicued how populatio parameter ca be etimated from a ample. 9. Baic cocept Hypothei Tetig We begi by makig a tatemet,

More information

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation Société de Calcul Mathématique S A Algorithme et Optimiatio Radom amplig of proportio Berard Beauzamy Jue 2008 From time to time we fid a problem i which we do ot deal with value but with proportio For

More information

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders) VIII. Iterval Etimatio A. A Few Importat Defiitio (Icludig Some Remider) 1. Poit Etimate - a igle umerical value ued a a etimate of a parameter.. Poit Etimator - the ample tatitic that provide the poit

More information

Stat 3411 Spring 2011 Assignment 6 Answers

Stat 3411 Spring 2011 Assignment 6 Answers Stat 3411 Sprig 2011 Aigmet 6 Awer (A) Awer are give i 10 3 cycle (a) 149.1 to 187.5 Sice 150 i i the 90% 2-ided cofidece iterval, we do ot reject H 0 : µ 150 v i favor of the 2-ided alterative H a : µ

More information

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w:

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w: Stat 400, ectio 7. Large Sample Cofidece Iterval ote by Tim Pilachowki a Large-Sample Two-ided Cofidece Iterval for a Populatio Mea ectio 7.1 redux The poit etimate for a populatio mea µ will be a ample

More information

11/19/ Chapter 10 Overview. Chapter 10: Two-Sample Inference. + The Big Picture : Inference for Mean Difference Dependent Samples

11/19/ Chapter 10 Overview. Chapter 10: Two-Sample Inference. + The Big Picture : Inference for Mean Difference Dependent Samples /9/0 + + Chapter 0 Overview Dicoverig Statitic Eitio Daiel T. Laroe Chapter 0: Two-Sample Iferece 0. Iferece for Mea Differece Depeet Sample 0. Iferece for Two Iepeet Mea 0.3 Iferece for Two Iepeet Proportio

More information

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i 0 Dirichlet Serie & Logarithmic Power Serie. Defiitio & Theorem Defiitio.. (Ordiary Dirichlet Serie) Whe,a,,3, are complex umber, we call the followig Ordiary Dirichlet Serie. f() a a a a 3 3 a 4 4 Note

More information

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm.

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm. } CHAPTER 6 Cofidece Iterval 6.1 (a) y = 1269; = 145; = 8. The tadard error of the mea i SE ȳ = = 145 8 = 51.3 g/gm. (b) y = 1269; = 145; = 30. The tadard error of the mea i ȳ = 145 = 26.5 g/gm. 30 6.2

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

Brief Review of Linear System Theory

Brief Review of Linear System Theory Brief Review of Liear Sytem heory he followig iformatio i typically covered i a coure o liear ytem theory. At ISU, EE 577 i oe uch coure ad i highly recommeded for power ytem egieerig tudet. We have developed

More information

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector Summary ad Discussio o Simultaeous Aalysis of Lasso ad Datzig Selector STAT732, Sprig 28 Duzhe Wag May 4, 28 Abstract This is a discussio o the work i Bickel, Ritov ad Tsybakov (29). We begi with a short

More information

Positive solutions of singular (k,n-k) conjugate boundary value problem

Positive solutions of singular (k,n-k) conjugate boundary value problem Joural of Applied Mathematic & Bioiformatic vol5 o 25-2 ISSN: 792-662 prit 792-699 olie Sciepre Ltd 25 Poitive olutio of igular - cojugate boudar value problem Ligbi Kog ad Tao Lu 2 Abtract Poitive olutio

More information

Supplemental Material: Proofs

Supplemental Material: Proofs Proof to Theorem Supplemetal Material: Proofs Proof. Let be the miimal umber of traiig items to esure a uique solutio θ. First cosider the case. It happes if ad oly if θ ad Rak(A) d, which is a special

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 30 Sigal & Sytem Prof. Mark Fowler Note Set #8 C-T Sytem: Laplace Traform Solvig Differetial Equatio Readig Aigmet: Sectio 6.4 of Kame ad Heck / Coure Flow Diagram The arrow here how coceptual flow

More information

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution Applied Mathematic E-Note, 9009, 300-306 c ISSN 1607-510 Available free at mirror ite of http://wwwmaththuedutw/ ame/ A Tail Boud For Sum Of Idepedet Radom Variable Ad Applicatio To The Pareto Ditributio

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Review of the Air Force Academy No. (34)/7 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Aca Ileaa LUPAŞ Military Techical Academy, Bucharet, Romaia (lua_a@yahoo.com) DOI:.96/84-938.7.5..6 Abtract:

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

24 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS

24 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS 24 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS Corollary 2.30. Suppose that the semisimple decompositio of the G- module V is V = i S i. The i = χ V,χ i Proof. Sice χ V W = χ V + χ W, we have:

More information

On the Positive Definite Solutions of the Matrix Equation X S + A * X S A = Q

On the Positive Definite Solutions of the Matrix Equation X S + A * X S A = Q The Ope Applied Mathematic Joural 011 5 19-5 19 Ope Acce O the Poitive Defiite Solutio of the Matrix Equatio X S + A * X S A = Q Maria Adam * Departmet of Computer Sciece ad Biomedical Iformatic Uiverity

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 4 Dr Amir G Aghdam Cocordia Uiverity Part of thee ote are adapted from the material i the followig referece: Moder Cotrol Sytem by Richard C Dorf ad Robert H Bihop, Pretice Hall

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

Statistical Intervals Based on a Single Sample (Devore Chapter Seven)

Statistical Intervals Based on a Single Sample (Devore Chapter Seven) Statitical Iterval Baed o a Sigle Sample Devore Chapter Seve MATH-252-01: robability ad Statitic II Sprig 2018 Cotet 0 Itroductio 1 0.1 Motivatio...................... 1 0.2 Remider of Notatio................

More information

Chapter 1 ASPECTS OF MUTIVARIATE ANALYSIS

Chapter 1 ASPECTS OF MUTIVARIATE ANALYSIS Chapter ASPECTS OF MUTIVARIATE ANALYSIS. Itroductio Defiitio Wiipedia: Multivariate aalyi MVA i baed o the tatitical priciple of multivariate tatitic which ivolve obervatio ad aalyi of more tha oe tatitical

More information

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution A tail boud for um of idepedet radom variable : applicatio to the ymmetric Pareto ditributio Chritophe Cheeau To cite thi verio: Chritophe Cheeau. A tail boud for um of idepedet radom variable : applicatio

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.

Tables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc. Table ad Formula for Sulliva, Fudametal of Statitic, e. 008 Pearo Educatio, Ic. CHAPTER Orgaizig ad Summarizig Data Relative frequecy frequecy um of all frequecie Cla midpoit: The um of coecutive lower

More information

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS

ME 410 MECHANICAL ENGINEERING SYSTEMS LABORATORY REGRESSION ANALYSIS ME 40 MECHANICAL ENGINEERING REGRESSION ANALYSIS Regreio problem deal with the relatiohip betwee the frequec ditributio of oe (depedet) variable ad aother (idepedet) variable() which i (are) held fied

More information

THE ADAPTIVE LASSSO UNDER A GENERALIZED SPARSITY CONDITION. Joel L. Horowitz Department of Economics Northwestern University Evanston, IL

THE ADAPTIVE LASSSO UNDER A GENERALIZED SPARSITY CONDITION. Joel L. Horowitz Department of Economics Northwestern University Evanston, IL THE ADAPTIVE LASSSO UNDER A GENERALIZED SPARSITY CONDITION by Joel L. Horowitz Departmet of Ecoomic Northweter Uiverity Evato, IL 68 ad Jia Huag Departmet of Statitic ad Actuarial Sciece Uiverity of Iowa

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

Last time: Ground rules for filtering and control system design

Last time: Ground rules for filtering and control system design 6.3 Stochatic Etimatio ad Cotrol, Fall 004 Lecture 7 Lat time: Groud rule for filterig ad cotrol ytem deig Gral ytem Sytem parameter are cotaied i w( t ad w ( t. Deired output i grated by takig the igal

More information

13.4 Scalar Kalman Filter

13.4 Scalar Kalman Filter 13.4 Scalar Kalma Filter Data Model o derive the Kalma filter we eed the data model: a 1 + u < State quatio > + w < Obervatio quatio > Aumptio 1. u i zero mea Gauia, White, u } σ. w i zero mea Gauia, White,

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

Difference tests (1): parametric

Difference tests (1): parametric NST B Eperimetal Pychology Statitic practical Differece tet (): parametric Rudolf Cardial & Mike Aitke / 3 December 003; Departmet of Eperimetal Pychology Uiverity of Cambridge Hadout: Awer to Eample (from

More information

Lecture 30: Frequency Response of Second-Order Systems

Lecture 30: Frequency Response of Second-Order Systems Lecture 3: Frequecy Repoe of Secod-Order Sytem UHTXHQF\ 5HVSRQVH RI 6HFRQGUGHU 6\VWHPV A geeral ecod-order ytem ha a trafer fuctio of the form b + b + b H (. (9.4 a + a + a It ca be table, utable, caual

More information

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate Supplemetary Material for Fast Stochastic AUC Maximizatio with O/-Covergece Rate Migrui Liu Xiaoxua Zhag Zaiyi Che Xiaoyu Wag 3 iabao Yag echical Lemmas ized versio of Hoeffdig s iequality, ote that We

More information

Lecture 13: Maximum Likelihood Estimation

Lecture 13: Maximum Likelihood Estimation ECE90 Sprig 007 Statistical Learig Theory Istructor: R. Nowak Lecture 3: Maximum Likelihood Estimatio Summary of Lecture I the last lecture we derived a risk (MSE) boud for regressio problems; i.e., select

More information

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences Turkih Joural of Aalyi ad Number Theory, 4, Vol., No. 6, 33-38 Available olie at http://pub.ciepub.com/tjat//6/9 Sciece ad Educatio Publihig DOI:.69/tjat--6-9 Geeralized Fiboacci Like Sequece Aociated

More information

Further Investigation of alternative Formulation of RP Model with Response Error. Ed Stanek

Further Investigation of alternative Formulation of RP Model with Response Error. Ed Stanek Further vetigatio of alterative Formulatio of RP odel with Repoe Error Ed Staek TRODCTO We explore the predictor that will reult i a imple radom ample with repoe error whe a differet model i potulated

More information

Tools Hypothesis Tests

Tools Hypothesis Tests Tool Hypothei Tet The Tool meu provide acce to a Hypothei Tet procedure that calculate cofidece iterval ad perform hypothei tet for mea, variace, rate ad proportio. It i cotrolled by the dialog box how

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

Parameter Estimation for Discretely Observed Vasicek Model Driven by Small Lévy Noises

Parameter Estimation for Discretely Observed Vasicek Model Driven by Small Lévy Noises arameter Etimatio for Dicretely Oberved Vaicek Model Drive by Small Lévy Noie Chao Wei Abtract Thi paper i cocered with the parameter etimatio problem for Vaicek model drive by mall Lévy oie from dicrete

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Ω ). Then the following inequality takes place:

Ω ). Then the following inequality takes place: Lecture 8 Lemma 5. Let f : R R be a cotiuously differetiable covex fuctio. Choose a costat δ > ad cosider the subset Ωδ = { R f δ } R. Let Ωδ ad assume that f < δ, i.e., is ot o the boudary of f = δ, i.e.,

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

On The Computation Of Weighted Shapley Values For Cooperative TU Games

On The Computation Of Weighted Shapley Values For Cooperative TU Games O he Computatio Of Weighted hapley Value For Cooperative U Game Iriel Draga echical Report 009-0 http://www.uta.edu/math/preprit/ Computatio of Weighted hapley Value O HE COMPUAIO OF WEIGHED HAPLEY VALUE

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

Elementary Statistics

Elementary Statistics Two Samle Mea Cha08 Dr. Ghamary Page Elemetary Statitic M. Ghamary, Ph.D. Chater 8 Tet of Hyothei a Cofiece Iterval for Two Samle Two Samle Mea Cha08 Dr. Ghamary Page Tet of Hyothei for Two amle: A Statitical

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

ECON 3150/4150, Spring term Lecture 3

ECON 3150/4150, Spring term Lecture 3 Itroductio Fidig the best fit by regressio Residuals ad R-sq Regressio ad causality Summary ad ext step ECON 3150/4150, Sprig term 2014. Lecture 3 Ragar Nymoe Uiversity of Oslo 21 Jauary 2014 1 / 30 Itroductio

More information

Chapter 8.2. Interval Estimation

Chapter 8.2. Interval Estimation Chapter 8.2. Iterval Etimatio Baic of Cofidece Iterval ad Large Sample Cofidece Iterval 1 Baic Propertie of Cofidece Iterval Aumptio: X 1, X 2,, X are from Normal ditributio with a mea of µ ad tadard deviatio.

More information

b i u x i U a i j u x i u x j

b i u x i U a i j u x i u x j M ath 5 2 7 Fall 2 0 0 9 L ecture 1 9 N ov. 1 6, 2 0 0 9 ) S ecod- Order Elliptic Equatios: Weak S olutios 1. Defiitios. I this ad the followig two lectures we will study the boudary value problem Here

More information

11/27/2017. PHY 741 Quantum Mechanics 12-12:50 AM MWF Olin 103. Plan for Lecture 34:

11/27/2017. PHY 741 Quantum Mechanics 12-12:50 AM MWF Olin 103. Plan for Lecture 34: PHY 7 Quatum Mechaic -:5 AM MWF Oli Pla for Lecture : Chap. i Shakar: for a hydroge atom The Dirac equatio. Agular ad pi compoet. Radial compoet. Compario with o-relativitic reult PHY 7 Fall 7 -- Lecture

More information

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK)

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) Everythig marked by is ot required by the course syllabus I this lecture, all vector spaces is over the real umber R. All vectors i R is viewed as a colum

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

Estimation Theory. goavendaño. Estimation Theory

Estimation Theory. goavendaño. Estimation Theory Etimatio Theory Statitical Iferece method by which geeralizatio are made about a populatio Two Major Area of Statitical Iferece. Etimatio a parameter i etablihed baed o the amplig ditributio of a proportio,

More information