Frequency Domain Filtering

Size: px
Start display at page:

Download "Frequency Domain Filtering"

Transcription

1 Frequecy Domai Filterig Raga Rodrigo October 19, 2010 Outlie Cotets 1 Itroductio 1 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform 1 3 The 2-D Discrete Fourier Trasform 4 Filterig i the Frequecy Domai 6 Obtaiig Frequecy Domai Filters from Spatial Domai Filters 8 1 Itroductio I the previous lecture we studied some spatial filterig techiques. However, to thoughtfully uderstad filterig, we eed the kowledge of the frequecy domai ad the Fourier trasform. The Fourier trasforms ad Fourier series are due to the Frech mathematicia Jea Baptiste Joseph Fourier. Fourier s cotributio states that ay periodic fuctio ca be expressed as the sum of sies ad or cosies of differet frequecies, each multiplied by a differet coefficiet. This sum is called the Fourier series. Eve fuctios that are ot periodic, but have fiite areas uder the curve, ca be expressed as a itegral of sies ad cosies multiplied by a weightig fuctio. We call this formulatio Fourier trasform. Both represetatio share the importat characteristic that a fuctio, expressed i either the Fourier series or trasform, ca be recostructed (recovered) via a iverse process. As the images that we will deal with are fuctios of fiite domai, we will study about the Fourier trasform. I particular we will study the two-dimesioal discrete Fourier trasform. 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform The Discrete Fourier Trasform 1

2 The discrete Fourier trasform is the Fourier represetatio of fiite-duratio sequeces. We begi by cosiderig a fiite-legth sequece x[] of legth N samples such that x[] = 0 outside the rage 0 N 1. To each fiite-legth sequece we ca always associate a periodic sequece x[]. The periodic sequece x[] is give by x[] = r = x[ + r N ]. The fiite-legth sequece x[] ca be recovered from x[]. { x[], 0 N 1, x[] = 0, otherwise. (1a) (1b) DFS coefficiets of x[] are samples (spaced i frequecy by 2π/N ) of the Fourier trasform of x[]. Sice x[] is assumed to have fiite legth N, there is o overlap betwee the terms x[ + r N ] for differet values of r. Thus Eq. 1a ca alteratively be writte as Usig the otatio (()) N to deote ( modulo N ); x[] = x[( modulo N )]. (2) x[] = x[(()) N ]. (3) The sequece of discrete Fourier series coefficiets X [k] of the periodic sequece x[] is itself a periodic sequece with period N. To maitai a duality betwee the time ad frequecy domais, we will choose the Fourier coefficiets that we associate with a fiite-duratio sequece to be a fiite-duratio sequece correspodig to oe period of X [k]. This fiite-duratio sequece, X [k], will be referred to as the discrete Fourier trasform (DFT). Thus the DFT, X [k], is related to the DFS coefficiets, X [k], by X [k] = { X [k], 0 k N 1, 0, otherwise, (4) ad X [k] = X [(k modulo N )] = X [((k)) N ]. () From our discussio o DFS, X [k] ad x[] are related by ad X [k] = x[]w k N, (6) x[] = 1 N =0 k=0 X [k]w k N. (7) 2

3 For coveiece, these equatios are ofte writte i terms of the complex quatity W N, defied as W N = e j (2π/N ). (8) Sice the summatio i Eqs. 6 ad 7 ivolve oly the iterval betwee 0 ad N 1, it follows that ad X [k] = { N 1 k =0 x[]w N 0 k N 1, 0, otherwise, { 1 N 1 x[] = X N [k]w k k=0 N 0 N 1, 0, otherwise. (9) (10) Geerally the DFT aalysis ad sythesis equatios are writte as Aalysis equatio: X [k] = x[]w k N, (11) =0 ad where Sythesis equatio: x[] = 1 N W N = e j (2π/N ). k=0 X [k]w k N. (12) That is, the fact that X [k] = 0 for k outside the iterval 0 k N 1 ad that x[] = 0 for outside the iterval 0 N 1 is implied but ot always stated explicitly. The relatioship betwee x[] ad X [k] implied by Eqs. 11 ad 12 will sometimes be deoted as x[] DF T X [k]. (13) I Eqs. 11 ad 12 for fiite-duratio sequece, we have ot elimiated the iheret periodicity. I defiig the DFT represetatio we are simply recogizig that we are iterested i values of x[] oly i the iterval 0 N 1 because x[] is really zero outside that iterval, ad we are iterested i values of X [k] oly i the iterval 0 k N 1 because these are the oly values eeded i Eq. 12. Example 1. Determie the DFT of the fiite-duratio sequece x[] show i Fig. 1 by cosiderig the legth to be 1. N =, ad 2. N = 10. 3

4 x[] Figure 1: Fiite-legth sequece x[]. x[] x[] X [k] X (e j ω ) k, ω X [k] k Figure 2: DFT for the fiite-legth sequece x[]. N =. x[] x[] X [k] X (e j ω ) k, ω X [k] k Figure 3: DFT for the fiite-legth sequece x[]. N = 10. 4

5 3 The 2-D Discrete Fourier Trasform 2-D DFT Equatio The 2-D discrete Fourier trasform (DFT) is give by F (u, v) = M 1 x=0 y=0 f (x, y)e j 2π(ux/M+v y/n ), (14) where f (x, y) is a digital image of size M N. x ad y are the spatial variables ad u ad v are the frequecy-domai variables. Equatio 14 must be evaluated for values of the discrete variables u ad v i the rages u = 0,1,..., M 1 ad v = 0,1,..., N 1. Iverse 2-D DFT Equatio Give the trasform F (u, v), we ca obtai f (x, y) by usig the iverse discrete Fourier trasform (IDFT): f (x, y) = 1 M N M 1 u=0 v=0 for x = 0,1,... M 1 ad y = 0,1,... N 1. F (u, v)e j 2π(ux/M+v y/n ), (1) Zero Ceterig Whe we apply Equatio 14 to obtai the DFT, the four corers of the DFT image will correspod to the low frequecies ad the ceter correspods to high frequecies. Visual aalysis of the spectrum is simplified by movig the values at the origi of the trasform to the ceter of the frequecy rectagle. This ca be accomplished by multiplyig f (x, y) by ( 1) x+y prior to the computatio of the 2-D Fourier trasform. Figure 4 shows the Fourier spectrum, this trasformatio ad visual ehacemet usig log(1 + F ). Usig Matlab for DFT The followig code will produce 4(b). f = imread ( image.bmp ) ; F = f f t 2 ( f ) ; S = abs (F ) ; imshow( S, [ ] ) ; The followig code will produce 4(c). f = imread ( image.bmp ) ; F = f f t 2 ( f ) ; Fc = f f t s h i f t (F ) ; imshow( abs ( Fc ), [ ] ) ; The followig code will produce 4(d). f = imread ( image.bmp ) ; F = f f t 2 ( f ) ; Fc = f f t s h i f t (F ) ; S2 = log (1+ abs ( Fc ) ) ; imshow( S2, [ ] ) ;

6 (a) Image (b) Fourier spectrum (c) Cetered spectrum (d) Ehaced spectrum Figure 4: DFT of a simple image. Zero Paddig If we are to use the DFT for filterig, it is ecessary to pad the iput image with zeros. I this case the sytax becomes F = f f t 2 ( f, P, Q) ; Here, fft2 pads the iput with the required umber of zeros so that the resultig fuctio is of size P Q. Iverse DFT Iverse DFT is computed as f = i f f t 2 (F ) ; To remove the possible small imagiary part, we may have to use f = r e a l ( i f f t 2 (F ) ) ; 4 Filterig i the Frequecy Domai Filterig i the frequecy domai is coceptually simple. The foudatio for liear filterig i both the spatial ad frequecy domai is the covolutio theorem. ad, coversely f (x, y) h(x, y) H(u, v)f (u, v) (16) f (x, y)h(x, y) H(u, v) F (u, v) (17) Here the symbol icidets the covolutio of the two fuctios. Whe the kerel h(x, y) is symmetric, this is similar to spatial filterig. These equatios show that the covolutio of two spatial fuctios correspod to the product of Fourier trasforms of the kerel ad the image. H(u, v) is referred to as the filter trasfer fuctio. 6

7 Basic Steps i DFT Filterig 1. Obtai the paddig parameters usig the fuctio paddedsize: PQ = paddedsize ( side ( f ) ) ; 2. Obtai the Fourier trasform with paddig: F = f f t 2 ( f, PQ( 1 ), PQ( 2 ) ) ; 3. Geerate a filter fuctio, H, of size PQ(1) PQ(2). The filter must also me cetered. 4. Multiply the trasform by the filter: G = H. * F ;. Obtai the real part of the iverse FFT of G: g = r e a l ( i f f t 2 (G) ) ; 6. Crop the top-left rectagle to the origial size: g = g ( 1 : s i z e ( f, 1 ), 1 : s i z e ( f, 2 ) ) ; A m-fuctio for Filterig i Frequecy Domai The six steps that we discussed above ca be captured i to a m-fuctio. Example 2. Write a m-fuctio that takes two argumets, a image f ad a filter trasfer fuctio H, ad geerates a filtered image g. What are the coditios ecessary? 7

8 Obtaiig Frequecy Domai Filters from Spatial Domai Filters I geeral, filterig i the spatial domai is more computatioally efficiet tha frequecy domai filterig whe the filters are small. Spatial filters ca be coverted to equivalet frequecy domai filters usig the freqz2 fuctio: H = freqz2 (h, R,C) where h is a 2-D spatial filter ad H is the correspodig 2-D frequecy domai filter. Here, R ad C are the umber of rows ad colums the we wish the filter H to have. Example 3. Obtai the frequecy domai filter correspodig to the Sobel filter to detect vertical edges. Example 4. Write a program to carry out Sobel filterig i frequecy domai. 8

Fall 2011, EE123 Digital Signal Processing

Fall 2011, EE123 Digital Signal Processing Lecture 5 Miki Lustig, UCB September 14, 211 Miki Lustig, UCB Motivatios for Discrete Fourier Trasform Sampled represetatio i time ad frequecy umerical Fourier aalysis requires a Fourier represetatio that

More information

Finite-length Discrete Transforms. Chapter 5, Sections

Finite-length Discrete Transforms. Chapter 5, Sections Fiite-legth Discrete Trasforms Chapter 5, Sectios 5.2-50 5.0 Dr. Iyad djafar Outlie The Discrete Fourier Trasform (DFT) Matrix Represetatio of DFT Fiite-legth Sequeces Circular Covolutio DFT Symmetry Properties

More information

Chapter 8. DFT : The Discrete Fourier Transform

Chapter 8. DFT : The Discrete Fourier Transform Chapter 8 DFT : The Discrete Fourier Trasform Roots of Uity Defiitio: A th root of uity is a complex umber x such that x The th roots of uity are: ω, ω,, ω - where ω e π /. Proof: (ω ) (e π / ) (e π )

More information

FIR Filter Design: Part II

FIR Filter Design: Part II EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we cosider how we might go about desigig FIR filters with arbitrary frequecy resposes, through compositio of multiple sigle-peak

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement Practical Spectral Aaysis (cotiue) (from Boaz Porat s book) Frequecy Measuremet Oe of the most importat applicatios of the DFT is the measuremet of frequecies of periodic sigals (eg., siusoidal sigals),

More information

2D DSP Basics: 2D Systems

2D DSP Basics: 2D Systems - Digital Image Processig ad Compressio D DSP Basics: D Systems D Systems T[ ] y = T [ ] Liearity Additivity: If T y = T [ ] The + T y = y + y Homogeeity: If The T y = T [ ] a T y = ay = at [ ] Liearity

More information

Ch3 Discrete Time Fourier Transform

Ch3 Discrete Time Fourier Transform Ch3 Discrete Time Fourier Trasform 3. Show that the DTFT of [] is give by ( k). e k 3. Determie the DTFT of the two sided sigal y [ ],. 3.3 Determie the DTFT of the causal sequece x[ ] A cos( 0 ) [ ],

More information

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and Filter bas Separately, the lowpass ad highpass filters are ot ivertible T removes the highest frequecy / ad removes the lowest frequecy Together these filters separate the sigal ito low-frequecy ad high-frequecy

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we itroduce the idea of the frequecy respose of LTI systems, ad focus specifically o the frequecy respose of FIR filters.. Steady-state

More information

FFTs in Graphics and Vision. The Fast Fourier Transform

FFTs in Graphics and Vision. The Fast Fourier Transform FFTs i Graphics ad Visio The Fast Fourier Trasform 1 Outlie The FFT Algorithm Applicatios i 1D Multi-Dimesioal FFTs More Applicatios Real FFTs 2 Computatioal Complexity To compute the movig dot-product

More information

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals. Z - Trasform The -trasform is a very importat tool i describig ad aalyig digital systems. It offers the techiques for digital filter desig ad frequecy aalysis of digital sigals. Defiitio of -trasform:

More information

A. Basics of Discrete Fourier Transform

A. Basics of Discrete Fourier Transform A. Basics of Discrete Fourier Trasform A.1. Defiitio of Discrete Fourier Trasform (8.5) A.2. Properties of Discrete Fourier Trasform (8.6) A.3. Spectral Aalysis of Cotiuous-Time Sigals Usig Discrete Fourier

More information

Vibratory Motion. Prof. Zheng-yi Feng NCHU SWC. National CHung Hsing University, Department of Soil and Water Conservation

Vibratory Motion. Prof. Zheng-yi Feng NCHU SWC. National CHung Hsing University, Department of Soil and Water Conservation Vibratory Motio Prof. Zheg-yi Feg NCHU SWC 1 Types of vibratory motio Periodic motio Noperiodic motio See Fig. A1, p.58 Harmoic motio Periodic motio Trasiet motio impact Trasiet motio earthquake A powerful

More information

Chapter 7: The z-transform. Chih-Wei Liu

Chapter 7: The z-transform. Chih-Wei Liu Chapter 7: The -Trasform Chih-Wei Liu Outlie Itroductio The -Trasform Properties of the Regio of Covergece Properties of the -Trasform Iversio of the -Trasform The Trasfer Fuctio Causality ad Stability

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

6.003 Homework #12 Solutions

6.003 Homework #12 Solutions 6.003 Homework # Solutios Problems. Which are rue? For each of the D sigals x [] through x 4 [] below), determie whether the coditios listed i the followig table are satisfied, ad aswer for true or F for

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 301 Sigals & Systems Prof. Mark Fowler Note Set #8 D-T Covolutio: The Tool for Fidig the Zero-State Respose Readig Assigmet: Sectio 2.1-2.2 of Kame ad Heck 1/14 Course Flow Diagram The arrows here

More information

The Discrete Fourier Transform

The Discrete Fourier Transform The iscrete Fourier Trasform The discrete-time Fourier trasform (TFT) of a sequece is a cotiuous fuctio of!, ad repeats with period. I practice we usually wat to obtai the Fourier compoets usig digital

More information

6.003 Homework #12 Solutions

6.003 Homework #12 Solutions 6.003 Homework # Solutios Problems. Which are rue? For each of the D sigals x [] through x 4 [] (below), determie whether the coditios listed i the followig table are satisfied, ad aswer for true or F

More information

ELEG3503 Introduction to Digital Signal Processing

ELEG3503 Introduction to Digital Signal Processing ELEG3503 Itroductio to Digital Sigal Processig 1 Itroductio 2 Basics of Sigals ad Systems 3 Fourier aalysis 4 Samplig 5 Liear time-ivariat (LTI) systems 6 z-trasform 7 System Aalysis 8 System Realizatio

More information

ADVANCED DIGITAL SIGNAL PROCESSING

ADVANCED DIGITAL SIGNAL PROCESSING ADVANCED DIGITAL SIGNAL PROCESSING PROF. S. C. CHAN (email : sccha@eee.hku.hk, Rm. CYC-702) DISCRETE-TIME SIGNALS AND SYSTEMS MULTI-DIMENSIONAL SIGNALS AND SYSTEMS RANDOM PROCESSES AND APPLICATIONS ADAPTIVE

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Chapter 2 Systems and Signals

Chapter 2 Systems and Signals Chapter 2 Systems ad Sigals 1 Itroductio Discrete-Time Sigals: Sequeces Discrete-Time Systems Properties of Liear Time-Ivariat Systems Liear Costat-Coefficiet Differece Equatios Frequecy-Domai Represetatio

More information

Optimum LMSE Discrete Transform

Optimum LMSE Discrete Transform Image Trasformatio Two-dimesioal image trasforms are extremely importat areas of study i image processig. The image output i the trasformed space may be aalyzed, iterpreted, ad further processed for implemetig

More information

MAXIMALLY FLAT FIR FILTERS

MAXIMALLY FLAT FIR FILTERS MAXIMALLY FLAT FIR FILTERS This sectio describes a family of maximally flat symmetric FIR filters first itroduced by Herrma [2]. The desig of these filters is particularly simple due to the availability

More information

Linear time invariant systems

Linear time invariant systems Liear time ivariat systems Alejadro Ribeiro Dept. of Electrical ad Systems Egieerig Uiversity of Pesylvaia aribeiro@seas.upe.edu http://www.seas.upe.edu/users/~aribeiro/ February 25, 2016 Sigal ad Iformatio

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

EE422G Homework #13 (12 points)

EE422G Homework #13 (12 points) EE422G Homework #1 (12 poits) 1. (5 poits) I this problem, you are asked to explore a importat applicatio of FFT: efficiet computatio of covolutio. The impulse respose of a system is give by h(t) (.9),1,2,,1

More information

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal.

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal. x[ ] x[ ] x[] x[] x[] x[] 9 8 7 6 5 4 3 3 4 5 6 7 8 9 Figure. Graphical represetatio of a discrete-time sigal. From Discrete-Time Sigal Processig, e by Oppeheim, Schafer, ad Buck 999- Pretice Hall, Ic.

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser FIR Filters Lecture #7 Chapter 5 8 What Is this Course All About? To Gai a Appreciatio of the Various Types of Sigals ad Systems To Aalyze The Various Types of Systems To Lear the Skills ad Tools eeded

More information

Spring 2014, EE123 Digital Signal Processing

Spring 2014, EE123 Digital Signal Processing Aoucemets EE3 Digital Sigal Processig Last time: FF oday: Frequecy aalysis with DF Widowig Effect of zero-paddig Lecture 9 based o slides by J.M. Kah Spectral Aalysis with the DF Spectral Aalysis with

More information

The Discrete Fourier Transform

The Discrete Fourier Transform The Discrete Fourier Trasform Complex Fourier Series Represetatio Recall that a Fourier series has the form a 0 + a k cos(kt) + k=1 b k si(kt) This represetatio seems a bit awkward, sice it ivolves two

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

: Transforms and Partial Differential Equations

: Transforms and Partial Differential Equations Trasforms ad Partial Differetial Equatios 018 SUBJECT NAME : Trasforms ad Partial Differetial Equatios SUBJECT CODE : MA 6351 MATERIAL NAME : Part A questios REGULATION : R013 WEBSITE : wwwharigaeshcom

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

2 Geometric interpretation of complex numbers

2 Geometric interpretation of complex numbers 2 Geometric iterpretatio of complex umbers 2.1 Defiitio I will start fially with a precise defiitio, assumig that such mathematical object as vector space R 2 is well familiar to the studets. Recall that

More information

Wavelet Transform and its relation to multirate filter banks

Wavelet Transform and its relation to multirate filter banks Wavelet Trasform ad its relatio to multirate filter bas Christia Walliger ASP Semiar th Jue 007 Graz Uiversity of Techology, Austria Professor Georg Holzma, Horst Cerja, Christia 9..005 Walliger.06.07

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Chapter 7 z-transform

Chapter 7 z-transform Chapter 7 -Trasform Itroductio Trasform Uilateral Trasform Properties Uilateral Trasform Iversio of Uilateral Trasform Determiig the Frequecy Respose from Poles ad Zeros Itroductio Role i Discrete-Time

More information

Question1 Multiple choices (circle the most appropriate one):

Question1 Multiple choices (circle the most appropriate one): Philadelphia Uiversity Studet Name: Faculty of Egieerig Studet Number: Dept. of Computer Egieerig Fial Exam, First Semester: 2014/2015 Course Title: Digital Sigal Aalysis ad Processig Date: 01/02/2015

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

The Method of Least Squares. To understand least squares fitting of data.

The Method of Least Squares. To understand least squares fitting of data. The Method of Least Squares KEY WORDS Curve fittig, least square GOAL To uderstad least squares fittig of data To uderstad the least squares solutio of icosistet systems of liear equatios 1 Motivatio Curve

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

Exponential Moving Average Pieter P

Exponential Moving Average Pieter P Expoetial Movig Average Pieter P Differece equatio The Differece equatio of a expoetial movig average lter is very simple: y[] x[] + (1 )y[ 1] I this equatio, y[] is the curret output, y[ 1] is the previous

More information

COMM 602: Digital Signal Processing

COMM 602: Digital Signal Processing COMM 60: Digital Sigal Processig Lecture 4 -Properties of LTIS Usig Z-Trasform -Iverse Z-Trasform Properties of LTIS Usig Z-Trasform Properties of LTIS Usig Z-Trasform -ve +ve Properties of LTIS Usig Z-Trasform

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5 Sigals ad Systems Sigals ad Systems Sigals are variables that carry iformatio Systemstake sigals as iputs ad produce sigals as outputs The course deals with the passage of sigals through systems T-6.4

More information

ENGI Series Page 6-01

ENGI Series Page 6-01 ENGI 3425 6 Series Page 6-01 6. Series Cotets: 6.01 Sequeces; geeral term, limits, covergece 6.02 Series; summatio otatio, covergece, divergece test 6.03 Stadard Series; telescopig series, geometric series,

More information

Math 234 Test 1, Tuesday 27 September 2005, 4 pages, 30 points, 75 minutes.

Math 234 Test 1, Tuesday 27 September 2005, 4 pages, 30 points, 75 minutes. Math 34 Test 1, Tuesday 7 September 5, 4 pages, 3 poits, 75 miutes. The high score was 9 poits out of 3, achieved by two studets. The class average is 3.5 poits out of 3, or 77.5%, which ordiarily would

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES I geeral, it is difficult to fid the exact sum of a series. We were able to accomplish this for geometric series ad the series /[(+)]. This is

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 265-25 Advaced Traiig Course o FPGA esig ad VHL for Hardware Simulatio ad Sythesis 26 October - 2 ovember, 29 igital Sigal Processig The iscrete Fourier Trasform Massimiliao olich EEI Facolta' di Igegeria

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math E-2b Lecture #8 Notes This week is all about determiats. We ll discuss how to defie them, how to calculate them, lear the allimportat property kow as multiliearity, ad show that a square matrix A

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

(, ) (, ) (, ) ( ) ( )

(, ) (, ) (, ) ( ) ( ) PROBLEM ANSWER X Y x, x, rect, () X Y, otherwise D Fourier trasform is defied as ad i D case it ca be defied as We ca write give fuctio from Eq. () as It follows usig Eq. (3) it ( ) ( ) F f t e dt () i(

More information

Digital signal processing: Lecture 5. z-transformation - I. Produced by Qiangfu Zhao (Since 1995), All rights reserved

Digital signal processing: Lecture 5. z-transformation - I. Produced by Qiangfu Zhao (Since 1995), All rights reserved Digital sigal processig: Lecture 5 -trasformatio - I Produced by Qiagfu Zhao Sice 995, All rights reserved DSP-Lec5/ Review of last lecture Fourier trasform & iverse Fourier trasform: Time domai & Frequecy

More information

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation Module 8 Discrete Time Sigals ad Z-Trasforms Objective:To uderstad represetig discrete time sigals, apply z trasform for aalyzigdiscrete time sigals ad to uderstad the relatio to Fourier trasform Itroductio

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

Dirichlet s Theorem on Arithmetic Progressions

Dirichlet s Theorem on Arithmetic Progressions Dirichlet s Theorem o Arithmetic Progressios Athoy Várilly Harvard Uiversity, Cambridge, MA 0238 Itroductio Dirichlet s theorem o arithmetic progressios is a gem of umber theory. A great part of its beauty

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors.

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors. Quiz November 4th, 23 Sigals & Systems (5-575-) P. Reist & Prof. R. D Adrea Solutios Exam Duratio: 4 miutes Number of Problems: 4 Permitted aids: Noe. Use oly the prepared sheets for your solutios. Additioal

More information

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods TMA4205 Numerical Liear Algebra The Poisso problem i R 2 : diagoalizatio methods September 3, 2007 c Eiar M Røquist Departmet of Mathematical Scieces NTNU, N-749 Trodheim, Norway All rights reserved A

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

John Riley 30 August 2016

John Riley 30 August 2016 Joh Riley 3 August 6 Basic mathematics of ecoomic models Fuctios ad derivatives Limit of a fuctio Cotiuity 3 Level ad superlevel sets 3 4 Cost fuctio ad margial cost 4 5 Derivative of a fuctio 5 6 Higher

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math S-b Lecture # Notes This wee is all about determiats We ll discuss how to defie them, how to calculate them, lear the allimportat property ow as multiliearity, ad show that a square matrix A is ivertible

More information

Beurling Integers: Part 2

Beurling Integers: Part 2 Beurlig Itegers: Part 2 Isomorphisms Devi Platt July 11, 2015 1 Prime Factorizatio Sequeces I the last article we itroduced the Beurlig geeralized itegers, which ca be represeted as a sequece of real umbers

More information

Let A(x) and B(x) be two polynomials of degree n 1:

Let A(x) and B(x) be two polynomials of degree n 1: MI-EVY (2011/2012) J. Holub: 4. DFT, FFT ad Patter Matchig p. 2/42 Operatios o polyomials MI-EVY (2011/2012) J. Holub: 4. DFT, FFT ad Patter Matchig p. 4/42 Efficiet Patter Matchig (MI-EVY) 4. DFT, FFT

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Definition of z-transform.

Definition of z-transform. - Trasforms Frequecy domai represetatios of discretetime sigals ad LTI discrete-time systems are made possible with the use of DTFT. However ot all discrete-time sigals e.g. uit step sequece are guarateed

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

Injections, Surjections, and the Pigeonhole Principle

Injections, Surjections, and the Pigeonhole Principle Ijectios, Surjectios, ad the Pigeohole Priciple 1 (10 poits Here we will come up with a sloppy boud o the umber of parethesisestigs (a (5 poits Describe a ijectio from the set of possible ways to est pairs

More information

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed) Exam February 8th, 8 Sigals & Systems (5-575-) Prof. R. D Adrea Exam Exam Duratio: 5 Mi Number of Problems: 5 Number of Poits: 5 Permitted aids: Importat: Notes: A sigle A sheet of paper (double sided;

More information

( a) ( ) 1 ( ) 2 ( ) ( ) 3 3 ( ) =!

( a) ( ) 1 ( ) 2 ( ) ( ) 3 3 ( ) =! .8,.9: Taylor ad Maclauri Series.8. Although we were able to fid power series represetatios for a limited group of fuctios i the previous sectio, it is ot immediately obvious whether ay give fuctio has

More information

Signal Processing in Mechatronics

Signal Processing in Mechatronics Sigal Processig i Mechatroics Zhu K.P. AIS, UM. Lecture, Brief itroductio to Sigals ad Systems, Review of Liear Algebra ad Sigal Processig Related Mathematics . Brief Itroductio to Sigals What is sigal

More information

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion Topics i Aalysis 3460:589 Summer 007 Itroductio Ree descartes - aalysis (breaig dow) ad sythesis Sciece as models of ature : explaatory, parsimoious, predictive Most predictios require umerical values,

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

Lecture 3: Divide and Conquer: Fast Fourier Transform

Lecture 3: Divide and Conquer: Fast Fourier Transform Lecture 3: Divide ad Coquer: Fast Fourier Trasform Polyomial Operatios vs. Represetatios Divide ad Coquer Algorithm Collapsig Samples / Roots of Uity FFT, IFFT, ad Polyomial Multiplicatio Polyomial operatios

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.34 Discrete Time Sigal Processig Fall 24 BACKGROUND EXAM September 3, 24. Full Name: Note: This exam is closed

More information

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1. J. Appl. Math. & Computig Vol. x 00y), No. z, pp. A RECURSION FOR ALERNAING HARMONIC SERIES ÁRPÁD BÉNYI Abstract. We preset a coveiet recursive formula for the sums of alteratig harmoic series of odd order.

More information