Linear time invariant systems

Size: px
Start display at page:

Download "Linear time invariant systems"

Transcription

1 Liear time ivariat systems Alejadro Ribeiro Dept. of Electrical ad Systems Egieerig Uiversity of Pesylvaia February 25, 2016 Sigal ad Iformatio Processig Samplig 1

2 Liear time ivariat systems Liear time ivariat systems Fiite impulse respose filter desig Sigal ad Iformatio Processig Samplig 2

3 Fourier trasform ad covolutio Fourier trasform eables sigal ad iformatio processig Patters ad properties easier to discer o frequecy domai Also eables aalysis ad deig of liear time ivariat (LTI) systems Not altogether urelated to patter disceribility Two properties of LTI systems Characterized by their (impulse) respose to a delta iput Resposes to other iputs are covolutios with impulse respose Equivalet properties i the frequecy domai Characterized by frequecy respose = F(impulse respose) Output spectrum = iput spectrum frequecy respose Sigal ad Iformatio Processig Samplig 3

4 Systems A system is characterized by a iput (x()) output (y()) relatio This relatio is betwee fuctios, ot values Each output value y() depeds o all iput values x() x() System y() x() y() We ca, alteratively, cosider cotiuous time systems. The same. Sigal ad Iformatio Processig Samplig 4

5 Time ivariat systems A system is time ivariat if a delayed iput yields a delayed output If iput x() yields output y() the iput x( k) yields y( k) Thik of output whe iput is applied k time uits later x( k) System y( k) x() y() x( k) y( k) Sigal ad Iformatio Processig Samplig 5

6 Liear systems I a liear system iput a liear combiatio of iputs Output the same liear combiatio of the respective outputs I.e., if iput x 1 () yields output y 1 () ad x 2 () yields y 2 () Iput a 1 x 1 () + a 2 x 2 () yields output a 1 y 1 () + a 2 y 2 () a 1x 1() + a 2x 2() System a 1y 1() + a 2y 2() x 1() y 1() x 2() y 2() a 1x 1() + a 2x 2() a 1y 1() + a 2y 2() Sigal ad Iformatio Processig Samplig 6

7 Liear time ivariat systems Liear + time ivariat system = liear time ivariat system (LTI) Also called a LTI filter, or a liear filter, or simply a filter The impulse respose is the output whe iput is a delta fuctio Iput is x() = δ() (discrete time, δ(0) = 1) Output is y() = h() = impulse respose δ() System h() δ() h() Sigal ad Iformatio Processig Samplig 7

8 Scale ad shifted impulse resposes Sice the system is time ivariat (shift) Iput δ( k) Iduces output respose h( k) Sice the system is liear (scale) iput x(k)δ( k) Output x(k)h( k) Sice the system is liear (sum) x(k 1)δ( k 1) + x(k 2)δ( k 2) x(k 1)h( k 1) + x(k 2)h( k 2) δ() System h() δ() h() Sigal ad Iformatio Processig Samplig 8

9 Scale ad shifted impulse resposes Sice the system is time ivariat (shift) Iput δ( k) Iduces output respose h( k) Sice the system is liear (scale) iput x(k)δ( k) Output x(k)h( k) Sice the system is liear (sum) x(k 1)δ( k 1) + x(k 2)δ( k 2) x(k 1)h( k 1) + x(k 2)h( k 2) δ( k) System h( k) δ( k) h( k) Sigal ad Iformatio Processig Samplig 9

10 Scale ad shifted impulse resposes Sice the system is time ivariat (shift) Iput δ( k) Iduces output respose h( k) Sice the system is liear (scale) iput x(k)δ( k) Output x(k)h( k) Sice the system is liear (sum) x(k 1)δ( k 1) + x(k 2)δ( k 2) x(k 1)h( k 1) + x(k 2)h( k 2) δ( k) System h( k) x(k)δ( k) x(k)h( k) Sigal ad Iformatio Processig Samplig 10

11 Scale ad shifted impulse resposes Sice the system is time ivariat (shift) Iput δ( k) Iduces output respose h( k) Sice the system is liear (scale) iput x(k)δ( k) Output x(k)h( k) Sice the system is liear (sum) x(k 1)δ( k 1) + x(k 2)δ( k 2) x(k 1)h( k 1) + x(k 2)h( k 2) δ( k) x(k 1)δ( k 1) + x(k 2)δ( k 2) System h( k) x(k 1)h( k 1) + x(k 2)h( k 2) Sigal ad Iformatio Processig Samplig 11

12 Output of a liear time ivariat system Shift, Scale, ad Sum Is this a Covolutio? Of course Ca write ay sigal x as x() = + k= x(k)δ( k) Thus, output of LTI with impulse respose h to iput x is give by y() = + k= x(k)h( k) The above sum is the covolutio of x ad h y = x h Sigal ad Iformatio Processig Samplig 12

13 Output of a liear time ivariat system Theorem A liear time ivariat system is completely determied by its impulse respose h. I particular, the respose to iput x is the sigal y = x h. Iocet lookig restrictios Liearity + time ivariace Iduce very strog structure (aythig but iocet) x() h() (x h)() = x(k)h(t k) Ca derive exact same result for cotiuous time systems Sigal ad Iformatio Processig Samplig 13

14 Frequecy respose Frequecy respose = trasform of impulse respose H = F(h) Corollary A liear time ivariat system is completely determied by its frequecy respose H. I particular, the respose to iput X is the sigal Y = HX. X (f ) H(f ) Y (f ) = H(f )X (f ) Desig i frequecy Implemet i time Have doe this already, but ow we kow its true for ay LTI Sigal ad Iformatio Processig Samplig 14

15 Causality A causal filter is oe with h() = 0 for all egative < 0 Otherwise, we would respod to spike before seeig spike I geeral y() = + x(k)h( k) = x(k)h( k) k= k= The value y() is oly affected by past iputs x(k), with k If filter is ot causal but h() = 0 for all < N Make it causal with a delay h() = h( N) Frequecy respose of delayed filter H(f ) = H(f )e j2πfn Qualitatively the same filter Sigal ad Iformatio Processig Samplig 15

16 Fiite impulse respose A causal fiite impulse respose filter (FIR) is oe for which h() = 0 for all N We say the filter is of legth N; oly N values i h() are ot ull Ca write output at time as y() = h(0)x() + h(1)x( 1) +... h(n 1)x( N + 1) Ruig iput vector x N () = [x(); x( 1);... ; x( N + 1)] FIR filter vector respose h = [h(0), h(1),..., h(n 1)] Ca the write output at time as y() = h T x N Sigal ad Iformatio Processig Samplig 16

17 Fiite impulse respose filter desig Liear time ivariat systems Fiite impulse respose filter desig Sigal ad Iformatio Processig Samplig 17

18 Filter desig ad implemetatio We wat to utilize a LTI system to process discrete time sigal x() E.g., to smooth out the sigal x() show below x() h() H(f ) y() x() y() All LTIs are completely determied by their impulse resposes h Desig h ad implemet filter as time covolutio y = x h All LTIs are completely determied by their frequecy resposes h Desig H ad implemet filter as spectral product Y = HX Sigal ad Iformatio Processig Samplig 18

19 Frequecy desig ad time implemetatio Time ad frequecy represetatios are equivalet x() h() y() = (x h)() F F 1 F F 1 F F 1 X (f ) H(f ) Y (f ) = H(f )X (f ) Idetify patter trasformatio i frequecy domai Desig H Use iverse DTFT to compute impulse respose h = F 1 (H) Implemet covolutio i time y() = (x h)() Sigal ad Iformatio Processig Samplig 19

20 Causality ad ifiite respose Impulse respose h = F 1 (H) is typically ot causal ad ifiite E.g., Low pass filter with cutoff freq. W /2 H(f ) = W (f ) h() = fs /2 f s /2 H(f )e j2πfts df = W sic(πwt s ) H(f ) = F (f ) 1 F 1 F h() W /2 W /2 f - 3 W - 2 W - 1 W 1 W 2 W 3 W t Multiply by widow (chop) for fiite respose with N ozero coeffs. Delay h() to obtai a causal filter with h() = 0 for 0 Sigal ad Iformatio Processig Samplig 20

21 FIR filter desig Trasform h() ito fiite impulse respose h w () = h()w() F h w () Widow w() = 0 for / [N mi, N max ] Filter legth N = N max N mi W - 2 W - 1 W 1 W 2 W 3 W t Trasform h w () ito causal respose h w () = h w ( N mi ) F h w ( N mi ) Choose borders N mi ad N max to retai highest values of h() Ofte, aroud = 0. But ot always - 3 W - 2 W - 1 W 1 W 2 W 3 W t Sigal ad Iformatio Processig Samplig 21

22 Spectral effects of widowig ad delayig Multiplicatio i time domai Covolutio i frequecy domai As a result, istead of filterig with H(f ), we filter with H w = H W Choose widows with spectrum W = F(w) close to delta fuctio Time delay Multiplicatio with complex expoetial i frequecy H w (f ) = H w (f )e j2πfn mit s Irrelevat, as it should, we just shifted the respose Sigal ad Iformatio Processig Samplig 22

23 FIR filter desig methodology Procedure to desig time coefficiets of a FIR filter (1) Spectral aalysis to determie filter frequecy respose H(f ) (2) Iverse DFT (ot DTFT) to determie impulse respose h() (3) Determie r. of coefficiets N ad coefficiet rage [N mi, N max ] (4) Select widow w() Alters spectrum to H w = H W (5) Shift impulse respose by N mi time steps to make filter causal How to we use FIR filter coefficiets h() to implemet the filter? Sigal ad Iformatio Processig Samplig 23

24 FIR implemetatio The output y() of the FIR filter is give by the covolutio value y() = x(k)h( k) k= Sice h is fiite ad causal, oly N ozero terms. Make k = l N 1 y() = x(k)h( k)= h(l)x( l) k= (N 1) l=0 Easier to visualize whe writte i expaded form y() = h(0) x() + h(1) x( 1) h(n 1) x( N + 1) The expressio above ca be implemeted with a shift register Sigal ad Iformatio Processig Samplig 24

25 Shift registers Upo arrival of sigal value x() we compute output value y() by Delay (shift) uits to shift elemets of sigal x Product (scale) uits to multiply with filter coefficiets x() Sum uits to aggregate the products h(k)x( k) x() T s x( 1) T s x( 2) T s x( 3) T s x( N +1) h(0) h(1) h(2) h(3) h(n 1) h(0)x() h(1)x( 1) h(2)x( 2) h(3)x( 3) h(n)x( N +1) Shift register ca be implemeted i hardware (or software) Sigal ad Iformatio Processig Samplig 25

26 Voice recogitio Spectral desig For a give word to be recogized we compare the spectra X ad X X Average spectrum magitude of word to be recogized X Recorded spectrum durig executio time 0.5 Average spectrum of spoke word oe frequecy (KHz) Made copariso with ier product X T X Equivalet to usig X to filter X Y (f ) = H(f )X (f ) with H(f ) = X Sigal ad Iformatio Processig Samplig 26

27 Voice recogitio Filter desig (2) Impulse respose h() Iverse DFT of X (4) Widow to keep N = 1, 000 largest cosecutive taps Sigal ad Iformatio Processig Samplig 27

2D DSP Basics: 2D Systems

2D DSP Basics: 2D Systems - Digital Image Processig ad Compressio D DSP Basics: D Systems D Systems T[ ] y = T [ ] Liearity Additivity: If T y = T [ ] The + T y = y + y Homogeeity: If The T y = T [ ] a T y = ay = at [ ] Liearity

More information

ELEG3503 Introduction to Digital Signal Processing

ELEG3503 Introduction to Digital Signal Processing ELEG3503 Itroductio to Digital Sigal Processig 1 Itroductio 2 Basics of Sigals ad Systems 3 Fourier aalysis 4 Samplig 5 Liear time-ivariat (LTI) systems 6 z-trasform 7 System Aalysis 8 System Realizatio

More information

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform

Signal Processing in Mechatronics. Lecture 3, Convolution, Fourier Series and Fourier Transform Sigal Processig i Mechatroics Summer semester, 1 Lecture 3, Covolutio, Fourier Series ad Fourier rasform Dr. Zhu K.P. AIS, UM 1 1. Covolutio Covolutio Descriptio of LI Systems he mai premise is that the

More information

Finite-length Discrete Transforms. Chapter 5, Sections

Finite-length Discrete Transforms. Chapter 5, Sections Fiite-legth Discrete Trasforms Chapter 5, Sectios 5.2-50 5.0 Dr. Iyad djafar Outlie The Discrete Fourier Trasform (DFT) Matrix Represetatio of DFT Fiite-legth Sequeces Circular Covolutio DFT Symmetry Properties

More information

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal.

x[0] x[1] x[2] Figure 2.1 Graphical representation of a discrete-time signal. x[ ] x[ ] x[] x[] x[] x[] 9 8 7 6 5 4 3 3 4 5 6 7 8 9 Figure. Graphical represetatio of a discrete-time sigal. From Discrete-Time Sigal Processig, e by Oppeheim, Schafer, ad Buck 999- Pretice Hall, Ic.

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we itroduce the idea of the frequecy respose of LTI systems, ad focus specifically o the frequecy respose of FIR filters.. Steady-state

More information

Fall 2011, EE123 Digital Signal Processing

Fall 2011, EE123 Digital Signal Processing Lecture 5 Miki Lustig, UCB September 14, 211 Miki Lustig, UCB Motivatios for Discrete Fourier Trasform Sampled represetatio i time ad frequecy umerical Fourier aalysis requires a Fourier represetatio that

More information

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals

Analog and Digital Signals. Introduction to Digital Signal Processing. Discrete-time Sinusoids. Analog and Digital Signals Itroductio to Digital Sigal Processig Chapter : Itroductio Aalog ad Digital Sigals aalog = cotiuous-time cotiuous amplitude digital = discrete-time discrete amplitude cotiuous amplitude discrete amplitude

More information

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5 Sigals ad Systems Sigals ad Systems Sigals are variables that carry iformatio Systemstake sigals as iputs ad produce sigals as outputs The course deals with the passage of sigals through systems T-6.4

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Ch3 Discrete Time Fourier Transform

Ch3 Discrete Time Fourier Transform Ch3 Discrete Time Fourier Trasform 3. Show that the DTFT of [] is give by ( k). e k 3. Determie the DTFT of the two sided sigal y [ ],. 3.3 Determie the DTFT of the causal sequece x[ ] A cos( 0 ) [ ],

More information

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals.

Discrete-Time Signals and Systems. Discrete-Time Signals and Systems. Signal Symmetry. Elementary Discrete-Time Signals. Discrete-ime Sigals ad Systems Discrete-ime Sigals ad Systems Dr. Deepa Kudur Uiversity of oroto Referece: Sectios. -.5 of Joh G. Proakis ad Dimitris G. Maolakis, Digital Sigal Processig: Priciples, Algorithms,

More information

Discrete-Time Signals and Systems. Signals and Systems. Digital Signals. Discrete-Time Signals. Operations on Sequences: Basic Operations

Discrete-Time Signals and Systems. Signals and Systems. Digital Signals. Discrete-Time Signals. Operations on Sequences: Basic Operations -6.3 Digital Sigal Processig ad Filterig..8 Discrete-ime Sigals ad Systems ime-domai Represetatios of Discrete-ime Sigals ad Systems ime-domai represetatio of a discrete-time sigal as a sequece of umbers

More information

FIR Filter Design: Part II

FIR Filter Design: Part II EEL335: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we cosider how we might go about desigig FIR filters with arbitrary frequecy resposes, through compositio of multiple sigle-peak

More information

DIGITAL SIGNAL PROCESSING LECTURE 3

DIGITAL SIGNAL PROCESSING LECTURE 3 DIGITAL SIGNAL PROCESSING LECTURE 3 Fall 2 2K8-5 th Semester Tahir Muhammad tmuhammad_7@yahoo.com Cotet ad Figures are from Discrete-Time Sigal Processig, 2e by Oppeheim, Shafer, ad Buc, 999-2 Pretice

More information

COMM 602: Digital Signal Processing

COMM 602: Digital Signal Processing COMM 60: Digital Sigal Processig Lecture 4 -Properties of LTIS Usig Z-Trasform -Iverse Z-Trasform Properties of LTIS Usig Z-Trasform Properties of LTIS Usig Z-Trasform -ve +ve Properties of LTIS Usig Z-Trasform

More information

Question1 Multiple choices (circle the most appropriate one):

Question1 Multiple choices (circle the most appropriate one): Philadelphia Uiversity Studet Name: Faculty of Egieerig Studet Number: Dept. of Computer Egieerig Fial Exam, First Semester: 2014/2015 Course Title: Digital Sigal Aalysis ad Processig Date: 01/02/2015

More information

Chapter 8. DFT : The Discrete Fourier Transform

Chapter 8. DFT : The Discrete Fourier Transform Chapter 8 DFT : The Discrete Fourier Trasform Roots of Uity Defiitio: A th root of uity is a complex umber x such that x The th roots of uity are: ω, ω,, ω - where ω e π /. Proof: (ω ) (e π / ) (e π )

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

ADVANCED DIGITAL SIGNAL PROCESSING

ADVANCED DIGITAL SIGNAL PROCESSING ADVANCED DIGITAL SIGNAL PROCESSING PROF. S. C. CHAN (email : sccha@eee.hku.hk, Rm. CYC-702) DISCRETE-TIME SIGNALS AND SYSTEMS MULTI-DIMENSIONAL SIGNALS AND SYSTEMS RANDOM PROCESSES AND APPLICATIONS ADAPTIVE

More information

MAS160: Signals, Systems & Information for Media Technology. Problem Set 5. DUE: November 3, (a) Plot of u[n] (b) Plot of x[n]=(0.

MAS160: Signals, Systems & Information for Media Technology. Problem Set 5. DUE: November 3, (a) Plot of u[n] (b) Plot of x[n]=(0. MAS6: Sigals, Systems & Iformatio for Media Techology Problem Set 5 DUE: November 3, 3 Istructors: V. Michael Bove, Jr. ad Rosalid Picard T.A. Jim McBride Problem : Uit-step ad ruig average (DSP First

More information

Lecture 2 Linear and Time Invariant Systems

Lecture 2 Linear and Time Invariant Systems EE3054 Sigals ad Systems Lecture 2 Liear ad Time Ivariat Systems Yao Wag Polytechic Uiversity Most of the slides icluded are extracted from lecture presetatios prepared by McClella ad Schafer Licese Ifo

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Aoucemets HW solutios posted -- self gradig due HW2 due Friday EE2 Digital Sigal Processig ham radio licesig lectures Tue 6:-8pm Cory 2 Lecture 6 based o slides by J.M. Kah SDR give after GSI Wedesday

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departmet of Electrical Egieerig ad Computer Sciece 6.34 Discrete Time Sigal Processig Fall 24 BACKGROUND EXAM September 3, 24. Full Name: Note: This exam is closed

More information

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time

Signals and Systems. Problem Set: From Continuous-Time to Discrete-Time Sigals ad Systems Problem Set: From Cotiuous-Time to Discrete-Time Updated: October 5, 2017 Problem Set Problem 1 - Liearity ad Time-Ivariace Cosider the followig systems ad determie whether liearity ad

More information

EECE 301 Signals & Systems

EECE 301 Signals & Systems EECE 301 Sigals & Systems Prof. Mark Fowler Note Set #8 D-T Covolutio: The Tool for Fidig the Zero-State Respose Readig Assigmet: Sectio 2.1-2.2 of Kame ad Heck 1/14 Course Flow Diagram The arrows here

More information

A. Basics of Discrete Fourier Transform

A. Basics of Discrete Fourier Transform A. Basics of Discrete Fourier Trasform A.1. Defiitio of Discrete Fourier Trasform (8.5) A.2. Properties of Discrete Fourier Trasform (8.6) A.3. Spectral Aalysis of Cotiuous-Time Sigals Usig Discrete Fourier

More information

Exponential Moving Average Pieter P

Exponential Moving Average Pieter P Expoetial Movig Average Pieter P Differece equatio The Differece equatio of a expoetial movig average lter is very simple: y[] x[] + (1 )y[ 1] I this equatio, y[] is the curret output, y[ 1] is the previous

More information

Chapter 2 Systems and Signals

Chapter 2 Systems and Signals Chapter 2 Systems ad Sigals 1 Itroductio Discrete-Time Sigals: Sequeces Discrete-Time Systems Properties of Liear Time-Ivariat Systems Liear Costat-Coefficiet Differece Equatios Frequecy-Domai Represetatio

More information

Computing the output response of LTI Systems.

Computing the output response of LTI Systems. Computig the output respose of LTI Systems. By breaig or decomposig ad represetig the iput sigal to the LTI system ito terms of a liear combiatio of a set of basic sigals. Usig the superpositio property

More information

Introduction to Signals and Systems, Part V: Lecture Summary

Introduction to Signals and Systems, Part V: Lecture Summary EEL33: Discrete-Time Sigals ad Systems Itroductio to Sigals ad Systems, Part V: Lecture Summary Itroductio to Sigals ad Systems, Part V: Lecture Summary So far we have oly looked at examples of o-recursive

More information

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j The -Trasform 7. Itroductio Geeralie the complex siusoidal represetatio offered by DTFT to a represetatio of complex expoetial sigals. Obtai more geeral characteristics for discrete-time LTI systems. 7.

More information

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement Practical Spectral Aaysis (cotiue) (from Boaz Porat s book) Frequecy Measuremet Oe of the most importat applicatios of the DFT is the measuremet of frequecies of periodic sigals (eg., siusoidal sigals),

More information

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016 Lecture 3 Digital Sigal Processig Chapter 3 z-trasforms Mikael Swartlig Nedelko Grbic Begt Madersso rev. 06 Departmet of Electrical ad Iformatio Techology Lud Uiversity z-trasforms We defie the z-trasform

More information

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser

FIR Filters. Lecture #7 Chapter 5. BME 310 Biomedical Computing - J.Schesser FIR Filters Lecture #7 Chapter 5 8 What Is this Course All About? To Gai a Appreciatio of the Various Types of Sigals ad Systems To Aalyze The Various Types of Systems To Lear the Skills ad Tools eeded

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

6.003 Homework #12 Solutions

6.003 Homework #12 Solutions 6.003 Homework # Solutios Problems. Which are rue? For each of the D sigals x [] through x 4 [] (below), determie whether the coditios listed i the followig table are satisfied, ad aswer for true or F

More information

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems

ELEG 4603/5173L Digital Signal Processing Ch. 1 Discrete-Time Signals and Systems Departmet of Electrical Egieerig Uiversity of Arasas ELEG 4603/5173L Digital Sigal Processig Ch. 1 Discrete-Time Sigals ad Systems Dr. Jigxia Wu wuj@uar.edu OUTLINE 2 Classificatios of discrete-time sigals

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING ECE 06 Summer 07 Problem Set #5 Assiged: Jue 3, 07 Due Date: Jue 30, 07 Readig: Chapter 5 o FIR Filters. PROBLEM 5..* (The

More information

6.003 Homework #12 Solutions

6.003 Homework #12 Solutions 6.003 Homework # Solutios Problems. Which are rue? For each of the D sigals x [] through x 4 [] below), determie whether the coditios listed i the followig table are satisfied, ad aswer for true or F for

More information

Frequency Domain Filtering

Frequency Domain Filtering Frequecy Domai Filterig Raga Rodrigo October 19, 2010 Outlie Cotets 1 Itroductio 1 2 Fourier Represetatio of Fiite-Duratio Sequeces: The Discrete Fourier Trasform 1 3 The 2-D Discrete Fourier Trasform

More information

The Discrete Fourier Transform

The Discrete Fourier Transform The iscrete Fourier Trasform The discrete-time Fourier trasform (TFT) of a sequece is a cotiuous fuctio of!, ad repeats with period. I practice we usually wat to obtai the Fourier compoets usig digital

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 40 Digital Sigal Processig Prof. Mark Fowler Note Set #3 Covolutio & Impulse Respose Review Readig Assigmet: Sect. 2.3 of Proakis & Maolakis / Covolutio for LTI D-T systems We are tryig to fid y(t)

More information

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed)

Exam. Notes: A single A4 sheet of paper (double sided; hand-written or computer typed) Exam February 8th, 8 Sigals & Systems (5-575-) Prof. R. D Adrea Exam Exam Duratio: 5 Mi Number of Problems: 5 Number of Poits: 5 Permitted aids: Importat: Notes: A sigle A sheet of paper (double sided;

More information

ECE4270 Fundamentals of DSP. Lecture 2 Discrete-Time Signals and Systems & Difference Equations. Overview of Lecture 2. More Discrete-Time Systems

ECE4270 Fundamentals of DSP. Lecture 2 Discrete-Time Signals and Systems & Difference Equations. Overview of Lecture 2. More Discrete-Time Systems ECE4270 Fudametals of DSP Lecture 2 Discrete-Time Sigals ad Systems & Differece Equatios School of ECE Ceter for Sigal ad Iformatio Processig Georgia Istitute of Techology Overview of Lecture 2 Aoucemet

More information

ECE 308 Discrete-Time Signals and Systems

ECE 308 Discrete-Time Signals and Systems ECE 38-5 ECE 38 Discrete-Time Sigals ad Systems Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa ECE 38-5 1 Additio, Multiplicatio, ad Scalig of Sequeces Amplitude Scalig: (A Costat

More information

Chapter 7: The z-transform. Chih-Wei Liu

Chapter 7: The z-transform. Chih-Wei Liu Chapter 7: The -Trasform Chih-Wei Liu Outlie Itroductio The -Trasform Properties of the Regio of Covergece Properties of the -Trasform Iversio of the -Trasform The Trasfer Fuctio Causality ad Stability

More information

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course

EE / EEE SAMPLE STUDY MATERIAL. GATE, IES & PSUs Signal System. Electrical Engineering. Postal Correspondence Course Sigal-EE Postal Correspodece Course 1 SAMPLE STUDY MATERIAL Electrical Egieerig EE / EEE Postal Correspodece Course GATE, IES & PSUs Sigal System Sigal-EE Postal Correspodece Course CONTENTS 1. SIGNAL

More information

Time-Domain Representations of LTI Systems

Time-Domain Representations of LTI Systems 2.1 Itroductio Objectives: 1. Impulse resposes of LTI systems 2. Liear costat-coefficiets differetial or differece equatios of LTI systems 3. Bloc diagram represetatios of LTI systems 4. State-variable

More information

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation Module 8 Discrete Time Sigals ad Z-Trasforms Objective:To uderstad represetig discrete time sigals, apply z trasform for aalyzigdiscrete time sigals ad to uderstad the relatio to Fourier trasform Itroductio

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and Filter bas Separately, the lowpass ad highpass filters are ot ivertible T removes the highest frequecy / ad removes the lowest frequecy Together these filters separate the sigal ito low-frequecy ad high-frequecy

More information

The z-transform can be used to obtain compact transform-domain representations of signals and systems. It

The z-transform can be used to obtain compact transform-domain representations of signals and systems. It 3 4 5 6 7 8 9 10 CHAPTER 3 11 THE Z-TRANSFORM 31 INTRODUCTION The z-trasform ca be used to obtai compact trasform-domai represetatios of sigals ad systems It provides ituitio particularly i LTI system

More information

FIR Filter Design: Part I

FIR Filter Design: Part I EEL3: Discrete-Time Sigals ad Systems FIR Filter Desig: Part I. Itroductio FIR Filter Desig: Part I I this set o otes, we cotiue our exploratio o the requecy respose o FIR ilters. First, we cosider some

More information

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals. Z - Trasform The -trasform is a very importat tool i describig ad aalyig digital systems. It offers the techiques for digital filter desig ad frequecy aalysis of digital sigals. Defiitio of -trasform:

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

M2.The Z-Transform and its Properties

M2.The Z-Transform and its Properties M2.The Z-Trasform ad its Properties Readig Material: Page 94-126 of chapter 3 3/22/2011 I. Discrete-Time Sigals ad Systems 1 What did we talk about i MM1? MM1 - Discrete-Time Sigal ad System 3/22/2011

More information

Discrete-time signals and systems See Oppenheim and Schafer, Second Edition pages 8 93, or First Edition pages 8 79.

Discrete-time signals and systems See Oppenheim and Schafer, Second Edition pages 8 93, or First Edition pages 8 79. Discrete-time sigals ad systems See Oppeheim ad Schafer, Secod Editio pages 93, or First Editio pages 79. Discrete-time sigals A discrete-time sigal is represeted as a sequece of umbers: x D fxœg; <

More information

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors.

Solutions. Number of Problems: 4. None. Use only the prepared sheets for your solutions. Additional paper is available from the supervisors. Quiz November 4th, 23 Sigals & Systems (5-575-) P. Reist & Prof. R. D Adrea Solutios Exam Duratio: 4 miutes Number of Problems: 4 Permitted aids: Noe. Use oly the prepared sheets for your solutios. Additioal

More information

Solution of EECS 315 Final Examination F09

Solution of EECS 315 Final Examination F09 Solutio of EECS 315 Fial Examiatio F9 1. Fid the umerical value of δ ( t + 4ramp( tdt. δ ( t + 4ramp( tdt. Fid the umerical sigal eergy of x E x = x[ ] = δ 3 = 11 = ( = ramp( ( 4 = ramp( 8 = 8 [ ] = (

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Sigal Processig Lecture 20 Filter Desig Liear Filter Desig Used to be a art Now, lots of tools to desig optimal filters For DSP there are two commo classes Ifiite impulse respose IIR Fiite

More information

Introduction to Digital Signal Processing

Introduction to Digital Signal Processing Fakultät Iformatik Istitut für Systemarchitektur Professur Recheretze Itroductio to Digital Sigal Processig Walteegus Dargie Walteegus Dargie TU Dresde Chair of Computer Networks I 45 Miutes Refereces

More information

Signals & Systems Chapter3

Signals & Systems Chapter3 Sigals & Systems Chapter3 1.2 Discrete-Time (D-T) Sigals Electroic systems do most of the processig of a sigal usig a computer. A computer ca t directly process a C-T sigal but istead eeds a stream of

More information

Image pyramid example

Image pyramid example Multiresolutio image processig Laplacia pyramids Discrete Wavelet Trasform (DWT) Quadrature mirror filters ad cojugate quadrature filters Liftig ad reversible wavelet trasform Wavelet theory Berd Girod:

More information

(, ) (, ) (, ) ( ) ( )

(, ) (, ) (, ) ( ) ( ) PROBLEM ANSWER X Y x, x, rect, () X Y, otherwise D Fourier trasform is defied as ad i D case it ca be defied as We ca write give fuctio from Eq. () as It follows usig Eq. (3) it ( ) ( ) F f t e dt () i(

More information

Digital signal processing: Lecture 5. z-transformation - I. Produced by Qiangfu Zhao (Since 1995), All rights reserved

Digital signal processing: Lecture 5. z-transformation - I. Produced by Qiangfu Zhao (Since 1995), All rights reserved Digital sigal processig: Lecture 5 -trasformatio - I Produced by Qiagfu Zhao Sice 995, All rights reserved DSP-Lec5/ Review of last lecture Fourier trasform & iverse Fourier trasform: Time domai & Frequecy

More information

Chapter 7 z-transform

Chapter 7 z-transform Chapter 7 -Trasform Itroductio Trasform Uilateral Trasform Properties Uilateral Trasform Iversio of Uilateral Trasform Determiig the Frequecy Respose from Poles ad Zeros Itroductio Role i Discrete-Time

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

EE422G Homework #13 (12 points)

EE422G Homework #13 (12 points) EE422G Homework #1 (12 poits) 1. (5 poits) I this problem, you are asked to explore a importat applicatio of FFT: efficiet computatio of covolutio. The impulse respose of a system is give by h(t) (.9),1,2,,1

More information

Written exam Digital Signal Processing for BMT (8E070). Tuesday November 1, 2011, 09:00 12:00.

Written exam Digital Signal Processing for BMT (8E070). Tuesday November 1, 2011, 09:00 12:00. Techische Uiversiteit Eidhove Fac. Biomedical Egieerig Writte exam Digital Sigal Processig for BMT (8E070). Tuesday November, 0, 09:00 :00. (oe page) ( problems) Problem. s Cosider a aalog filter with

More information

Spring 2014, EE123 Digital Signal Processing

Spring 2014, EE123 Digital Signal Processing Aoucemets EE3 Digital Sigal Processig Last time: FF oday: Frequecy aalysis with DF Widowig Effect of zero-paddig Lecture 9 based o slides by J.M. Kah Spectral Aalysis with the DF Spectral Aalysis with

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Processig, Fall 26 Lecture 1: Itroductio, Discrete-time sigals ad systems Zheg-Hua Ta Departmet of Electroic Systems Aalborg Uiversity, Demark zt@kom.aau.dk 1 Part I: Itroductio Itroductio

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE Geeral e Image Coder Structure Motio Video (s 1,s 2,t) or (s 1,s 2 ) Natural Image Samplig A form of data compressio; usually lossless, but ca be lossy Redudacy Removal Lossless compressio: predictive

More information

Notes 20 largely plagiarized by %khc

Notes 20 largely plagiarized by %khc 1 Notes 20 largely plagiarized by %khc 1 Warig This set of otes covers discrete time. However, i probably wo t be able to talk about everythig here; istead i will highlight importat properties or give

More information

Definition of z-transform.

Definition of z-transform. - Trasforms Frequecy domai represetatios of discretetime sigals ad LTI discrete-time systems are made possible with the use of DTFT. However ot all discrete-time sigals e.g. uit step sequece are guarateed

More information

Chapter 3. z-transform

Chapter 3. z-transform Chapter 3 -Trasform 3.0 Itroductio The -Trasform has the same role as that played by the Laplace Trasform i the cotiuous-time theorem. It is a liear operator that is useful for aalyig LTI systems such

More information

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations

Generalizing the DTFT. The z Transform. Complex Exponential Excitation. The Transfer Function. Systems Described by Difference Equations Geeraliig the DTFT The Trasform M. J. Roberts - All Rights Reserved. Edited by Dr. Robert Akl 1 The forward DTFT is defied by X e jω = x e jω i which = Ω is discrete-time radia frequecy, a real variable.

More information

ON THE EXISTENCE OF A GROUP ORTHONORMAL BASIS. Peter Zizler (Received 20 June, 2014)

ON THE EXISTENCE OF A GROUP ORTHONORMAL BASIS. Peter Zizler (Received 20 June, 2014) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 45 (2015, 45-52 ON THE EXISTENCE OF A GROUP ORTHONORMAL BASIS Peter Zizler (Received 20 Jue, 2014 Abstract. Let G be a fiite group ad let l 2 (G be a fiite dimesioal

More information

Wavelet Transform and its relation to multirate filter banks

Wavelet Transform and its relation to multirate filter banks Wavelet Trasform ad its relatio to multirate filter bas Christia Walliger ASP Semiar th Jue 007 Graz Uiversity of Techology, Austria Professor Georg Holzma, Horst Cerja, Christia 9..005 Walliger.06.07

More information

Solution of Linear Constant-Coefficient Difference Equations

Solution of Linear Constant-Coefficient Difference Equations ECE 38-9 Solutio of Liear Costat-Coefficiet Differece Equatios Z. Aliyazicioglu Electrical ad Computer Egieerig Departmet Cal Poly Pomoa Solutio of Liear Costat-Coefficiet Differece Equatios Example: Determie

More information

UNIT-I. 2. A real valued sequence x(n) is anti symmetric if a) X(n)=x(-n) b) X(n)=-x(-n) c) A) and b) d) None Ans: b)

UNIT-I. 2. A real valued sequence x(n) is anti symmetric if a) X(n)=x(-n) b) X(n)=-x(-n) c) A) and b) d) None Ans: b) DIGITAL SIGNAL PROCESSING UNIT-I 1. The uit ramp sequece is Eergy sigal b) Power sigal c) Either Eergy or Power sigal d) Neither a Power sigal or a eergy sigal As: d) 2. A real valued sequece x() is ati

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Discrete Time Sigals Samples of a CT sigal: EE123 Digital Sigal Processig x[] =X a (T ) =1, 2, x[0] x[2] x[1] X a (t) T 2T 3T t Lecture 2 Or, iheretly discrete (Examples?) 1 2 Basic Sequeces Uit Impulse

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processig Biary dilatio ad erosio Set-theoretic iterpretatio Opeig, closig, morphological edge detectors Hit-miss filter Morphological filters for gray-level images Cascadig dilatios

More information

The Z-Transform. Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, Prentice Hall Inc.

The Z-Transform. Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer, and Buck, Prentice Hall Inc. The Z-Trasform Cotet ad Figures are from Discrete-Time Sigal Processig, e by Oppeheim, Shafer, ad Buck, 999- Pretice Hall Ic. The -Trasform Couterpart of the Laplace trasform for discrete-time sigals Geeraliatio

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 265-25 Advaced Traiig Course o FPGA esig ad VHL for Hardware Simulatio ad Sythesis 26 October - 2 ovember, 29 igital Sigal Processig The iscrete Fourier Trasform Massimiliao olich EEI Facolta' di Igegeria

More information

Digital Signal Processing

Digital Signal Processing Digital Sigal Processig Z-trasform dftwave -Trasform Backgroud-Defiitio - Fourier trasform j ω j ω e x e extracts the essece of x but is limited i the sese that it ca hadle stable systems oly. jω e coverges

More information

T Signal Processing Systems Exercise material for autumn Solutions start from Page 16.

T Signal Processing Systems Exercise material for autumn Solutions start from Page 16. T-6.40 P (Problems&olutios, autum 003) Page / 9 T-6.40 P (Problems&olutios, autum 003) Page / 9 T-6.40 igal Processig ystems Exercise material for autum 003 - olutios start from Page 6.. Basics of complex

More information

ELEC1200: A System View of Communications: from Signals to Packets Lecture 3

ELEC1200: A System View of Communications: from Signals to Packets Lecture 3 ELEC2: A System View of Commuicatios: from Sigals to Packets Lecture 3 Commuicatio chaels Discrete time Chael Modelig the chael Liear Time Ivariat Systems Step Respose Respose to sigle bit Respose to geeral

More information

Signal Processing in Mechatronics

Signal Processing in Mechatronics Sigal Processig i Mechatroics Zhu K.P. AIS, UM. Lecture, Brief itroductio to Sigals ad Systems, Review of Liear Algebra ad Sigal Processig Related Mathematics . Brief Itroductio to Sigals What is sigal

More information

The Z-Transform. (t-t 0 ) Figure 1: Simplified graph of an impulse function. For an impulse, it can be shown that (1)

The Z-Transform. (t-t 0 ) Figure 1: Simplified graph of an impulse function. For an impulse, it can be shown that (1) The Z-Trasform Sampled Data The geeralied fuctio (t) (also kow as the impulse fuctio) is useful i the defiitio ad aalysis of sampled-data sigals. Figure below shows a simplified graph of a impulse. (t-t

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Today EE123 Digital Sigal Processig Lecture 2 Last time: Admiistratio Overview Today: Aother demo Ch. 2 - Discrete-Time Sigals ad Systems 1 2 Discrete Time Sigals Samples of a CT sigal: x[] =X a (T ) =1,

More information

Lecture 3: Divide and Conquer: Fast Fourier Transform

Lecture 3: Divide and Conquer: Fast Fourier Transform Lecture 3: Divide ad Coquer: Fast Fourier Trasform Polyomial Operatios vs. Represetatios Divide ad Coquer Algorithm Collapsig Samples / Roots of Uity FFT, IFFT, ad Polyomial Multiplicatio Polyomial operatios

More information

EE Midterm Test 1 - Solutions

EE Midterm Test 1 - Solutions EE35 - Midterm Test - Solutios Total Poits: 5+ 6 Bous Poits Time: hour. ( poits) Cosider the parallel itercoectio of the two causal systems, System ad System 2, show below. System x[] + y[] System 2 The

More information

Discrete-time Fourier transform (DTFT) of aperiodic and periodic signals

Discrete-time Fourier transform (DTFT) of aperiodic and periodic signals 5 Discrete-time Fourier trasform (DTFT) of aperiodic ad periodic sigals We started with Fourier series which ca represet a periodic sigal usig siusoids. Fourier Trasform, a extesio of the Fourier series

More information

FIR Filter Design by Windowing

FIR Filter Design by Windowing FIR Filter Desig by Widowig Take the low-pass filter as a eample of filter desig. FIR filters are almost etirely restricted to discretetime implemetatios. Passbad ad stopbad Magitude respose of a ideal

More information

FFTs in Graphics and Vision. The Fast Fourier Transform

FFTs in Graphics and Vision. The Fast Fourier Transform FFTs i Graphics ad Visio The Fast Fourier Trasform 1 Outlie The FFT Algorithm Applicatios i 1D Multi-Dimesioal FFTs More Applicatios Real FFTs 2 Computatioal Complexity To compute the movig dot-product

More information

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1 Mathematical Descriptio of Discrete-Time Sigals 9/10/16 M. J. Roberts - All Rights Reserved 1 Samplig ad Discrete Time Samplig is the acquisitio of the values of a cotiuous-time sigal at discrete poits

More information

Optimum LMSE Discrete Transform

Optimum LMSE Discrete Transform Image Trasformatio Two-dimesioal image trasforms are extremely importat areas of study i image processig. The image output i the trasformed space may be aalyzed, iterpreted, ad further processed for implemetig

More information

Web Appendix O - Derivations of the Properties of the z Transform

Web Appendix O - Derivations of the Properties of the z Transform M. J. Roberts - 2/18/07 Web Appedix O - Derivatios of the Properties of the z Trasform O.1 Liearity Let z = x + y where ad are costats. The ( z)= ( x + y )z = x z + y z ad the liearity property is O.2

More information