ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS

Size: px
Start display at page:

Download "ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS"

Transcription

1 ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EU (Uversty of Bsque coutry) I Sold Stte Physcs Addres: Prctctes Ad y Grjlb 6 G P.O Portuglete Vzcy (Sp) Phoe: () E-ml: josegrc@yhoo.es MSC: 97M5, 4G99, 4G, 8T55 s ABSTRACT: We study geerlzto of the zet regulrzto method ppled to the s cse of the regulrzto of dverget tegrls for postve s, usg the Euler Mclur summto formul, we mge to epress dverget tegrl term of ler combto of dverget seres, these seres c be regulrzed usg the Rem Zet fucto ζ ( s) s >, the cse of the pole t s= we use property Γ ' of the Fuctol determt to obt the regulrzto = ( ), wth ( ) Γ the d of the Luret seres oe d severl vrbles we c eted zet regulrzto to the cses of tegrls f ( ), we beleve ths method c be of terest the regulrzto of the dverget UV tegrls Qutum Feld theory sce our method would ot hve the problems of the Alytc regulrzto or dmesol regulrzto Keywords: = Rem Zet fucto, Fuctol determt, Zet regulrzto, dverget seres. ZETA REGULARIZATION FOR DIVERGENT INTEGRALS: Sometmes mthemtcs d physcs, we must evlute dverget seres of the form k, of course ths seres s dverget ules Re (k) >, however cses lke k= or k=3 pper severl clcultos of strg theory d Csmr effect, for the cse of 3 Csmr effect [3] the result = ppers to gve the correct result for the

2 Fc cπ Csmr force = h here A s the re d d the seprto betwee the 4 A 4 pltes, c d h re the speed of lgth d the Plck s costt. The de behd the Zet regulrzto method s to tke for grted tht for every s the detty s = ζ ( s), follows lthough ths formul s vld just for Re (s) >, to eted the defto of the Rem Zet fucto to egtve rel umbers, oe eed to use the fuctol equto for the Rem fucto s π s ζ ( s) = ( π ) Γ( s)cos ζ ( s) π Γ( s) Γ( s) = () s( π s) Ths gves the epressos t s=, the rmoc seres fte vlue =, = d = due to the pole s NOT zet regulrzble, lthough t c be gve = γ = , ths vlue c be justfed by usg the theory of Zet-regulrzed fte products (determts), s we shll see lter the pper o Zet regulrzto for dverget tegrls: m s Let be f ( ) = wth Re(m-s) < -, the the Euler-Mclur summto formul (see [] d pped A formul (A.) )for ths fucto reds m s = ζ ( s m) m s m s m s m s = r m r s ( m r s) r= B Γ( m s ) ( r)! Γ( m r s) N () ere formul () ll the seres d tegrls re coverget, formul () s usully k k worthless, sce t s trvl to prove tht = for Re(k) >,d the Rem k zet fucto ζ ( ) = m s =, so othg ew c be obted from (), the de s m s to use the Fuctol equto () for the Rem d Zet fucto to eted the defto of equto () to the whole comple ple ecept s=, cse (m-s) s postve there wll be o pole t =, so we c put = d tke the lmt s m B m!( m r ) ( r)!( m r )! m m r m r = ζ ( m) (3) r= Formul (3) s the Alytc cotuto of formul () wth = d c be used to obt fte defto for otherwse dverget tegrls,ppretly ths recurrece

3 equto hs fte umber of terms but the Gmm fucto hs pole t = d t beg some egtve teger, lso f the fucto s of the form f ( ) = α wth α > we c us the Euler-Mclur formul drectly, sce the sum f ( ) f ( ) d ts dervtves re fte. some emples of formul (3) I = ζ () = = ζ ( ) = I I I B I = ζ ( ) I = (4) 3 B 3 I3 = ( I ζ ( ) ) I ζ ( 3) B3I = So our method c provde fte regulrzto to dverget tegrls, wth the Ad of the zet regulrzto lgorthm. Also our formule () (3) d (4) re cosstet wth the usul summto propertes, fct f Λ m s fte for fte Λ d we use the property of the Rem d urwtz Zet fucto [ ] to get the sum of the k-th powers of o the tervl [, Λ ] Λ = m = ζ ( m) ζ ( m, Λ), ζ ( s, Λ ) = ( Λ) s defed for Re(s) > (of course for postve s s Λ the secod term goes to ) m B m!( m r ) ( r)!( m r )! Λ Λ Λ m m r m r = ζ ( m) ζ ( m, Λ) (5) r= B For teger m (, ) ( ) m ζ m = we fd the Beroull Polyomls, the powers m Λ m m Λ of Λ would ccel the tegrl =, so the ed formul (5) we would m B get the usul defto of Zet regulrzto ( ) () m ζ m = for teger m. Of m course oe could rgue tht smpler regulrzto of the dverget tegrls should s s be I( s) = ( ) = d I( ) = ( ) = log s, ths s just droppg out the term proportol to log s or sde the tegrl to mke t fte, however f w plugged ths result to the Euler-Mclur summto formule () (3) or (5) the terms volvg would ccel d we would flly fd tht ζ ( m) = for every m whch clerly s gst the defto of zet regulrzto of seres, for the cse of the logrhmc dvergece, obted from dfferetto wth respect to the eterl 3

4 prmeter ths s result of tkg the fte prt of the tegrl,whch ppretly m s k works. For the cse of the tegrls log ( ), we c smply dfferette k- tmes wth respect to regultor s sde () order to obt fte vlues terms of ζ ( s) d ζ '( s) for egtve vlues of s uless m=- (for other egtve vlues of m we c mke chge of vrble q = ), ths s treted the et secto o Zet-regulrzed determts d the rmoc seres: λ = Gve opertor A wth fte set of ozero Egevlues { } Zet fucto d Zet-regulrzed determt, Voros [] we c defe s { } Tr A = ζ A( s) = λ s dζ A det( A) ep () = λ = ds (6) The proof of the secod formul sde (6) s pretty esy, the dervtve of the log λ Geerlzed zet fucto wll be ζ A '( s) = s ow let s=, use the property of λ the logrthm log(. b) = log logb d tke the epoetl o both sdes. For the cse of the Egevlues of smple Qutum rmoc osclltor oe dmeso [ ] λ =, the Zet fucto s just the urwtz Zet fucto, so we c defe zet-regulrzed fte product the form dζ ( ) ep (, ) = ds dζ ( ) (, ) log ( ) log π ds = Γ (7) I cse we put = we fd the zet-regulrzed product of ll the turl umbers ( ) = π,see [5] f we tke the dervtve wth respect to, we would fd the sme regulrzed Vlue Rmuj dd [] precsely Γ ' = ( ) > ( ) Γ rmoc seres pper due to logrthmc dvergece of the tegrl ( ), f we put m= - sde formul (), usg regultor s, s we hve the Euler Mclur summto formul (8) r B r = s s r s ( ) ( ) r= ( r)! u ( ) = Sce s > the tegrl d the seres sde (8) wll be coverget, ow we c tegrte s over sde (8) d use the defto of the logrthm lm log =, to s s 4

5 regulrze the tegrl s s terms of the fucto ( )s some fte correctos due to the Euler-Mclur summto formul. Γ ' ( ) Γ plus A fster method s just smple dfferette wth respect to sde the tegrl di ( ) =, ow ths tegrl s coverget for every d equl to d, tegrto over g gves the vlue log c plus costt c tht wll ot deped o the vlue of sde the tegrl questo, the proof tht c s uque o mtter wht s comes from the fct tht the dfferece log b =. b dζ (,) For the cse =, the dervtve of the urwtz Zet s = log ( π ) so f ds we ppromte the dverget tegrl by seres, the we c get the regulrzed result =. Appretly t seems tht usg two dfferet regulrztos we get some dfferet results, the de s tht f we use the Strlg symptotc formul ppromto for the logrthm of the Zet fucto B z log Γ ( z) = z log z z log ( π ) r (9) r= r ( r ) If we tke the dervtve wth respect to z sde (9), s ow more ppret tht for µ the logrthmc dervtve log here c = log µ s costt obted from dfferetto wth respect to to regulrze the dverget tegrl, ths costt c must be relted to some physcl costt or cse the qutty hs dmeso of Eergy the µ must hve lso dmesos of eergy so the logrthm s dmesoless, ths costt c would be the oly free djustble prmeter tht would pper sde our clcultos to regulrze tegrls. If s egtve there s etr term due to the vlue log( ) = π, for more comple logrthmc tegrl oe c use the defto k log ( ) log k µ wth the sme eergy scle c = log µ k So f we tke formul () d the detty sde [] ζ ( s, ) s C \ { } s ( ) = reg Γ '( ) s = Γ( ) the we c regulrze y dverget tegrl ( ) m to get fte result by lytc cotuto. Ths result s justfed by tkg the lmt s sde the formul for the Dgmm fucto ( s) s Ψ ( z) = ( ) Γ ( s ) ζ ( s, z) 5

6 o Regulrzto of dverget tegrls f ( ) : I geerl, the dverget tegrls tht pper Qutum Feld Theory [ ] re vrt 4 uder rottos, for emple 4 d p p m or d p ( p q) m p, f we use 4- ( ) ( ) dmesol polr coordtes we c reduce these tegrls to the cse d / π d drf ( r) r Γ d / the the UV dvergeces pper whe r, here d=4 s the ( ) dmeso of the spcetme, depedg o the vlue of d we c hve severl types of dvergeces Λ d m drf ( r) r Λ blog Λ, f b = for m = the UV dvergeces re qudrtc f m = the dvergeces re ler, cse = d b = the dvergeces re 4 of logrthmc type, for emple d p p m hs oly logrthmc dvergece ( ) dmeso 4, for lower vlue of the dmeso (d=3 ) ths tegrl ests. To study the rte of dvergece, we c epd the fucto to Luret seres vld k for z, f ( ) = c ( ) k s fte umber d mes tht the fucto f ( ) hs power lw dvergece for bg, the the de to compute dverget tegrl would be ths, we dd d substrct Polyoml plus term proportol to to splt the tegrl to fte prt d other dverget tegrl, both cses we must lso troduce regultor ( ) s for turl umber so we mke the tegrls coverget for some Re(s) > b k k s f ( ) b ( ) b ( ) b s s ( ) = ( ) () Also we c use the chge of vrble ( ), so the ew lmts of tegrto would be (, ), sce s turl umber, the the followg detty m s m s m s ( ) = = ζ ( m s) holds for every postve d m the sese of zet regulrzed seres. Of course sde () our substrcto we c clude o-teger powers of sce the recurso formul () s stll vld for them. The umber of terms k s chose so the frst tegrl s FINITE, ths frst tegrl c be computed by Numercl or ect methods d yelds to fte vlue, the rest of the tegrls re just the logrthmc d power-lw dvergeces, they c be regulrzed wth the d of formule () (3) (4) (6) (8) to get fte vlue volvg ler 6

7 ζ (,) combto of ζ ( m) m=,,,...,k d other vlue proportol to s µ or log for emple we c lyze ths smple dverget tegrl > s ζ () = Γ B Γ r ' r ( ) ζ ( ) r r= ( r)! u = s () The frst tegrl () s coverget d hve ect vlue of log, order Γ ' to regulrze the logrthmc tegrl we hve used the result = ( ) plus ( ) Γ the Euler-Mclur summto formul. The mthemtcl justfcto of ths s the followg, gve dverget tegrl f ( ) we troduce regultor F( s) = f ( ) s so the tegrl F(s) ests for some bg s, f we dd d substrct powers of the form k s for teger k d ( ) s, we c splt F(s) to coverget tegrl I (s) vld for s d some dverget tegrls of the form ( ) m s d s, usg formule () (3) (4) d (8) we c epress these tegrls terms of the seres ( ) s d ( ) s, whch wll be coverget for m Re( s m) > d Re( s ) >, ow usg the Fuctol equto for the urwtz d Rem Zet fucto we c mke the lytc cotuto of both seres to s vodg the pole t s= by the use of Rem Zet fucto t egtve Γ ' tegers ζ ( ) plus some correctos volvg ( ) of course the rules for chge Γ of vrble d stll vld so ( ) s s f ( ) = duf ( u) u ths c be used to vod some IR dvergeces t = by splttg the tegrl to IR dverget prt d UV dverget prt du = du du. For other types of dverget tegrls lke β α log ( ) for postve α d β oe could dfferette wth respect to m or s sde formul () order to obt recurrece equto for the tegrls 7

8 β α log ( ), ths recurrece equto s fte (ppromtely) sce for Re ( p ) > β log ( ) p s fte d do ot eed to be regulrzed provded >. Other useful dettes c be ( ) / or the epso of the logrthm vld for y.4 > log = to mke logrthms more trctble, lso we could use Luret epsos to hdle complcte o-polyoml epressos lke ( µ ) k by epdg t for bg to symptotc (verse) power seres. REGULARIZATION FOR IR DIVERGENT INTEGRALS: If the tegrd hs pole t = so s IR dverget tegrl, we c mke the Tylor substrcto λ f ( ) b ( ) λ = λ b ( λ ) ( ) b = ( f ) ( )! () For the cse λ = we hve ( ) = = ( ) ( ) ( ) ( ) ( ) (3) To vod the pole t = we sert smll comple qutty Epslo so ε, the formul () c be grte = ( ) ( ε ) ( ε ) ( ε ) (4) The sde (4) we hve oly UV logrthmc dvergece, for λ > there re oly IR dvergeces, f we use the Boml theorem ( ) λ ( ε ) λ k λ k = λ k k λ = ( ( ε ) ) (5) Itegrls sde (4) d (5) c be evluted wth the epresso 8

9 m m r m r Γ ( ) π ( ) = = I(, m, r) r ( ( ε ) ) mπ π m s ( r )! Γ 3 r ε (6) m o Regulrzto of tegrls m : There re cses, for m= we hve ( ) = = ( u) Where we hve mde the chge of vrble u = sde the lst tegrl to tur the IR dvergece to Logrthmc UV dvergece. For m > we troduce regultor s to mke the IR dverget tegrl to coverge = = m s m s m s m s / duu m s u = (7) The lst tegrl sde (7) s dverget the lmt s d c be regulrzd wth λ λ λ formul (). If my IR dvergeces pper ( ).( )...( ) m m we must perform the Tylor substrcto () o ech pot ( ) REGULARIZATION OF MULTIPLE INTEGRALS: I geerl QFT there wll be lso mult-loop (multple) tegrls so we wll lso hve to regulrze tegrls the form. I( s) = d q d q... d q F( q, q,..., q ) (8) = ( q ) ere we hve troduced regultor depedg o eterl prmeter s order the tegrl (8) to coverge for bg s d the use the lytc regulrzto to tke the lmt s, ths regultor must be chose wth cre order ot to spol y symmetres of the Physcl system. Aother method s to cosder the multple tegrl s terte tegrl d the mke the substrcto for every vrble for emple 9

10 k k (,,..., ) (,..., )( ) (,..., )( ) = = q F q q q q q q q q q q (9) The symbol q mes tht the tegrl s mde over the vrble q keepg the other vrbles costt, the umber k s chose so the frst tegrl s fte, ths tegrl wll deped o I( q,..., q ), the dverget tegrls (eve for the logrthmc cse =-) c be regulrzed. Now we hve regulrzed the frst tegrl, we hve reduced oe vrble the multple tegrl, repetg the tertve process for the fuctos ( q,..., q ) k k q ( q..., q) b j( q,..., q )( q ) q b( q,..., q )( q ) j= j= j () Usg (9) d () o every vrble we c reduce the dmeso of the tegrl utl we rech to the oe dmesol cse, whch s eser to hdle. If the tegrd F( q, q,..., q ) hd o sgulrtes for every q j >, we my epd ths tegrd to multple Luret seres of severl vrbles, d the s, s,..., s m m m m, m,..., m m, m,..., m perform the substrcto C ( q b ) ( q b )...( q b ) order to defe fte prt of the tegrl d q d q d q F C q b q b q b () s, s,..., s m m m... m, m,..., m ( ) ( )...( ) m, m,..., m Plus some correctos due to dverget tegrls ( q ) m b dq m=-,,,.... I my cses lthough the tegrls gve () d () re fte they wll hve o ect epresso or the ect epresso wll be too complcte, ths cse we c use the Guss-Lguerre Qudrture formul ( cse the tervl s [, ) ) to ppromte the tegrl by sum over the zeros of Lguerre Polyomls w f ( q, q,..., q, ) wth the wegth epressed terms of Lguerre Polyomls d ther roots w =, L ( ) = () ( ) L ( ) ( ) uas emple we wll regulrze the smples -loop tegrl l dldk k ( k p) ( k l) s s We troduce the zet regultors k l to get fte results d vod dvergeces, the regultor wll be elmted fter clcultos. Itegrto over l gves (here p s costt) =

11 l l dl l dl dl = ( k) ( k l) ( k l)( l ) l s s s (3) To perform tegrto over k we wll eed to regulrze the tegrls k dk A k k s ( k) dk ( ) p / s dl ( k p) k ( k l)( l ) A = (4) The frst tegrl becomes logrthmc UV dverget tegrl u du s wth the ( up ) chge of vrble u = ( s lwys the regultor s teds to ), ths c be regulrzed by ddto d substrcto to ths tegrl of the fctor, ths logrthmclly dverget tegrl c be regulrzed wth the Euler Mclur formul d the detty = γ. reg To evlute the secod tegrl we wll use the Lguerre qudrture formul order to smplfy clcultos ( k) dk dl w ( k) dk j dk ( k p) k ( k l)( l ) (5) ( k p) k ( k ) ( j j j ) Epresso (5) s legtmte sce the tegrl over l s coverget, wth chge of vrble u = ech tegrl of the sum sde (5) becomes logrthmc dverget wju( u ) du tegrl dk, ths s g logrthmc dverget tegrl d c be ( up) u ( j ) evluted by ddg /substrctg term of the form. Usg the equtos ( -5) we hve show emple of how -loop tegrl c be ζ regulrzd, by pplyg the zet regulrzto method of our pper o ech vrble, frst over l keepg k costt d the over k to get fte results CONCLUSIONS AND FINAL REMARKS: We hve eteded the defto of the zet regulrzto of seres to pply t to the Zet regulrzto of dverget tegrl m > m > by usg the Zet regulrzto techque combed wth the Euler Mclur summto formul. For good troducto to the Zet regulrzto techques, there s the book by Elzlde [4] or the Book by Bredt bsed o the mthemtcl dscoveres of Rmuj d ts

12 method of summto equvlet to the Zet regulrzto lgorthm [], other good referece (but bt more dvced) s Zedler [], for the cse of Zet-regulrzed determts [7] s good ole referece descrbg lso the process of Zet regulrzto v lytc cotuto d how t c be ppled to prove the detty ( ) = log π. Appretly there s cotrdcto, sce the Rem Zet fucto hs pole t s= so the rmoc seres could ot be regulrzed, however E usg the defto of fuctol determt E = oe gets the fte µ Γ '( ) result for the rmoc (geerlzed) seres =, wth the d of the Γ( ) Euler-mclur summto formul ths result for the rmoc seres c be used to gve ppromte regulrzed vlue of the logrthmc tegrl, for the cse of other types of dverget tegrls ( ) m we c use g Euler- Mclur summto formul to epress ths dverget tegrls terms of the egtve vlues of the urwtz or Rem Zet fucto ζ ( s,) = ζ ( s ) ζ ( m,) (UV) m=,,,3,4,...d the vlue of the dervtve of urwtz zet fucto log s = ζ (, ) (logrthmc UV), these vlues ecode the UV dvergeces []. For the s cse of the IR (frred ) dvergeces the form vrble to re-terprette these tegrls s q m s oe could mke chge of m s q dq for the cse m= we hve logrthmc dvergece both t = s so we must splt the tegrl / to IR d UV dverget prt = ths tegrl wll be equl to d IR regultor so ( ) fter few smple clcultos / = log µ, sce we c smply troduce forml UV Λ lm log UV Λ = Λ Λ, UV regultor s troduced to esure tht the tegrl wll be coverget.we lso beleve tht smlr procedure c be ppled to eted our Zet regulrzto lgorthm to multple (mult-loop) tegrls d q d q... d q F( q, q,..., q ), oe of the m dvtges of ths lgorthm s tht the dmeso of the spce does ot pper eplctly so our method does ot hve the sme problems s dmesol regulrzto, d c be used whe the Drc mtrces γ 5 = γ γγ γ 3 pper. The mposto formul () tht must be turl umber s order to vod oddtes the process of Zet regulrzto wth the Zet d urwtz Zet fucto, sce uless s postve teger the equlty ζ (, ) = ( ) = does ot hold.

13 Aother dvtge s tht we get oly fte quttes, wheres dmesol regulrzto you wll lwys fd poles of the Gmm fucto Γ ( z) = Ψ () O( z) z the lmt z ths epresso blows up. APPENDIX A: OW TO OVERCOME TE POLE ζ () I ths pper we hve see how due to the pole of the Rem zet t the pot s = we could ot regulrze the tegrl uless we use the result for the rmoc seres = reg ( ) fro > d fte, the f we troduce ths result sde the Γ ' ( ) Γ Euler-Mclur summto formul we c get fte results for Aother ltertve s to use the detty =. ( ) ( α ) = e = log ( )!! α = (A.) I ths cse we c evlute the tegrls sde (A.) by the Euler Mclur formul f ( ) f ( ) B f f f f ( k)! k ( ) = ( ) ( ) ( ) k = (k ) (k ) ( ) (A.) ere The Beroull umbers o the lst sde of (A.) re the coeffcets of the Tylor log ( ) f ( ) = epso of e f we sert sde (A.) the epresó α log ( ) log ( ) ( ) ( ) r log ( ) B r log ( ) = ζ ( α) α α α r s = r= ( r)! u ( ) = (A.3) ( ere α s smll o teger, so the zet fucto d ts dervtves ζ ) ( α) re FINITE Aother ltertve s to look for Pde or Rtol ppromto for the squre root of for emple. P( ) Q( ) ( ) ( )! = > (A.4) ( )(!) 4 3

14 P( ) I ths cse (A.4) we hve the ppromto 3/ Q( ) formul P( ) c 3/ 3/ c c c 5/ Q( ) (A.5), ow f we pply the Isde (A.5) ow there re o logrthmc-dverget tegrls, so the pole ζ () wll ot ow pper Refereces [] Abrmowtz, M. d Stegu, I. A. (Eds.). "Rem Zet Fucto d Other Sums of Recprocl Powers." 3. dbook of Mthemtcl Fuctos. New York: Dover, pp , 97. [] Berdt B. Rmuj's Notebooks: Prt II Sprger; edto (993) ISBN-: [3] Dowlg Joth P, "The Mthemtcs of the Csmr Effect", Mth. Mg. 6, (989). [4] Elzlde E. ; Zet-fucto regulrzto s well-defed, Jourl of Physcs 7 (994), L [5] Elzlde E. ; Zet regulrzto techques wth pplctos Ed. World Scetfc Press ISBN [6] Mzuo, Y. "Geerlzed Lerch Formuls: Emples of Zet-Regulrzed Products." J. Number Th. 8, 55-7, 6. [7] Muñoz Grcí, E. d Pérez Mrco, R. "The Product Over All Prmes s." Preprt IES/M/3/34. My 3. [8] Pvel E "Note o dmesol regulrzto", Qutum felds d strgs: course for mthemtcs, Vol.,(Prceto, NJ, 996/997), Provdece, R.I.: Amer. Mth. Soc., pp , ISBN (999) [9] Prellberg Thoms, The mthemtcs of the Csmr Effect tlk vlble t e-prt t [] Voros A. Zet fuctos over zeros of zet fuctos Ed. SPRINGER () ISBN:

15 [] Zee, A. (3). Qutum Feld Theory Nutshell. Prceto Uversty ISBN ISBN [] Zedler E. Qutum Feld Theory I : Bss Physcs d Mthemtcs Ed : Sprger Verlg ISBN:

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES AND DIVERGENT INTEGRALS s d s Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EHU (Uversty of Bsque coutry

More information

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES SUMMARY OF TE ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT SERIES AND DIVERGENT INTEGRALS Joe Jver Grc Moret Grdute tudet of Phyc t the UPV/EU (Uverty of Bque coutry) I Sold Stte Phyc

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT INTEGRALS

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT INTEGRALS ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT INTEGRALS s Jose Jvier Grci Moret Grdute studet of Physics t the UPV/EU (Uiversity of Bsque coutry) I Solid Stte Physics Addres: Prctictes

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES Jose Jvier Grci Moret Grdute studet of Physics t the UPV/EHU (Uiversity of Bsque coutry) I Solid Stte Physics Addres: Prctictes Ad

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Abel Resummation, Regularization, Renormalization & Infinite Series

Abel Resummation, Regularization, Renormalization & Infinite Series Prespcetime Jourl August 3 Volume 4 Issue 7 pp. 68-689 Moret, J. J. G., Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series 68 Article Jose

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core Topc : Algebr Topc

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Probabilistic approach to the distribution of primes and to the proof of Legendre and Elliott-Halberstam conjectures VICTOR VOLFSON

Probabilistic approach to the distribution of primes and to the proof of Legendre and Elliott-Halberstam conjectures VICTOR VOLFSON Probblstc pproch to the dstrbuto of prmes d to the proof of Legedre d Ellott-Hlberstm cojectures VICTOR VOLFSON ABSTRACT. Probblstc models for the dstrbuto of prmes the turl umbers re costructed the rtcle.

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Numerical differentiation (Finite difference)

Numerical differentiation (Finite difference) MA umercl Alyss Week 4 To tk d wrte portle progrms we eed strct model of ter computtol evromet. Ftful models do est ut tey revel tt evromet to e too dverse forcg portle progrmmers to lot eve te smplest

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM Jose Javer Garca Moreta Ph. D research studet at the UPV/EHU (Uversty of Basque coutry) Departmet of Theoretcal

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS

SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS Bullet of Mthemtcl Alyss d Applctos ISSN: 181-191, URL: http://www.mth.org Volume 4 Issue 4 01, Pges 76-90. SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics 4 Ler Homogeeous Recurrece Relto 4- bocc Rbbts 组合数学 ombtorcs The delt of the th moth d - th moth s gve brth by the rbbts - moth. o = - + - Moth Moth Moth Moth 4 I the frst moth there s pr of ewly-bor rbbts;

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Computer Programming

Computer Programming Computer Progrmmg I progrmmg, t s ot eough to be vetve d geous. Oe lso eeds to be dscpled d cotrolled order ot be become etgled oe's ow completes. Hrl D. Mlls, Forwrd to Progrmmg Proverbs b Her F. Ledgrd

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES Jose Javer Garca Moreta Graduate Studet of Physcs ( Sold State ) at UPV/EHU Address: P.O 6 890 Portugalete, Vzcaya (Spa) Phoe: (00) 3 685 77 16

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

INTRODUCTION ( ) 1. Errors

INTRODUCTION ( ) 1. Errors INTRODUCTION Numercl lyss volves the study, developmet d lyss of lgorthms for obtg umercl solutos to vrous mthemtcl problems. Frequetly umercl lyss s clled the mthemtcs of scetfc computg. Numercl lyss

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations.

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations. Amerc Jorl of Egeerg Reserch (AJER) 04 Amerc Jorl of Egeerg Reserch (AJER) e-iss : 30-0847 p-iss : 30-0936 Volme-03, Isse-08, pp-43-47 www.jer.org Reserch Pper Ope Access mercl Solto of Hgher Order Ler

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN Euroe Jour of Mthemtcs d omuter Scece Vo. No. 6 ISSN 59-995 ISSN 59-995 ON AN INVESTIGATION O THE MATRIX O THE SEOND PARTIA DERIVATIVE IN ONE EONOMI DYNAMIS MODE S. I. Hmdov Bu Stte Uverst ABSTRAT The

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin More Regresso Lecture Notes CE K - McKe Itroducto to Coputer Methods Deprtet of Cvl Egeerg The Uverst of Tes t Aust Polol Regresso Prevousl, we ft strght le to os dt (, ), (, ), (, ) usg the lest-squres

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information