Computer Programming

Size: px
Start display at page:

Download "Computer Programming"

Transcription

1 Computer Progrmmg I progrmmg, t s ot eough to be vetve d geous. Oe lso eeds to be dscpled d cotrolled order ot be become etgled oe's ow completes. Hrl D. Mlls, Forwrd to Progrmmg Proverbs b Her F. Ledgrd T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş

2 Outle Smple progrms pseudocode Computto of the determt d verse of mtr Appromto of fucto b poloml of degree m usg lest squres method Numercl tegrto of the equto =f () wth tl codto ( 0 )= 0 Solvg ler equtos For ll smples: Problem defto Mth model Algorthm developmet T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 2

3 Computto of the determt d verse of mtr Theorem: If o-sgulr mtr, A, c be reduced to the ut mtr, I, b pre-multplcto wth strg of mtrces, the b pre-multplcto of the ut mtr, I, wth the sme mtr strg wll result the mtr verse, A - Cosder the mtr, A A T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 3

4 Computto of the determt d verse of mtr Fdg the verse: steps Ech step volves seres of le opertos Itermedte mtrces re obted usg pvot elemet elmto After step the termedte mtr A () A () 0 0 () () 2 22 () 2 () () 2 () T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 4

5 Computto of the determt d verse of mtr Elemets of mtr A () were computed s () j () j j j () j for provded tht 0. I geerl, t step k j, 2, A ( k ) ( k ), k ( k ) 2, k ( k ) 3, k ( k ) k, k ( k ), k ( k ), ( k ) 2, ( k ) 3, ( k ) k, ( k ), T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 5

6 Computto of the determt d verse of mtr Elemets of mtr A (k) were computed s ( k ) kj ( k ) j ( ( k) kj ( k) kk k) j ( k ) kj ( k) k for,, k j, Thus, strtg wth B=I d pplg the sme ops we get B () =A -. Mtrces B (k) re clculted usg: b b ( k ) kj ( k ) j b ( b ( k) kj ( k) kk k) j b ( k ) kj ( k) k for,, k j, T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 6

7 Computto of the determt d verse of mtr The determt of mtr A, A s: A = () 22 (2) 33 (-) becuse A A A () (2) ( ) () 22 A ( k ) A () A ( ) () 22 A () 22 (2) 33 ( k ) A T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 7

8 Computto of the determt d verse of mtr To mmze roudg errors: Before ech step, k, brg to posto k, b ter-chgg, the le cotg the elemet of bsolute mmum vlue colum k, selected from les umbered k, d bove B terchgg two les, the determt must be multpled b - T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 8

9 Computto of the determt d verse of mtr cost m = 0; tpe mtr= rr[..m,..m] of rel; procedure mtr_verse( :teger; out : mtr, out b:mtr; out det_:rel); vr, j, k, mpos: teger; u, m: rel; beg {Itlze mtr B=I} for := to do beg for j:= to do beg f (=j) the b[, j]=; else b[,j]=0; edf; det_:=; k:=; {k s the step computg mtrces A (k) d B (k) } T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 9

10 Computto of the determt d verse of mtr whle (k ) d (det_ 0) do beg {fd pvot le} m:= [k, k] ; mpos:=k; for :=k+ to do beg f [,k] > m the beg m:= [,k] ; mpos:=; edf; {terchge le k wth mpos mtrces A d B} f (k mpos) the beg for j:= to do beg u:=[k, j]; [k, j]:=[mpos, j]; [mpos,j]:=u; u:=b[k, j]; b[k,j]:=b[mpos,j]; b[mpos, j]:=u; det_:=-det_; edf; T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 0

11 Computto of the determt d verse of mtr f ([k, k]=0) the det_:=0; else beg det_:=det_*[k, k]; u:=[k, k]; for j:= to do beg [k, j]:=[k, j]/u; b[k, j]:=b[k, j]/u; for := to do beg u:=[, k]; f (k) the for j:= to do beg [, j]:=[, j]-[k, j]*u; b[, j]:=b[, j]-b[k, j]*u; edf; edf; k:=k+; ed. T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş

12 Appromto of fucto b poloml of degree m Problem: fucto s kow b ts vlues pots, (, ),, Appromto b poloml of degree m requred, P( ) p p p 2 such s the sum of the squres of the errors s mmum..e. B replcg P () t elds E 0 2 [ P( ) 2 )] 2 p m T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 2 m mml 2 ( p0 p p2 pm ) mml m

13 T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 3 Appromto of fucto b poloml of degree m The followg codtos result: Ad, fll the mtr equto 0 0;; 0; 0 p m E p E p E m m m m m m m m p p p

14 Notto: Appromto of fucto b poloml of degree m A = mtr of coeffcets P = mtr of ukow prmeters B = rght hd sde Rewrtte: AP=B Hece P=A - B As mtr verse lred hs lgorthm, we hve to: Geerte mtr A d vector B Multpl two mtrces T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 4

15 Appromto of fucto b poloml of degree m progrm lest_squres_method; cost m = ; tpe vector= rr[..m] of rel; mtr= rr[..m,..m] of rel; vr,, P, B: vector; {, hve elemets, P d B hve m+ elemets} A, A_v: mtr; {mtrces of order (m+)*(m+)}, m, m, : teger; det_a: rel; beg red, (([], []), =,); { s the umber of pots} red m; {m s the degree of the poloml} m:=m+; cll geerte_a(,,, m, A); cll geerte_b(,,, m, B); cll mtr_verse(m, A, A_v, det_a); f (det_a0) the beg cll mtr_product(m, m, A_v, B, P); wrte (P[], =,m); else wrte No-determto ; ed. edf; T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 5

16 Appromto of fucto b poloml of degree m procedure mtr_product(, m, p: teger,; A, B:mtr; out C:mtr); {compute product of mtrces A (of sze *m) d B (of sze m*p) to C} vr, j, k: teger; s: rel; beg for := to do beg for j:= to p do beg s:=0; for k:= to m do beg s:=s+a[, k] * B[k, j]; C[, j]:=s; T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 6

17 Appromto of fucto b poloml of degree m procedure geerte_a( : teger,; : vector; out A:mtr); vr, j, m: teger; s: vector; sum: rel; beg {geerte 2 2m,,, } s[]:=; m:=m-; for := to 2*m do beg sum:=0; for j:= to do beg sum:=sum+[j]^; s[+]:=sum; {geerte mtr A of sze m*m} for := to m do beg for j:= to m do beg A[, j]:=s[+j-]; T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 7

18 Appromto of fucto b poloml of degree m procedure geerte_b( : teger,;, : vector; out B:mtr); vr, j: teger; sum: rel; beg {clculte B[] } sum:=0; for := to do beg sum:=sum+[]; B[]:=sum; {compute B[2],,B[m+]} m:=m-; for := to m do beg sum:=0; for j:= to do beg sum:=sum+[j]^*[]; B[+]:=sum; T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 8

19 Numercl tegrto of the equto =f () Problem: tegrte =f () Soluto: for [ 0, r ] wth step h : fd vlues,, 2,,, whch ppromte the true vlues o pots, 2,,, where = 0 + *h of the fucto =f () whch cludes the tl pot ( 0, 0 ) Euler s method bsed o Tlor s ppromto: From whch the frst two terms re reted.e. ( 2 h ) ( ) h '( ) ''( ) 2! ( ) ( ) h '( ) h ( f, ) T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 9

20 Numercl tegrto of the equto =f () cost m=00; tpe vector=rr[0..m] of rel; fucto f(, : rel); beg f:=; {epresso of f} procedure Euler( :teger; 0, 0, f:rel; out, : vector); vr h: rel; : teger; beg h:=(f - 0) / ; [0]:=0; [0]:=0; for := to do beg []:=[-]+h; []=h*f([-], [-]); For cceptble precso, step h must be suffcetl smll T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 20

21 Numercl tegrto of the equto =f () A better ppromto results f frst three terms re tke. h [ 2 f (, ) f ( Thus we hve procedure Euler2( :teger; 0, 0, f:rel; out,: vector); vr h, f: rel; : teger; beg h:=(f - 0) / ; [0]:=0; [0]:=0; for := to do beg []:=[-]+h; f:=f([-], [-]); []=[-]+h/2*[f+f([], [-]+h*f);, h f (, T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 2 ))]

22 T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 22 Numercl tegrto of the equto =f () The predctor-corrector method combes the two methods s s computes the predcted vlue from the frst two terms of Tlor s seres d corrected vlue clculted from Tlor s seres from the frst three terms The lst formul s ppled repetedl tll predefed precso, (whch we wll cll eps), s met. At ech repetto, c + becomes the predcted vlue. A mmum umber of repettos wll be deoted b m_rep ), ( p f h ), ( ), ( 2 p c f f h

23 Numercl tegrto of the equto =f () procedure Euler3( m_rep: teger, 0, 0, f, eps: rel; out, : vector); vr, b_rep, j: teger; h, f, pred, corr, df: rel; go_o: Boole; beg h:=(f-0) / ; [0]:=0; [0]:=0; go_o:=true; whle ((<) d go_o) do beg []:=[-]+h; f:=f([-], [-]); pred:=[-]+h*f; b_rep:=0; repet b_rep:=b_rep+; corr:=[-]+h/2*[f+f([], pred)]; df:= corr-pred ; pred:=corr; utl (df <eps) or (b_rep > m_rep); f (b_rep > m_rep) the beg go_o:=flse; wrte No covergece wth the gve umber of tertos ; ed else beg []:=corr; :=+; ed edf T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 23

24 T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 24 Numercl tegrto of the equto =f (). Ruge-Kutt Aother method: proposed b Ruge d Kutt No detls. Just formuls for precso of the order h 4 : where k k k k ), ( f h k ) 2, 2 ( 2 3 k h f h k ) 2, 2 ( 2 k h f h k ), ( 3 4 k h f h k

25 Numercl tegrto of the equto =f (). Ruge-Kutt procedure Ruge_Kutt( : teger; 0, 0, f: rel; out, : vector); vr h, k, k2, k3, k4: rel; : teger; beg h:= (f - 0)/ ; [0]=0; [0]:=0; for :=0 to - do beg [+]:=[]+h; k:=h*f([], []); k2:=h*f([]+h/2, []+k/2); k3:=h*f([]+h/2, []+k2/2); k4:=h*f([]+h,[]+k3); [+]:=[]+/6*(k+2*k2+2*k3+k4); ed. T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 25

26 Smple progrms. Solvg ler equtos Problem: solve sstem of ler equtos wth vrbles () j j j b, () Method used: Guss,.e. use ler trsformtos to obt the row echelo (upper trgulr) form (2) j ' j where ' j j b' 0 for, 2, d j (2), T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 26

27 Smple progrms. Solvg ler equtos The equvlet sstem (2) s solved s: b' b' ' j ' ' j j for, (3) T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 27

28 Smple progrms. Solvg ler equtos The lgorthms s: beg *red put dt *brg equto sstem () to the row echelo (trgle) form (2) f sstem s comptble d determte the beg *solve sstem usg formuls (3) *dspl soluto ed edf ed. T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 28

29 Smple progrms. Solvg ler equtos Elemetr row opertos (lso kow s Guss opertos) re smple mpultos performed o ler sstem tht hve o effect o the sstem's soluto set. The elemetr row opertos re: swppg: equto s swpped wth other resclg: both sdes of equto re multpled b ozero costt pvotg: equto s replced b the sum of tself d multple of other T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 29

30 Smple progrms. Solvg ler equtos Brgg equto sstem () to the row echelo (trgle) form (2) c be doe s follows: Cosder les p, to be pvot les b brgg posto p (b performg terchges) the le cotg the mmum bsolute vlue elemet [p, p] Elmte ukow vrble [p] from equtos p, costt c d ddg tht le to le b multplg the pvot le p b [, p] [ p, p] for p, (4) T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 30

31 Smple progrms. Solvg ler equtos The we hve: *brg equto sstem () to the trgle form (2) s for p:= to - do beg *buld pvot le, p; for :=p+ to do beg c [,p] ; [p,p] ed ed. for j:=p to do beg [, j]:=[, j]+c*[p, j]; ed ed b[]:=b[]+c*b[p]; T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 3

32 Smple progrms. Solvg ler equtos The ostdrd pvot le buldg *buld pvot le, p s m:= [p, p] ; q:=p; for :=p+ to do beg f [, p] > m the beg m:=[, p]; q:=; ed edf ed {terchge of les p d q f tht s the cse} f p q the beg for j:=p to do beg t:=[p, j]; [p, j]:=[q, j]; [q, j]:=t; ed edf T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 32

33 Smple progrms. Solvg ler equtos The o-stdrd sttemet for solvg: *solve sstem usg formuls (3)s b[] [] ; [,] for :=- dowto do beg s:=0; for j:=+ to do beg s:=s+[, j]*[j]; ed ed [] b[]-s ; [,] T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 33

34 Smple progrms. Solvg ler equtos Modules of the lgorthm m progrm: progrm Guss; {solve ler equto sstem, =b, wth ukow vlues} cost m=0; tpe vector=rr[..m] of rel; mtr=rr[..m,..m] of rel; vr, j,, error: teger; : mtr; b, : vector; beg red, ((([, j], j=,), b[]), =,); cll row_echelo(,, b, error); {error=0 for uquel determed sstem, d otherwse} f error=0 the beg cll solve(,, b,); wrte([], =,); {soluto} ed else wrte udetermed or mpossble sstem: determt s zero. edf ed. T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 34

35 Smple progrms. Solvg ler equtos Modules of the lgorthm procedure row_echelo procedure row_echelo( :teger; out : mtr; out b: vector; out error: teger); vr p, q,, j: teger; c, m, t: rel; beg p:=; repet {buld pvot le, p} m:= [p, p] ; q:=p;{q cots mmum bsolute vlue colum p} for :=p+ to do beg f [, p] > m the beg m:=[, p]; q:=; ed edf ed f p q the beg {terchge of les p d q} for j:=p to do beg t:=[p, j]; [p, j]:=[q, j]; [q, j]:=t; ed t:=b[p]; b[p]:=b[q]; b[q]:=t; ed edf T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 35

36 Smple progrms. Solvg ler equtos Modules of the lgorthm procedure row_echelo (cot d) {trgle form} error:=0; f ([p, p]=0 the error:= else for :=p+ to do beg for j:=p to do beg [, j]:=[, j]+c*[p, j]; ed ed b[]:=b[]+c*b[p]; edf p:=p+; utl ((p=) or (error=) f ([, ]=0 the error:=; edf T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 36

37 Smple progrms. Solvg ler equtos Modules of the lgorthm procedure solve procedure solve( : teger; : mtr; b: vector; out : vector); vr, j: teger; s: rel; beg b[] [] ; [,] for :=- dowto do beg s:=0; for j:=+ to do beg s:=s+[, j]*[j]; ed ed ed. b[]-s [] ; [,] T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 37

38 Summr Smple progrms pseudocode Computto of the determt d verse of mtr Appromto of fucto b poloml of degree m usg lest squres method Numercl tegrto of the equto =f () wth tl codto ( 0 )= 0 Solvg ler equtos For ll smples: Problem defto Mth model Algorthm developmet T.U. Cluj-Npoc - Computer Progrmmg - lecture 2 - M. Joldoş 38

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Chapter 2 Solving Linear Equation

Chapter 2 Solving Linear Equation EE7 Computer odelg Techques Egeerg Chpter Solvg er Equto A ler equto represets the ler depedece of qutty φ o set of vrbles through d set of costt coeffcets α through α ; ts form s α α... α φ If we replce

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

CS537. Numerical Analysis

CS537. Numerical Analysis CS57 Numercl Alyss Lecture 4 System of Ler Equtos Professor Ju Zhg Deprtmet of Computer Scece Uversty of Ketucky Legto, KY 456 6 Ferury, 6 System of Ler Equtos where j re coeffcets, re ukows, d re rght

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

INTRODUCTION ( ) 1. Errors

INTRODUCTION ( ) 1. Errors INTRODUCTION Numercl lyss volves the study, developmet d lyss of lgorthms for obtg umercl solutos to vrous mthemtcl problems. Frequetly umercl lyss s clled the mthemtcs of scetfc computg. Numercl lyss

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Module 2: Introduction to Numerical Analysis

Module 2: Introduction to Numerical Analysis CY00 Itroducto to Computtol Chemtr Autum 00-0 Module : Itroducto to umercl Al Am of the preet module. Itroducto to c umercl l. Developg mple progrm to mplemet the umercl method opc of teret. Iterpolto:

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Lecture Notes 2. The ability to manipulate matrices is critical in economics.

Lecture Notes 2. The ability to manipulate matrices is critical in economics. Lecture Notes. Revew of Matrces he ablt to mapulate matrces s crtcal ecoomcs.. Matr a rectagular arra of umbers, parameters, or varables placed rows ad colums. Matrces are assocated wth lear equatos. lemets

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Mechanics of Materials CIVL 3322 / MECH 3322

Mechanics of Materials CIVL 3322 / MECH 3322 Mechacs of Materals CVL / MECH Cetrods ad Momet of erta Calculatos Cetrods = A = = = A = = Cetrod ad Momet of erta Calculatos z= z A = = Parallel As Theorem f ou kow the momet of erta about a cetrodal

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Methods to Invert a Matrix

Methods to Invert a Matrix Lecture 3: Determts & trx Iverso ethods to Ivert trx The pproches vlble to fd the verse of mtrx re extesve d dverse. ll methods seek to solve ler system of equtos tht c be expressed mtrx formt s for the

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

Centroids Method of Composite Areas

Centroids Method of Composite Areas Cetrods Method of Composte reas small boy swallowed some cos ad was take to a hosptal. Whe hs gradmother telephoed to ask how he was a urse sad 'No chage yet'. Cetrods Prevously, we developed a geeral

More information

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4 // Sples There re ses where polyoml terpolto s d overshoot oslltos Emple l s Iterpolto t -,-,-,-,,,,,.... - - - Ide ehd sples use lower order polyomls to oet susets o dt pots mke oetos etwee djet sples

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin More Regresso Lecture Notes CE K - McKe Itroducto to Coputer Methods Deprtet of Cvl Egeerg The Uverst of Tes t Aust Polol Regresso Prevousl, we ft strght le to os dt (, ), (, ), (, ) usg the lest-squres

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 6, Jue 3 ISSN 5-353 A Altertve Method to Fd the Soluto of Zero Oe Iteger Ler Frctol Progrg Prole wth the Help of -Mtr VSeeregsy *, DrKJeyr ** *

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

MA 524 Homework 6 Solutions

MA 524 Homework 6 Solutions MA 524 Homework 6 Solutos. Sce S(, s the umber of ways to partto [] to k oempty blocks, ad c(, s the umber of ways to partto to k oempty blocks ad also the arrage each block to a cycle, we must have S(,

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

Chapter 17. Least Square Regression

Chapter 17. Least Square Regression The Islmc Uvest of Gz Fcult of Egeeg Cvl Egeeg Deptmet Numecl Alss ECIV 336 Chpte 7 Lest que Regesso Assocte Pof. Mze Abultef Cvl Egeeg Deptmet, The Islmc Uvest of Gz Pt 5 - CURVE FITTING Descbes techques

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates.

Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates. CURVE FITTING Descbes techques to ft cuves (cuve fttg) to dscete dt to obt temedte estmtes. Thee e two geel ppoches fo cuve fttg: Regesso: Dt ehbt sgfct degee of sctte. The stteg s to deve sgle cuve tht

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Cooper and McGillem Chapter 4: Moments Linear Regression

Cooper and McGillem Chapter 4: Moments Linear Regression Cooper d McGllem Chpter 4: Momets Ler Regresso Chpter 4: lemets of Sttstcs 4-6 Curve Fttg d Ler Regresso 4-7 Correlto Betwee Two Sets of Dt Cocepts How close re the smple vlues to the uderlg pdf vlues?

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

Asynchronous Analogs of Iterative Methods and Their Efficiency for Parallel Computers

Asynchronous Analogs of Iterative Methods and Their Efficiency for Parallel Computers Itertol Coferece "Prllel d Dstrbuted Computg Systems" PDCS 23 (Ure, Khrv, Mrch 3-4, 23) sychroous logs of Itertve Methods d her Effcecy for Prllel Computers Msym Svcheo, leder Chemers Isttute for Modelg

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information