SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

Size: px
Start display at page:

Download "SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES"

Transcription

1 SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES AND DIVERGENT INTEGRALS s d s Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EHU (Uversty of Bsque coutry I Sold Stte Physcs Addres: Prctctes Ad y Grjlb 6 G P.O Portuglete Vzcy (Sp Phoe: ( E-l: josegrc@yhoo.es MSC: 97M5, 4G99, 4G, 8T55 ABSTRACT: We study geerlzto of the zet regulrzto ethod ppled to the s cse of the regulrzto of dverget tegrls d for postve s, usg the Euler Mclur suto forul, we ge to epress dverget tegrl ter of ler cobto of dverget seres, these seres c be regulrzed usg the Re Zet fucto ζ ( s s >, the cse of the pole t s= we use property ' of the Fuctol detert to obt the regulrzto = (, wth ( the d of the Luret seres oe d severl vrbles we c eted zet regulrzto to the cses of tegrls f d, we beleve ths ethod c be of terest the regulrzto of the dverget UV tegrls Qutu Feld theory sce our ethod would ot hve the probles of the Alytc regulrzto or desol regulrzto Keywords: = Re Zet fucto, Fuctol detert, Zet regulrzto, dverget seres. ZETA REGULARIZATION FOR DIVERGENT INTEGRALS:

2 Soetes thetcs d physcs, we ust evlute dverget seres of the for, of course ths seres s dverget ules Re ( >, however cses le = or =3 pper severl clcultos of strg theory d Csr effect, for the cse of 3 Csr effect [3] the result = ppers to gve the correct result for the Fc cπ Csr force = h here A s the re d d the seprto betwee the 4 A 4 pltes, c d h re the speed of lgth d the Plc s costt. The de behd the Zet regulrzto ethod s to te for grted tht for every s the detty s = ζ ( s, follows lthough ths forul s vld just for Re (s >, to eted the defto of the Re Zet fucto to egtve rel ubers, oe eed to use the fuctol equto for the Re fucto π s ζ ( s = ( π ( scos ζ ( s π ( s ( s = ( s( π s Ths gves the epressos t s=, the Hroc seres fte vlue =, = d = due to the pole s NOT zet regulrzble, lthough t c be gve = γ = , ths vlue c be justfed by usg the theory of Zet-regulrzed fte products (deterts, s we shll see lter the pper o Zet regulrzto for dverget tegrls: s Let be f = wth Re(-s < -, the the Euler-Mclur suto forul for ths fucto reds s d = d ζ ( s s = r r ( r s d r= B ( s ( r! ( r s N ( Here forul ( ll the seres d tegrls re coverget, forul ( s usully worthless, sce t s trvl to prove tht d = for Re( >,d the Re zet fucto ζ = =, so othg ew c be obted fro (, the de s s to use the Fuctol equto ( for the Re d Zet fucto to eted the

3 defto of equto ( to the whole cople ple ecept s=, cse (-s s postve there wll be o pole t =, so we c put = d te the lt s B!( r ( r!( r! r r d = d ζ ( d (3 r= Forul (3 s the Alytc cotuto of forul ( wth = d c be used to obt fte defto for otherwse dverget tegrls,ppretly ths recurrece equto hs fte uber of ters but the G fucto hs pole t = d t beg soe egtve teger, soe eples of forul (3 I = ζ ( = = ζ ( = I d I d I B I = ζ ( I d = (4 3 B 3 I3 = ( I ζ ( I ζ ( 3 B3I = d So our ethod c provde fte regulrzto to dverget tegrls, wth the Ad of the zet regulrzto lgorth. Also our forule ( (3 d (4 re cosstet wth the usul suto propertes, fct f Λ d s fte for fte Λ d we use the property of the Re d Hurwtz Zet fucto [ ] to get the su of the -th powers of o the tervl [, Λ ] Λ = = ζ ( ζ (, Λ, ζ ( s, Λ = ( Λ s defed for Re(s > (of course for postve s s Λ the secod ter goes to B!( r ( r!( r! Λ Λ Λ r r d = d ζ ( ζ (, Λ d (5 r= B For teger (, ζ H = we fd the Beroull Polyols, the powers Λ Λ of Λ would ccel the tegrl d =, so the ed forul (5 we would B get the usul defto of Zet regulrzto ( ζ H = for teger. Of course oe could rgue tht spler regulrzto of the dverget tegrls should s s be I( s = d( = d I( = d( = log s, ths s just droppg out the ter proportol to log s or sde the tegrl to e t fte, however f w plugged ths result to the Euler-Mclur suto forule ( (3 or (5 the 3

4 ters volvg would ccel d we would flly fd tht ζ H ( = for every whch clerly s gst the defto of zet regulrzto of seres, for the cse of the logrhc dvergece, obted fro dfferetto wth respect to the eterl preter ths s result of tg the fte prt of the tegrl,whch ppretly wors. For the cse of the tegrls log d, we c sply dfferette - tes wth respect to regultor s order to obt fte vlues ters of ζ ( s d ζ '( s for egtve vlues of s uless =- (for other egtve vlues of we c e chge of vrble q =, ths s treted the et secto o Zet-regulrzed deterts d the Hroc seres: λ = Gve opertor A wth fte set of ozero Egevlues { } Zet fucto d Zet-regulrzed detert, Voros [] we c defe { } Tr A = ζ A( s = λ dζ A det( A ep ( = λ = ds (6 The proof of the secod forul sde (6 s pretty esy, the dervtve of the log λ Geerlzed zet fucto wll be ζ A '( s = s ow let s=, use the property of λ the logrth log(. b = log logb d te the epoetl o both sdes. For the cse of the Egevlues of sple Qutu Hroc osclltor oe deso [ ] λ =, the Zet fucto s just the Hurwtz Zet fucto, so we c defe zet-regulrzed fte product the for dζ H ep (, = ds dζ H (, log log π ds = (7 I cse we put = we fd the zet-regulrzed product of ll the turl ubers ( = π,see [5] f we te the dervtve wth respect to, we would fd the se regulrzed Vlue Ruj dd [] precsely ' = ( > ( d Hroc seres pper due to logrthc dvergece of the tegrl (, f we put = - sde forul (, usg regultor s, s we hve the Euler Mclur suto forul (8 r d B r = s s r s ( ( r= ( r! u ( = 4

5 Sce s > the tegrl d the seres sde (8 wll be coverget, ow we c tegrte s over sde (8 d use the defto of the logrth l log =, to s s d ' regulrze the tegrl ( s s s ters of the fucto plus soe fte correctos due to the Euler-Mclur suto forul. A fster ethod s just sple dfferette wth respect to sde the tegrl d di =, ow ths tegrl s coverget for every d equl to d, tegrto over g gves the vlue log c plus costt c tht wll ot deped o the vlue of sde the tegrl questo, the proof tht c s uque o tter wht s coes fro the fct tht the dfferece d log b =. b dζ H (, For the cse =, the dervtve of the Hurwtz Zet s = log ( π so f ds we pprote the dverget tegrl by seres, the we c get the regulrzed result d =. Appretly t sees tht usg two dfferet regulrztos we get soe dfferet results, the de s tht f we use the Strlg syptotc forul pproto for the logrth of the Zet fucto B z log ( z = z log z z log ( π r (9 r= r ( r If we te the dervtve wth respect to z sde (9, s ow ore ppret tht for d µ the logrthc dervtve log here c = log µ s costt obted fro dfferetto wth respect to to regulrze the dverget tegrl, ths costt c ust be relted to soe physcl costt or cse the qutty hs deso of Eergy the µ ust hve lso desos of eergy so the logrth s desoless, ths costt c would be the oly free djustble preter tht would pper sde our clcultos to regulrze tegrls. If s egtve there s etr ter due to the vlue log( = π, for ore cople logrthc tegrl oe c use the defto log ( d log µ wth the se eergy scle c = log µ o Regulrzto of dverget tegrls df ( : I geerl, the dverget tegrls tht pper Qutu Feld Theory [ ] re vrt 4 uder rottos, for eple 4 d p p or d p ( p q p, f we use 4-5

6 desol polr coordtes we c reduce these tegrls to the cse d / π d drf ( r r d / the the UV dvergeces pper whe r, here d=4 s the deso of the spcete, depedg o the vlue of d we c hve severl types of dvergeces Λ d drf ( r r Λ blog Λ, f b = for = the UV dvergeces re qudrtc f = the dvergeces re ler, cse = d b = the dvergeces re 4 of logrthc type, for eple d p p hs oly logrthc dvergece deso 4, for lower vlue of the deso (d=3 ths tegrl ests. To study the rte of dvergece, we c epd the fucto to Luret seres vld for z, f = c ( s fte uber d es tht the fucto f ( hs power lw dvergece for bg, the the de to copute dverget tegrl would be ths, we dd d substrct Polyol plus ter proportol to to splt the tegrl to fte prt d other dverget tegrl, both cses we ust lso troduce regultor ( for turl uber so we e the tegrls coverget for soe Re(s > d b f b ( b ( d b s s ( = ( ( Also we c use the chge of vrble (, so the ew lts of tegrto would be (,, sce s turl uber, the the followg detty ( = = ζ ( s holds for every postve d the sese of zet regulrzed seres. Of course sde ( our substrcto we c clude o-teger powers of sce the recurso forul ( s stll vld for the. The uber of ters s chose so the frst tegrl s FINITE, ths frst tegrl c be coputed by Nuercl or ect ethods d yelds to fte vlue, the rest of the tegrls re just the logrthc d power-lw dvergeces, they c be regulrzed wth the d of forule ( (3 (4 (6 (8 to get fte vlue volvg ler ζ H (, cobto of ζ ( =,,,..., d other vlue proportol to s d µ or log for eple we c lyze ths sple dverget tegrl > d 6

7 d ζ ( = d B r ' r ζ r r= ( r! u = ( The frst tegrl ( s coverget d hve ect vlue of log, order ' to regulrze the logrthc tegrl we hve used the result = ( plus ( the Euler-Mclur suto forul. The thetcl justfcto of ths s the followg, gve dverget tegrl df we troduce regultor d F( s = f s so the tegrl F(s ests for soe bg s, f we dd d substrct powers of the for s for teger d s, we c splt F(s to coverget tegrl I (s vld for s d soe dverget tegrls of the for d ( d d s, usg forule ( (3 (4 d (8 we c epress these tegrls ters of the seres s d s, whch wll be coverget for Re( s > d Re( s >, ow usg the Fuctol equto for the Hurwtz d Re Zet fucto we c e the lytc cotuto of both seres to s vodg the pole t s= by the use of Re Zet fucto t egtve ' tegers ζ ( plus soe correctos volvg of course the rules for chge of vrble d stll vld so df ( = duf ( u ths c be used to vod soe IR dvergeces t = by splttg the tegrl to IR dverget prt d UV dverget prt du = du du. For other types of dverget tegrls le β α d log for postve α d β oe could dfferette wth respect to or s sde forul ( order to obt recurrece equto for the tegrls β α d log, ths recurrece equto s fte (pprotely sce for Re ( p > β log d p s fte d do ot eed to be regulrzed provded >. Other useful dettes c be ( / or the epso of the logrth vld for y.4 7

8 > log = to e logrths ore trctble, lso we could use Luret epsos to hdle coplcte o-polyol epressos le ( µ by epdg t for bg to syptotc (verse power seres. o Regulrzto of tegrls the for d d f d : ( ( b Utl ow, we hve oly cosdered the UV dverget tegrls, the tegrls whose tegrd f s, fro the defto of proper tegrl ε d ε = = F reg ( / ε ( ε d = = Freg ( ε = ( N As N, ths ply tht our regulrzto producedure Freg ( s = Freg ( s, for the cse s > we c use forule ( d (3 to regulrze the dverget tegrl, d by the forul reltg s d (-s oe could lso regulrze IR (frred dverget d tegrls slr wy we dd for d, ecept for the cse = (logrthc tegrl,for the cse of ths tegrl d d ow we e the chge of vrbles, to rewrte ths s d d / d oe could splt t to d, these re g logrthc dverget tegrls d c be regulrzed wth the d of the zet regulrzed product b = e ζ ' = reg ( plus the Euler-Mclur suto forul, d the detty ( ' H (, b. For the cse of ore geerl dverget tegrl le f d f c d > c > (3 ( f f ( c( c ( d ( c ( c c Frst tegrl sde (3 s fte d fter severl pultos the other dverget r d tegrls c be wrtte s ( for soe rel d postve preters c ε r c d, by ultplyg both uertor d deotor by ( c r 8

9 Aother possblty s to vod the pole t cert pot = by usg the Alytc cotuto of the tegrl volvg severl preters d d( d = F (, = α α ( = (4 = ( α α The de s to clculte the tegrl (4 tht wll deped o two preters α ± =, d flly set α =, α = ± f F, ests, ths c be regrded s the regulrzed vlue of the tegrl, of course (4 y be dverget s so we y eed to dd d substrct ters to e t coverget slr wy we dd (, other for to regulrze (4 s defg F, α d the clculte ths tegrl for geerl vlue of α, the ed we would put α = ±. Aother useful detty to regulrze frred dvergeces wheever = s (tbles of tegrls by Abrowtz d Stegu [] r r d ( π ( = = I(,, r r ε (5 ( ( ε π π s ( r! 3 r Itegrl sde (4 wll be coverget wheever r- > f ths s ot the cse we could use the Euclde lgorth to splt ths tegrl to coverget ter defed s (4 d soe dverget tegrls d ( = -,,,,... the de to justfy why the frred dvergeces re eser to regulrze th ultrvolet oes, s tht for the frred, you could sert sll cople ter ε to regulrze t d e t coverget, so there re soe cople vlues of tht e (4 to be well-defed, however for the ultrvolet dvergeces ths s ot the cse sce there s o vlue of 4 d tht es coverget, uless we use soe d of regulrzto REGULARIZATION OF MULTIPLE INTEGRALS: Utl ow, we hve oly cosdered tegrls oe vrble (fter chge to polr coordtes, the t rses the questo f oe c pply our ethod of zet regulrzto to ore coplcte tegrls le I( s = d q d q... d q F( q, q,..., q R q, q,..., q ( ( (6 = ( q 9

10 Here we hve troduced regultor depedg o eterl preter s order the tegrl (6 to coverge for bg s d the use the lytc regulrzto to te the lt s, ths regultor ust be chose wth cre order ot to spol y syetres of the Physcl syste ths regultor y be of the for R q, q,..., q q = R ( q q q = ( q =,,..., (7 = Our frst stz would be to defe -desol polr coordtes so we c rewrte (6 s ultple tegrl depedg o r,,3,4,..., - the for q = r d severl gles = = Ω (, θ ( (, θ d dθ s ( θ Ω = I s d drg r r R r Ω = (8 θ = We y choose the frst regultor sde (7 so t does ot deped o the gulr coordtes, the de s tht cse (6 hs ultrvolet dvergece ths dvergece wll pper wheever r, so f we perfor the tegrl over the gulr vrbles Ω = s we re left wth tegrl I( s = dru ( r r ( r d dθ θ = order to regulrze ths we defe coverget tegrl (by substrcto plus soe dverget ters I( s = dr ( r U ( r r ( r ( r dr (9 = = U (r s the fucto obted fter tegrto over the gles, d s fte uber to perfor the l substrcto of ters order the frst tegrl to be coverget eve for s =, f the tegrl over the gles s too coplcte to hve ect for we could replce ths tegrl over the gles by pprote fte su dω (su over ll the gulr vrbles order to e the tegrl eser to clculte, ths c be usg Motercrlo ethods of tegrto., o Substrcto ethod: Oce we hve de the chge of vrble to sphercl coordtes sde our tegrl I( q, q,..., q oe could substrct soe ters to reder the tegrl fte I s d dr G r r f r f d dr r j j = Ω (, θ j ( θ ( j ( θ Ω ( ( Ω j= Ω j=

11 We chose the uber d the fuctos f j ( θ so the frst tegrl sde ( s coverget, for the secod tegrl we could perfor tegrto over the gulr vrbles d the use forule ( d (3 to regulrze o Iterted tegrto o severl vrbles: ( r dr. Aother ethod s to cosder the ultple tegrl s terte tegrl d the e the substrcto for every vrble for eple, = = q F( q q,..., q ( q,..., q ( q q ( q,..., q ( q The sybol q es tht the tegrl s de over the vrble q eepg the other vrbles costt, the uber s chose so the frst tegrl s fte, ths tegrl wll deped o I( q,..., q, the dverget tegrls (eve for the logrthc cse =- c be regulrzed. Now we hve regulrzed the frst tegrl, we hve reduced oe vrble the ultple tegrl, repetg the tertve process for the fuctos ( q, q,..., q ( q ( q, q..., q b j( q,..., q ( q q b( q,..., q ( q j= j= ( Usg ( d ( for every step we c reduce the deso of the tegrl utl we rech to the oe desol cse, whch s eser to hdle. As eple j dy d d y dy y y y y y y (3 ( y dy d y d dy = s s ( s I the lt s we c regulrze the dverget tegrls over vrble y, eepg costt, so fro (3 we get ( ( d f b b 3 dy f = (4 ( y y dyy Wth = d b = so for tl gve tegrl wth y reg reg overlppg dvergece s y we hve de substrcto to get fte tegrl over y (3 repetg the se process we c regulrze the tegrl over,

12 I order to tegrte the fte prt of the tegrl we c use severl uercl ethods. 3 dy For eple, the tegrl f = c be clculted uerclly to ( y y gve 3 f order to vod ters wth log(, r t( or ( y y j j j slr oes sde (3 d (4, other ethod to clculte (3 would be to troduce regultor the for y = R( s,, y, tht wll e (3 to coverge for cert vlues of s, f we use polr coordtes (,y ths becoes R(, y, s π / ( r s( u r ddy( y = dr du y (5 ( cos( u s( u r Itegrto over the gulr vrble u c be crred by uercl ethods, to produce soe ew dverget tegrls, tht wll oly deped o the vlue of r drg ( r ( r, ths tegrls c be regulrzed wth the se ethods we used to gve fte eg to -D tegrls, ule the desol regulrtzto, the regultor s ot the deso of spce-te, so we hve o proble wheever chgg to sphercl coordtes d=4 to overcoe the UV dvergeces. If the tegrd F( q, q,..., q hd o sgulrtes for every q j >, we y epd ths tegrd to ultple Luret seres of severl vrbles, d the perfor the substrcto C ( q b ( q b...( q b order to defe fte prt of the tegrl s, s,..., s,,...,,,..., d q d q d q F C q b q b q b (6 s, s,..., s ,,..., ( (...(,,..., Plus soe correctos due to dverget tegrls ( q b dq =-,,,.... I y cses lthough the tegrls gve ( d ( re fte they wll hve o ect epresso or the ect epresso wll be too coplcte, ths cse we c use the Guss-Lguerre Qudrture forul ( cse the tervl s [, to pprote the tegrl by su over the zeros of Lguerre Polyols w f ( q, q,..., q, wth the wegth epressed ters of Lguerre Polyols d ther roots w =, L ( = ( L ( =

13 FRACTIONAL DERIVATIVES FOR IR AND UV DIVERGENCES: Aother for to del wth IR dvergeces usg our Zet regulrzto lgorth ( d (3 s the followg, the ter ( p ε / ε c be regrded s the dervtve wth respect to of the UV dverget epresso p ε, so f we wsh to clculte the followg tegrl zet-regulrzto lgorth order to gve fte eg to we splt the tegrd to the secod tegrl y be wrtte s d = J (, we ust use our ε d ε, the frst tegrl s o loger probletc t = ε Bol theore to epd the squre root powers of d, ow we c use the ε > d use forule ( d (3 to regulrze the dverget tegrls.for other o-teger epoet ( ε frctol clculus ( 3/ ( α α d vld for p α we y sply use the forul of d = d / α / α wth ths ethod we tur UV dvergece to IR oe by forl dfferetto-tegrto, for the cse of teger ( p ε, we oly hve to study the cse = sce by dfferetto wth respect to other cses c be obted, we use prtl frcto descoposto d dvso of Polyols to set the followg dettes d ( p = p p p C± = F± ( p p ± p ± (7 wth F polyol o p d C costt, ow the sese of Prcpl vlue d µ = log π d µ = log (8 Here c = log µ (Eergy or UV scle s dverget costt obted the regulrzto of the logrthc dverget tegrl, due to the pole t s = we ust recll the defto of Fuctol detert to defe zet-regulrzed product ζ H '(, e = d te the logrthc dervtve wth respect to d pply 3

14 ' the epso of the Dg fucto reltes seres d tegrls. plus the Euler-Mclur forul tht If we wshed to clculte tegrl volvg the ter p we would hve 3/ ε ( ε ε proble sce p = 3/ ( p ε ε becoe sgulr s (3/ ( ε, f we epd the G fucto = ( er ts poles the for ( ε γ O( γ d troduce IR cut-off ε = ε IR, the we wll be ble to ε 3/ γ d defe regulrzed frctol dervtve s = 3/ reg so we c tur UV π d dverget quttes such s p ε to IR dverget quttes t p= p ε, ths would epl cert reltoshp we cojectured before volvg IR dverget tegrl wth other UV dverget tegrl by usg forl frctol dfferetto wth respect to eterl preters. o Multple tegrls: For the cse of ultple tegrls, we c e use of Polr coordtes y teger deso d the replce the tegrl over the gles dω by ultple su,..,, Ω ( Ω (, ( Ω Ω = ϕ dv F q q r dr r r b f r c (9 The fuctos b d c deped oly o the ANGLES but ot o the vrble r, for ultple tegrls we c ot lwys obt ect results for the tegrto over the gles so we should settle for pprotos. For the cse of the logrthc dverget tegrl, we c stll pply other trc we use the dettes =. d ( ( = order to obt P Rtol pproto (Pdé pprot for the squre root of wth Q ( P( d Q( Polyols of degree d respectvely so the logrthc tegrl becoes ore trctble tegrl tht c be regulrzed by usg ( d d P d j j c / s j c / s j Q c (3 c j= c j= 4

15 Due to the fctor, the Re the zet fucto ters ζ j wth j=-,,,... wll ot clude the pole t s= whe we use the forule ( d (3 to regulrze the dverget tegrls / d, the set of { j } c c s chose so the frst tegrl sde (3 s fte for every Re (s >, order to regulrze the secod dverget tegrl we wll eed forul (, c s chose order the Polyol Q( hs o roots o [ c,. For other d of logrthc dverget tegrls le c log ( p dp, dfferetto p wth respect wll e t coverget t the epese of troducg ew preter (costt u, see [] Zedler for further detls o the clculto of UV tegrls d Zet regulrzto. CONCLUSIONS AND FINAL REMARKS: We hve eteded the defto of the zet regulrzto of seres to pply t to the Zet regulrzto of dverget tegrl d > by usg the Zet regulrzto techque cobed wth the Euler Mclur suto forul. For good troducto to the Zet regulrzto techques, there s the boo by Elzlde [4] or the Boo by Bredt bsed o the thetcl dscoveres of Ruj d ts ethod of suto equvlet to the Zet regulrzto lgorth [], other good referece (but bt ore dvced s Zedler [], for the cse of Zet-regulrzed deterts [7] s good ole referece descrbg lso the process of Zet regulrzto v lytc cotuto d how t c be ppled to prove the detty ( = log π. Appretly there s cotrdcto, sce the Re Zet fucto hs pole t s= so the Hroc seres could ot be regulrzed, however E usg the defto of fuctol detert E = oe gets the fte µ ' result for the Hroc (geerlzed seres =, wth the d of the Euler-clur suto forul ths result for the Hroc seres c be used to gve pprote regulrzed vlue of the logrthc tegrl d, for the cse of other types of dverget tegrls d ( we c use g Euler- Mclur suto forul to epress ths dverget tegrls ters of the egtve vlues of the Hurwtz or Re Zet fucto ζ ( s H, = ζ ( s ζ H (, (UV =,,,3,4,...d the vlue of the dervtve of Hurwtz zet fucto log s = ζ (, (logrthc UV, these vlues ecode the UV dvergeces []. For the s H 5

16 d cse of the IR (frred dvergeces the for oe could e chge of vrble to re-terprette these tegrls s q q dq for the cse = we hve logrthc dvergece both t = s so we ust splt the tegrl / d d d to IR d UV dverget prt = ths tegrl wll be equl to d IR regultor so fter few sple clcultos / d = log µ, sce we c sply troduce forl UV Λ d l log UV Λ = Λ Λ, UV regultor s troduced to esure tht the tegrl wll be coverget.we lso beleve tht slr procedure c be ppled to eted our Zet regulrzto lgorth to ultple (ult-loop tegrls d q d q... d q F( q, q,..., q, oe of the dvtges of ths lgorth s tht the deso of the spce does ot pper eplctly so our ethod does ot hve the se probles s desol regulrzto, d c be used whe the Drc trces γ 5 = γ γγ γ 3 pper. The posto forul ( tht ust be turl uber s order to vod oddtes the process of Zet regulrzto wth the Zet d Hurwtz Zet fucto, sce uless s postve teger the equlty ζ (, = ( = does ot hold APPENDIX A: REGULARIZATION METHODS AND EXPANSIONS Λ I order to clculte dverget tegrl df Λ, for y rel d postve we ust epd the tegrd to Luret seres of postve d egtve ters c f = c s j s j s j= ( dz f ( z π (A. ( z c = For ths purpose the Bol theore d the epso of the logrth should be useful, order to fd ths Luret epso ( geerl for our dverget tegrls there wll be oly fte uber of ters sce the tegrls wll dverge t ost s power of the regultor Λ. r = u= u r u r u ( log p log p (A. p Oce we hve epded the fucto f( we y use forul ( to regulrze the dverget tegrls C d for teger or rel, the cse =- s just the 6

17 logrthc tegrl, d c be regulrze by usg the defto of Fuctol ' detert (fte products of ll the postve tegers so = (, y Λ cse f the tegrl s oly logrthc dverget df (, log Λ, forl dfferetto wth respect to eterl preter wll e t coverget, ths cse we ust troduce ew preter sde our theory c. Ths regulrzto odel c be ppled to lost y dverget tegrl tht ppers Qutu Feld theory, usg the trc of Wc rotto for eple wth the tegrl d p d p d q de 4 de = 4 (A R ( E p c c R ( E p c c ( q The de of ths Wc rotto s to chge to gry eerges by replcg the rel s by the gry oe d the e the substtuto E = q d cp = q wth =,,3,( for ore eplto see Zedler [] the lst tegrl (A.3 s dverget but usg sple chge to polr coordtes, t c be tured to the oe 3 d desol (dverget tegrl, ths s stll dverget, but c be regulrzed usg the techque of zet regulrzto for tegrls troduced ths pper. For ultple tegrls F( q, q,..., q we c e chge of vrble to - desol polr (sphercl coordtes, d replce the tegrl over the gulr vrbles dω by su dr r F r θ θ θ Ω (,,,...,, ths su wll clerly deped oly the vrble r, epdg ech ter to Luret seres o powers of (r for soe postve we c regulrze ultple tegrls pprote wy, (ote tht replcg tegrl by su s legtte d there re y Nuercl Qudrture ethods for ths purpose eve the cse tht the tegrd s ot vrt uder rottos (ule the desol regulrzto ethod or other ethods. For the cse of tegrls tht hve lso IR dvergece, we c defe severl preters µ > α >, ths cse the epressos, p α p p α ( ( p p µ re free of IR dvergeces, fter regulrzg the tegrl to cure the UV dvergeces, we c e the lytc cotuto our preters to the cses µ = ε d α = ε for sll preter ε, so the IR dvergeces s dp π pper. Aother useful forul s = s s ( s ( p ε, for d 7

18 p dp eple by dvso of Polyols tegrls of the for c be reduced to p the bove tegrls plus so UV dverget tegrls le ltertve s to cosder the geerl propgtor dp. Aother brute force p ( p p λ, wheever lbd tes the vlue - ths tegrl hs IR dvergece t p = p ± but for lbd postve ths tegrl hs o IR dvergeces, the se would hod for ( p ε IR dverget for egtve vlues of preter lbd, we c use our zet regulrzto lgorth, by epdg the quttes ( p ε λ tht s λ ( p p λ c ( λ wth λ (, to coverget Luret seres of powers d the set = ( λ = fter hvg regulrzed the dverget tegrls by es of the zet fucto ζ ( s λ order to obt fte UV results. For the cse of frctol dervtves d IR dvergeces, we c lwys defe 3/ frctol dervtve reltg UV d IR dvergeces the for 3/ ε d λ γ 3/ ε λ = = wth ( q ε, q,..., q fucto of - π ε dλ vrbles whose zeros re precsely the IR dvergeces our theory. For ore coplcte IR dverget tegrl, f we could use the sector ethod so we c solte the dvergeces the for f (,... g( y,... y d... d dy... dy y... y α βε ( (,... α βε K ( C P( y,... y ( b ε ( b ε (A.4 Wth K d P polyols of severl vrbles C s costt d f d g re sooth fuctos er the org, the coeffcets { bε } so we c fctorze the IR dvergeces s ε, wth sple chge of vrble y = for =,,3,4,.. q the lst tegrl (A.4 becoes UV dverget tegrl g(( q,...( q ( b ε ( bε dq... dq( q...( q C P q q α βε (A.5 ( (,... Although we hve oly studed ultple tegrls, the se c be ppled to Fourer trsfor, for eple f the fucto sde the Fourer trsfor depeds oly o the odulus of posto vector f ( r the we c e chge of vrble to polr r r r. r cosθ coordtes to get dr f e drf ( r r g( θ e, here the gle s R 8

19 r r troduced by the sclr product. =. r.cosθ, the fucto g wll deped oly o the gle θ, so we y replce ultple fourer trsfor by pprote sus of Fourer trsfor oe deso for the fucto f ( r r APPENDIX B: HOW TO OVERCOME THE POLE ζ ( I ths pper we hve see how due to the pole of the Re zet t the pot s = we d could ot regulrze the tegrl uless we use the result for the Hroc seres = reg ( fro > d fte, the f we troduce ths result sde the ' ( Euler-Mclur suto forul we c get fte results for Aother ltertve s to use the detty = d. ( d ( α d = e = log!! α = (B. I ths cse we c evlute the tegrls sde (B. by d log log r log B r log ( = ζ ( α α α α r s = r= ( r! u ( = (B. ( Here α s sll o teger so the zet fucto d ts dervtves ζ ( α re FINITE Aother ltertve s to loo for Pde or Rtol pproto for the squre root of for eple. P Q (! = > (B.3 ( (! 4 d P d I ths cse (B.3 we hve the pproto 3/ Q forul d P c d 3/ 3/ c c d c 5/ Q (B.4, ow f we pply the Isde (B.4 ow there re o logrthc-dverget tegrls, so the pole ζ ( wll ot ow pper Refereces 9

20 [] Abrowtz, M. d Stegu, I. A. (Eds.. "Re Zet Fucto d Other Sus of Recprocl Powers." 3. Hdboo of Mthetcl Fuctos. New Yor: Dover, pp , 97. [] Berdt B. Ruj's Noteboos: Prt II Sprger; edto (993 ISBN-: [3] Dowlg Joth P, "The Mthetcs of the Csr Effect", Mth. Mg. 6, (989. [4] Elzlde E. ; Zet-fucto regulrzto s well-defed, Jourl of Physcs 7 (994, L [5] Elzlde E. ; Zet regulrzto techques wth pplctos Ed. World Scetfc Press ISBN [6] Mzuo, Y. "Geerlzed Lerch Foruls: Eples of Zet-Regulrzed Products." J. Nuber Th. 8, 55-7, 6. [7] Muñoz Grcí, E. d Pérez Mrco, R. "The Product Over All Pres s." Preprt IHES/M/3/34. My 3. [8] Pvel E "Note o desol regulrzto", Qutu felds d strgs: course for thetcs, Vol.,(Prceto, NJ, 996/997, Provdece, R.I.: Aer. Mth. Soc., pp , ISBN (999 [9] Prellberg Thos, The thetcs of the Csr Effect tl vlble t e-prt t [] Voros A. Zet fuctos over zeros of zet fuctos Ed. SPRINGER ( ISBN: [] Zee, A. (3. Qutu Feld Theory Nutshell. Prceto Uversty ISBN ISBN [] Zedler E. Qutu Feld Theory I : Bss Physcs d Mthetcs Ed : Sprger Verlg ISBN:

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES SUMMARY OF TE ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT SERIES AND DIVERGENT INTEGRALS Joe Jver Grc Moret Grdute tudet of Phyc t the UPV/EU (Uverty of Bque coutry) I Sold Stte Phyc

More information

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EU (Uversty of Bsque coutry) I Sold Stte Physcs Addres: Prctctes

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin More Regresso Lecture Notes CE K - McKe Itroducto to Coputer Methods Deprtet of Cvl Egeerg The Uverst of Tes t Aust Polol Regresso Prevousl, we ft strght le to os dt (, ), (, ), (, ) usg the lest-squres

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS

APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS Pweł Pędzch Jerzy Blcerz Wrsw Uversty of Techology Fculty of Geodesy d Crtogrphy Astrct Usully to pproto of

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

24 Concept of wave function. x 2. Ae is finite everywhere in space.

24 Concept of wave function. x 2. Ae is finite everywhere in space. 4 Cocept of wve fucto Chpter Cocept of Wve Fucto. Itroucto : There s lwys qutty sscocte wth y type of wves, whch vres peroclly wth spce te. I wter wves, the qutty tht vres peroclly s the heght of the wter

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY UPB c Bull, eres D, Vol 8, No, 00 A METHOD FOR THE RAPD NUMERAL ALULATON OF PARTAL UM OF GENERALZED HARMONAL ERE WTH PRERBED AURAY BERBENTE e roue o etodă ouă etru clculul rd l suelor rţle le serlor roce

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Some results and conjectures about recurrence relations for certain sequences of binomial sums.

Some results and conjectures about recurrence relations for certain sequences of binomial sums. Soe results ad coectures about recurrece relatos for certa sequeces of boal sus Joha Cgler Faultät für Matheat Uverstät We A-9 We Nordbergstraße 5 Joha Cgler@uveacat Abstract I a prevous paper [] I have

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 6, Jue 3 ISSN 5-353 A Altertve Method to Fd the Soluto of Zero Oe Iteger Ler Frctol Progrg Prole wth the Help of -Mtr VSeeregsy *, DrKJeyr ** *

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

The linear system. The problem: solve

The linear system. The problem: solve The ler syste The prole: solve Suppose A s vertle, the there ests uue soluto How to effetly opute the soluto uerlly??? A A A evew of dret ethods Guss elto wth pvotg Meory ost: O^ Coputtol ost: O^ C oly

More information

A Study on New Sequence of Functions Involving the Generalized Contour Integral

A Study on New Sequence of Functions Involving the Generalized Contour Integral Globl Jourl of Scece Froter Reerch Mthetc d Deco Scece Volue 3 Iue Vero. Yer 23 Type : Double Bld Peer Revewed Itertol Reerch Jourl Publher: Globl Jourl Ic. (USA Ole ISS: 2249-4626 & Prt ISS: 975-5896

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES

ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES ABEL RESUMMATION, REGULARIZATION, RENORMALIZATION AND INFINITE SERIES Jose Jvier Grci Moret Grdute studet of Physics t the UPV/EHU (Uiversity of Bsque coutry) I Solid Stte Physics Addres: Prctictes Ad

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

International Journal of Scientific and Research Publications, Volume 3, Issue 5, May ISSN

International Journal of Scientific and Research Publications, Volume 3, Issue 5, May ISSN Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 5, My 13 1 A Effcet Method for Esy Coputto y Usg - Mtr y Cosderg the Iteger Vlues for Solvg Iteger Ler Frctol Progrg Proles VSeeregsy *, DrKJeyr

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Abel Resummation, Regularization, Renormalization & Infinite Series

Abel Resummation, Regularization, Renormalization & Infinite Series Prespcetime Jourl August 3 Volume 4 Issue 7 pp. 68-689 Moret, J. J. G., Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series Abel Resummtio, Regulriztio, Reormliztio & Ifiite Series 68 Article Jose

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM Jose Javer Garca Moreta Ph. D research studet at the UPV/EHU (Uversty of Basque coutry) Departmet of Theoretcal

More information

Chapter 2: Probability and Statistics

Chapter 2: Probability and Statistics Wter 4 Che 35: Sttstcl Mechcs Checl Ketcs Itroucto to sttstcs... 7 Cotuous Dstrbutos... 9 Guss Dstrbuto (D)... Coutg evets to etere probbltes... Bol Coeffcets (Dstrbuto)... 3 Strlg s Appoto... 4 Guss Approto

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission

2/20/2013. Topics. Power Flow Part 1 Text: Power Transmission. Power Transmission. Power Transmission. Power Transmission /0/0 Topcs Power Flow Part Text: 0-0. Power Trassso Revsted Power Flow Equatos Power Flow Proble Stateet ECEGR 45 Power Systes Power Trassso Power Trassso Recall that for a short trassso le, the power

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

, we would have a series, designated as + j 1

, we would have a series, designated as + j 1 Clculus sectio 9. Ifiite Series otes by Ti Pilchowski A sequece { } cosists of ordered set of ubers. If we were to begi ddig the ubers of sequece together s we would hve series desigted s. Ech iteredite

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

Quantum Mechanics Homework Solutions. 1.5 (page 16) Show that the z component of angular momentum for a point particle

Quantum Mechanics Homework Solutions. 1.5 (page 16) Show that the z component of angular momentum for a point particle Qutu Mechcs Hoework Solutos.5 (pge 6) Show tht the z copoet of gulr oetu for pot prtcle Lz p p whe epressed sphercl coordtes becoes Lz p r s. rcoss rss r(cos s ) r( s ) s r cos cos r(s s ) r(cos ) s r

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Generalized Hybrid Grey Relation Method for Multiple Attribute Mixed Type Decision Making*

Generalized Hybrid Grey Relation Method for Multiple Attribute Mixed Type Decision Making* Geerlzed Hybrd Grey Relto Method for Multple Attrbute Med Type Decso Mkg Gol K Yuchol Jog Sfeg u b Ceter of Nturl Scece versty of Sceces Pyogyg DPR Kore b College of Ecoocs d Mgeet Ng versty of Aeroutcs

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

NUMERICAL SOLUTIONS OF SOME KINDS OF FRACTIONAL DIFFERENTIAL EQUATIONS

NUMERICAL SOLUTIONS OF SOME KINDS OF FRACTIONAL DIFFERENTIAL EQUATIONS Jourl of Al-Nhr Uersty Vol.1 (), Deceber, 009, pp.13-17 Scece NUMERICAL SOLUTIONS OF SOME KINDS OF FRACTIONAL DIFFERENTIAL EQUATIONS L. N. M. Tfq I. I. Gorl Deprtet of Mthetcs, Ib Al Hth College Eucto,

More information

Math 153: Lecture Notes For Chapter 1

Math 153: Lecture Notes For Chapter 1 Mth : Lecture Notes For Chpter Sectio.: Rel Nubers Additio d subtrctios : Se Sigs: Add Eples: = - - = - Diff. Sigs: Subtrct d put the sig of the uber with lrger bsolute vlue Eples: - = - = - Multiplictio

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

r = cos θ + 1. dt ) dt. (1)

r = cos θ + 1. dt ) dt. (1) MTHE 7 Proble Set 5 Solutions (A Crdioid). Let C be the closed curve in R whose polr coordintes (r, θ) stisfy () Sketch the curve C. r = cos θ +. (b) Find pretriztion t (r(t), θ(t)), t [, b], of C in polr

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

On Stability of a Class of Fractional Differential Equations

On Stability of a Class of Fractional Differential Equations Proceedgs of the Pkst Acdey of Sceces 49 (: 39-43 (0 Coyrght Pkst Acdey of Sceces SSN: 0377-969 Pkst Acdey of Sceces Orgl Artcle O Stblty of Clss of Frctol Dfferetl Equtos Rbh W. brh* sttute of Mthetcl

More information

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT INTEGRALS

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT INTEGRALS ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT INTEGRALS s Jose Jvier Grci Moret Grdute studet of Physics t the UPV/EU (Uiversity of Bsque coutry) I Solid Stte Physics Addres: Prctictes

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Stationary states of atoms and molecules

Stationary states of atoms and molecules Statoary states of atos ad olecules I followg wees the geeral aspects of the eergy level structure of atos ad olecules that are essetal for the terpretato ad the aalyss of spectral postos the rotatoal

More information

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES Jose Javer Garca Moreta Graduate Studet of Physcs ( Sold State ) at UPV/EHU Address: P.O 6 890 Portugalete, Vzcaya (Spa) Phoe: (00) 3 685 77 16

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne.

KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS. Peter J. Wilcoxen. Impact Research Centre, University of Melbourne. KURODA S METHOD FOR CONSTRUCTING CONSISTENT INPUT-OUTPUT DATA SETS by Peter J. Wlcoxe Ipact Research Cetre, Uversty of Melboure Aprl 1989 Ths paper descrbes a ethod that ca be used to resolve cossteces

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2. Chter Chter Syste of Rel uers Tertg Del frto: The del frto whh Gve fte uers of dgts ts del rt s lled tertg del frto. Reurrg ( o-tertg )Del frto: The del frto (No tertg) whh soe dgts re reeted g d g the

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands Tlburg ceter for Cogto d Coucto P.O. Box 953 Tlburg Uversty 5 LE Tlburg, The Netherlds htt://www.tlburguversty.edu/reserch/sttutes-d-reserch-grous/tcc/cc/techcl-reorts/ El: tcc@uvt.l Coyrght A.J. v Zte,

More information