24 Concept of wave function. x 2. Ae is finite everywhere in space.

Size: px
Start display at page:

Download "24 Concept of wave function. x 2. Ae is finite everywhere in space."

Transcription

1 4 Cocept of wve fucto Chpter Cocept of Wve Fucto. Itroucto : There s lwys qutty sscocte wth y type of wves, whch vres peroclly wth spce te. I wter wves, the qutty tht vres peroclly s the heght of the wter surfce lght wves, electrc fel getc fel vry wth spce te. For De-brogle wves or tter wves sscocte wth ovg prtcle, the qutty tht vry wth spce te, s clle wve fucto of the prtcle. The teporl sptl evoluto of qutu echcl prtcle s escrbe by wve fucto, t for -D oto r, t for 3-D oto.. It cots ll possble forto bout the stte of the syste. These re kow s cofgurto spce wve fucto. Coto for physclly ccepte, well behve, relstc wve fucto : (), t shoul be fte, sgle-vlue cotuous everywhere spce. () shoul be cotuous everywhere spce. But, y be scotuous soe cses s follows: () If the potetl uer whch the prtcle s ovg, hs fte out of scotuty t soe pots, (b) If the potetl uer whch the prtcle s ovg, s of rc elt ture. (), t shoul be squre tegrble.e. t () Asec (b) t, fte qutty Eple : Whch of the followg wve fucto s cceptble s the soluto of the Schroger equto for ll vlues of? A (c) Ae () Ae Asec t A s ot fte t Ae s ot fte t ; Correct opto s (). Ae s fte everywhere spce. Eple : A bll bouces bck off erth. You re ske to solve ths qutu echclly ssug the erth s ftely hr sphere. Coser surfce of erth s the org plyg V 0 ler potetl eleswhere (.e. V g for 0 ). Whch of the followg wve fucto s physclly ssble for ths proble (wth k > 0): () k e k (b) Ae k (c) Ae () Ae k

2 Cocept of wve fucto 5 Sce the erth hs bee tke s ftely hr sphere, therefore the wve fucto of the bll wll be zero for < 0, o-zero for > 0 zero t fty. Sce shoul be cotous everywhere, the wvefucto of the bll wll be zero t = 0. Correct opto s ().. Physcl sgfcce of wve fucto : Geerlly,, t s cople qutty. It c be ultple by y cople uber wthout ffectg ts physcl sgfcce. I geerl,, t hs o rect physcl sgfcce. But the qutty, t, t, t s rel, physclly sgfct s efe s posto probblty esty.e. probblty of fg the prtcle per ut legth t te t. Therefore, for -D oto the probblty of fg the prtcle betwee to + t te t s gve by, t, t, t for 3-D oto the probblty of fg the prtcle wth the volue eleet locte betwee r r r t te t s gve by r, t r, t r, t Now,, t or r, t spce shoul be equl to uty.e. shoul be chose such tht totl probblty of fg the prtcle the etre, t r, t, t (for -D oto) ll spce r, t r, t r, t (for 3-D oto) ll spce Ths s clle the orlzto coto of the wve fucto., t r, t s orlze t soe te t res orlze forever. Ths c be uerstoo s If or coservto of probblty or coservto of orlzto. Metho of Norlzto: Coser, t s uorlze wve fucto. We c costruct orlze wve fucto s, t N, t where N s the orlzto costt. Therefore,, t, t N, t, t N, t, Eple 3: Norlze the wve fucto gve by t Ne 0 Ne 0

3 6 Cocept of wve fucto Norlzto coto s 0 N e e 0 N N Orthogolty coto of wve fuctos : Two wvefuctos.e. f prtcle s the stte re s to be orthogol to ech other, f Orthoorlty coto of wve fuctos : Two wvefuctos.3 Hlbert Spce : 0, the the prtcle cot be the stte re s to be orthoorl to ech other, f 0 sulteously together. I vector spce, the set of ut vectors e, e, e 3... for the orthoorl bss.e. we c epress y vector ths vector spce s ler cobto of e, e, e 3... Slrly, spce c be efe whch set of fuctos 3,,... for the orthoorl bss of the coorte syste. The correspog fte esol ler vector spce s clle Hlbert spce. Propertes of Hlbert Spce: () The er prouct or sclr prouct of two fuctos efe s () Two fuctos b j j j j efe the tervl b s re s to be orthogol f ther er prouct s zero.e. b j j 0 Ths s kow s orthogolty coto of two wve fuctos. () The or of fucto s efe s b N (v) A fucto s s to be orlze f the or of the fucto s uty.e. b N Ths s kow s orlzto coto of prtculr wve fuctos. / /

4 Cocept of wve fucto (v) Fuctos whch re orthogol orlze re clle orthoorl fuctos they wll stsfy the coto: (v) A set of fuctos 3 b j j j,,... s lerly epeet f there est relto lke c c c , where ll c, c, c 3... re zero. Otherwse, they re s to be lerly epeet. A set of lerly epeet fuctos s coplete..4 Opertor forls : A opertor s thetcl rule (or proceure) whch opertg o oe fucto trsfors t to other fucto.e.  opertor.. Every ycl vrble Qutu echcs represete by Opertos Sybol Result of the operto Tkg the squre root / Dfferetto w.r.t. Posto Opertor :, y, z Moetu Opertor :, p py, p z p y z Potetl eergy Opertor : V Ketc eergy Opertor : Couttor Brcket: K p The couttor brcket of two opertors A B s efe s A, B AB BA. Eple:,, () p p p p (),, Slrly, y p, y Ler Opertor: If opertor z, p z  s s to be ler f () A c ca () A A A All Qutu echcl Opertors re ler ture. Propertes of the couttor brcket:. A, B B, A.,...,, A B C D A B A C... 7

5 8 Cocept of wve fucto 3. A, B B, A 4. A, BC A, B C B A, C 5.,,,,, 0 A BC B C A C A B 6. A, f A 0 7. f A G A f A, G B 0 oly f, A B 0, A B B A, B Eple 4: F the couttor brcket A, B, B, A Sol: A, B, B, A A, B B, A B, A A, B = AB BA BA AB BA AB AB BA, 0 0.,, A B A A B = ABBA ABAB BABA BAAB BAAB ABAB BABA ABBA 0 Eple 5: F the couttor brcket, p. Sol:, p, pp, p p p, p, pp p, p p p Eple 6: If p H V, the clculte,, H. p H V p p p p Sol:,,,, 0,,, H, p, p Egevlues Egefuctos: If opertor  opertg o fucto gves A, the s clle the egefucto of  correspog to egevlue the bove equto s kow s egevlue equto of opertor Â. Eple: A e A e 4e 4 s egefucto of  correspog to egevlue 4. If the couttor brcket of two opertors A B s equl to zero.e. A, B 0, the the physcl observbles correspog to these opertors re sulteously ccurtely esurble they hve coplete set of sulteous egefuctos. Eple 7: The opertor hs the egevlue. Detere the correspog wvefucto. Sol: Egevlue equto:

6 Cocept of wve fucto l l ep Eple 8: F the costt B whch kes Wht s the correspog egevlue? B e B e Sol: 4 For e to be egefucto of the opertor e egefucto of the opertor B ust be epeet of.e. 4 B, the the egevlue 4 B 0 B 4 Therefore, B e e ; Thus the egevlue of the opertor s (-). Hert opertor: A opertor  s s to be hert f A A ts shoul stsfy the followg relto: A A A Drc represetto: Schroger represetto:, A A, A A B. Propertes: () Egevlues of hert opertors re rel. () Egefuctos correspog to fferet egevlues of hert opertor re orthogol. (3) All physcl observble qutu echcs re represete by hert opertors., p Eple: Hece, the oetu opertor p s hert ture. p Slrly, we c see tht Projecto opertor: s t-hert.e. A opertor s s to be projecto opertor f A A A A Propertes: () Egevlues of projecto opertor s 0. () Prouct of two projecto opertors s lso projecto opertor f p p (3) Su of two projecto opertor s projecto opertor f p p, 0, 0

7 30 Utry Opertor: A opertor  s s to be utry f A A Prty Opertor: Prty opertor correspos to spce reflecto bout the org.e P Cocept of wve fucto I geerl, P r r ; where r yj zk r yj zk Whe prty opertor cts o wvefucto, the followg chges tke plce vrous co-orte syste: () Crtes co-orte syste:, y y, z z () Sphercl polr co-orte syste : r r,, () Cyllrcl co-orte syste:,, z z Propertes: () Egevlues of the prty opertor s, -. P eve prty. P o prty () Prty opertor s hert ture (3) Prty opertor coutes wth hlto opertor f the potetl uer whch prtcle s ovg.e. V() s syetrc ture. Eple 9: Let, N b b where the opertor b stsfes the relto the egevlues of N re () +ve ve tegers (b) ll +ve tegers (c) 0 oly Sol: N b b b b b bb b b b b b b b b b bb b b 0, b b 0 ; bb b b () 0 oly Eple 0: Let the wve fucto of prtcle of ss t gve stt be Wht wll be the fucto K ketc eergy? The ketc eergy opertor s K / Ae. where K s the ketc eergy? Is ths wve fucto egefucto of. Thus, / A / K Ae e A / A / / e e e A / e Ths s ot egefucto of ketc eergy. Eple : A opertor A s efe s A For the gve opertor, A. Is ths ler opertor?

8 Cocept of wve fucto 3 A A Thus, A A hece A s ot ler opertor. Eple. Prove tht Xp, H p X p, V opertor.,,, where p Xp H X p H X H p =, p X p, V X V p X p,,, V p X p X p p p X p, V p p p X p, V p H V, V s potetl eergy Eple 3. be two ortoorl stte vectors. Let A. Is projecto opertor? A A Hece, A s hert. Now, A Sce, re orthoorl, A A Therefore, A s ot projecto opertor. Eple 4. Prove tht Xp p X t t p X, H X, V X p p X p X p p,,, p X X p p X Xp Xp p X Eple 5. Prove tht the opertors ( / ) / re Hert. [ ] Therefore, / s Hert.

9 3 Cocept of wve fucto Thus, / s Hert. Eple 6: F the followg coutto reltos: (), (), F( ) () 3 3, (), F( ) ( F ) F = F F F F F Thus,, F( ) Eple 7: F the equvlece of the followg opertors: () () () ( ) = = Therefore, () Slrly, Eple 8. By wht fctors o the opertors ( p p ) / ( p ) p ffer? f ( p p ) f ( f ) f ( f ) f f f f f f f f 4 f f ( f ) ( p p ) f ( p p)

10 Cocept of wve fucto 33 f ( p p ) f f f f ( f ) f f f f f f 4 f f f 8 f f 4 The two opertors ffer by ter (3 / ) Eple 9. F the egevlues egefuctos of the opertor /. Egevlue equto: ( ) k ( ) (where k s the egevlue ( ) s the egefucto) k Ce k. Cse : k s rel postve qutty, s ot cceptble fucto sce t tes to or s or. Cse : k s purely gry (sy ), the Ce whch wll be fte for ll vlues of. Hece, y k ce s the egefucto of the opertor / wth egevlues k, where s rel. Epectto vlue of yc vrbles: It s efe s the verge of the result of lrge uber of epeet esureets of physcl observble o the se syste. Note:    () If the stte of the prtcle s egefucto of the opertor Â, the the epectto vlue of the physcl observble correspog to  wll be equl to the egevlue of  correspog to the stte of the prtcle. () The stte of the prtcle s gve s: C C C C where,... re the egefucto of the opertor Â, the epectto vlue of the the physcl observble correspog to  wll be A C where re the egevlues of opertor  correspog to.

11 34 Cocept of wve fucto Eple 0: A prtcle of ss s cofe -D bo fro L to L. The wve fucto of the prtcle ths stte s cos 0 4L () F the orlzto fctor. () The epectto vlue of P ths stte. () L L 0 0 L L L cos cos 4 4L L 0 4L 0 s 4L L L 0 L L P L L = L cos L L 4L 4L. L cos L cos 3 L 6L L L 3L 0 = L 6L Eple : F the epecte vlue of posto oetu of prtcle whose wve fucto s / k e ll spce Epecte posto of the prtcle Epecte oetu of the prtcle / e. 0 / e p / k / k / e e e k = / / e e k e e / / k /4 Eple. The wvefucto of prtcle stte s N ep( / ), where N (/ ). Evlute ( )( p). Sce s syetrcl bout 0, 0 N ep Sce, s rel wve fucto, p 0 p ( ) N ep ep N N ep ep

12 Cocept of wve fucto 35 Therefore, p p p Eple 3. The Hlto opertor of syste s H ( / ). Show tht N ep( / ) s egefucto of H etere the egevlue. Also evlute N by orlzto of the fucto. Nep( / ), N beg costt H N ep 3 ep ep N ep 3N ep 3 Thus, the egevlue of H s 3. The orlzto coto gves N e N N / The orlze fucto / ep Eple 4. Coser the wve fucto ( ) Aep ep( k), where A s rel costt. () F the vlue of A, () clculte p for ths wve fucto. () Norlzto coto: A ep A / / A () p k k ( ) A ep e k ep e ( ) ep ( )( k) A ep I the frst ter, the tegr s o the tegrl s fro to. Hece the tegrl vshes. Therefore, p k, sce A ep

Chapter 2: Probability and Statistics

Chapter 2: Probability and Statistics Wter 4 Che 35: Sttstcl Mechcs Checl Ketcs Itroucto to sttstcs... 7 Cotuous Dstrbutos... 9 Guss Dstrbuto (D)... Coutg evets to etere probbltes... Bol Coeffcets (Dstrbuto)... 3 Strlg s Appoto... 4 Guss Approto

More information

Quantum Mechanics Homework Solutions. 1.5 (page 16) Show that the z component of angular momentum for a point particle

Quantum Mechanics Homework Solutions. 1.5 (page 16) Show that the z component of angular momentum for a point particle Qutu Mechcs Hoework Solutos.5 (pge 6) Show tht the z copoet of gulr oetu for pot prtcle Lz p p whe epressed sphercl coordtes becoes Lz p r s. rcoss rss r(cos s ) r( s ) s r cos cos r(s s ) r(cos ) s r

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Review of Linear Algebra

Review of Linear Algebra PGE 30: Forulto d Soluto Geosstes Egeerg Dr. Blhoff Sprg 0 Revew of Ler Alger Chpter 7 of Nuercl Methods wth MATLAB, Gerld Recktewld Vector s ordered set of rel (or cople) uers rrged s row or colu sclr

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER- WAVEFUNCTIONS, OBSERVABLES d OPERATORS. Represettos the sptl d mometum spces..a Represetto of the wvefucto the sptl coordtes

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

Methods for solving the radiative transfer equation. Part 3: Discreteordinate. 1. Discrete-ordinate method for the case of isotropic scattering.

Methods for solving the radiative transfer equation. Part 3: Discreteordinate. 1. Discrete-ordinate method for the case of isotropic scattering. ecture Metos for sov te rtve trsfer equto. rt 3: Dscreteorte eto. Obectves:. Dscrete-orte eto for te cse of sotropc sctter..geerzto of te screte-orte eto for ooeeous tospere. 3. uerc peetto of te screte-orte

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise Prticle i Box We must hve me where = 1,,3 Solvig for E, π h E = = where = 1,,3, m 8m d the stte fuctio is x A si for 0 x, d 0 otherwise x ˆ d KE V. m dx I this cse, the Hermiti opertor 0iside the box The

More information

Stationary states of atoms and molecules

Stationary states of atoms and molecules Statoary states of atos ad olecules I followg wees the geeral aspects of the eergy level structure of atos ad olecules that are essetal for the terpretato ad the aalyss of spectral postos the rotatoal

More information

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES AND DIVERGENT INTEGRALS s d s Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EHU (Uversty of Bsque coutry

More information

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER-0 WAVEFUNCTIONS, OBSERVABLES d OPERATORS 0. Represettos the sptl d mometum spces 0..A Represetto of the wefucto the sptl

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Hamilton s principle for non-holonomic systems

Hamilton s principle for non-holonomic systems Das Hamltosche Przp be chtholoome Systeme, Math. A. (935), pp. 94-97. Hamlto s prcple for o-holoomc systems by Georg Hamel Berl Traslate by: D. H. Delphech I the paper Le prcpe e Hamlto et l holoomsme,

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Ionization Energies in Si, Ge, GaAs

Ionization Energies in Si, Ge, GaAs Izt erges S, Ge, GAs xtrsc Semcuctrs A extrsc semcuctrs s efe s semcuctr whch ctrlle muts f secfc t r murty tms hve bee e s tht the thermlequlbrum electr hle ccetrt re fferet frm the trsc crrer ccetrt.

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds) Yasuko Chikuse Faculty of Engineering Kagawa University Japan

Asymptotic Statistical Analysis on Special Manifolds (Stiefel and Grassmann manifolds) Yasuko Chikuse Faculty of Engineering Kagawa University Japan Asyptotc Sttstcl Alyss o Specl Mfols Stefel Grss fols Ysuo Chuse Fculty of Egeerg Kgw Uversty Jp [ I ] Stefel fol V ef { -fres R ; -fre set of orthoorl vectors R } ; ' I }. { Deso of V +. Ex: O V : orthogol

More information

Math 153: Lecture Notes For Chapter 1

Math 153: Lecture Notes For Chapter 1 Mth : Lecture Notes For Chpter Sectio.: Rel Nubers Additio d subtrctios : Se Sigs: Add Eples: = - - = - Diff. Sigs: Subtrct d put the sig of the uber with lrger bsolute vlue Eples: - = - = - Multiplictio

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

M098 Carson Elementary and Intermediate Algebra 3e Section 10.2

M098 Carson Elementary and Intermediate Algebra 3e Section 10.2 M09 Crso Eleetry d Iteredite Alger e Sectio 0. Ojectives. Evlute rtiol epoets.. Write rdicls s epressios rised to rtiol epoets.. Siplify epressios with rtiol uer epoets usig the rules of epoets.. Use rtiol

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

UNIT 7 RANK CORRELATION

UNIT 7 RANK CORRELATION UNIT 7 RANK CORRELATION Rak Correlato Structure 7. Itroucto Objectves 7. Cocept of Rak Correlato 7.3 Dervato of Rak Correlato Coeffcet Formula 7.4 Te or Repeate Raks 7.5 Cocurret Devato 7.6 Summar 7.7

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

( x) min. Nonlinear optimization problem without constraints NPP: then. Global minimum of the function f(x)

( x) min. Nonlinear optimization problem without constraints NPP: then. Global minimum of the function f(x) Objectve fucto f() : he optzato proble cossts of fg a vector of ecso varables belogg to the feasble set of solutos R such that It s eote as: Nolear optzato proble wthout costrats NPP: R f ( ) : R R f f

More information

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers

ELEMENTS OF NUMBER THEORY. In the following we will use mainly integers and positive integers. - the set of integers - the set of positive integers ELEMENTS OF NUMBER THEORY I the followg we wll use aly tegers a ostve tegers Ζ = { ± ± ± K} - the set of tegers Ν = { K} - the set of ostve tegers Oeratos o tegers: Ato Each two tegers (ostve tegers) ay

More information

ELEG 3143 Probability & Stochastic Process Ch. 5 Elements of Statistics

ELEG 3143 Probability & Stochastic Process Ch. 5 Elements of Statistics Deprtet of Electricl Egieerig Uiversity of Arkss ELEG 3143 Probbility & Stochstic Process Ch. 5 Eleets of Sttistics Dr. Jigxi Wu wuj@urk.edu OUTLINE Itroductio: wht is sttistics? Sple e d sple vrice Cofidece

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY UPB c Bull, eres D, Vol 8, No, 00 A METHOD FOR THE RAPD NUMERAL ALULATON OF PARTAL UM OF GENERALZED HARMONAL ERE WTH PRERBED AURAY BERBENTE e roue o etodă ouă etru clculul rd l suelor rţle le serlor roce

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

mywbut.com Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits

mywbut.com Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits wut.co Lesson 3 Representtion of Sinusoil Signl Phsor n Solution of Current in R-L-C Series Circuits wut.co In the lst lesson, two points were escrie:. How sinusoil voltge wvefor (c) is generte?. How the

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin More Regresso Lecture Notes CE K - McKe Itroducto to Coputer Methods Deprtet of Cvl Egeerg The Uverst of Tes t Aust Polol Regresso Prevousl, we ft strght le to os dt (, ), (, ), (, ) usg the lest-squres

More information

DYNAMICS. Systems of Particles VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

DYNAMICS. Systems of Particles VECTOR MECHANICS FOR ENGINEERS: Seventh Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Ferdad P. eer E. Russell Johsto, Jr. Systes of Partcles Lecture Notes: J. Walt Oler Texas Tech Uersty 003 The Mcraw-Hll Copaes, Ic. ll rghts resered.

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

, we would have a series, designated as + j 1

, we would have a series, designated as + j 1 Clculus sectio 9. Ifiite Series otes by Ti Pilchowski A sequece { } cosists of ordered set of ubers. If we were to begi ddig the ubers of sequece together s we would hve series desigted s. Ech iteredite

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

A MULTISET-VALUED FIBONACCI-TYPE SEQUENCE

A MULTISET-VALUED FIBONACCI-TYPE SEQUENCE Avces Applctos Dscrete Mthemtcs Volume Number 008 Pes 85-95 Publshe Ole: Mrch 3 009 Ths pper s vlble ole t http://wwwpphmcom 008 Pushp Publsh House A MULTISET-VALUED IBONACCI-TYPE SEQUENCE TAMÁS KALMÁR-NAGY

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 6, Jue 3 ISSN 5-353 A Altertve Method to Fd the Soluto of Zero Oe Iteger Ler Frctol Progrg Prole wth the Help of -Mtr VSeeregsy *, DrKJeyr ** *

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands

TiCC TR November, Gauss Sums, Partitions and Constant-Value Codes. A.J. van Zanten. TiCC, Tilburg University Tilburg, The Netherlands Tlburg ceter for Cogto d Coucto P.O. Box 953 Tlburg Uversty 5 LE Tlburg, The Netherlds htt://www.tlburguversty.edu/reserch/sttutes-d-reserch-grous/tcc/cc/techcl-reorts/ El: tcc@uvt.l Coyrght A.J. v Zte,

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators.

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators. Topic i Qutu Optic d Qutu Ifortio TA: Yuli Mxieko Uiverity of Illioi t Urb-hpig lt updted Februry 6 Proble Set # Quetio With G x, x E x E x E x E x G pqr p q r where G pqr i oe trix eleet For geerl igle

More information

Name: Period: Date: 2.1 Rules of Exponents

Name: Period: Date: 2.1 Rules of Exponents SM NOTES Ne: Period: Dte:.1 Rules of Epoets The followig properties re true for ll rel ubers d b d ll itegers d, provided tht o deoitors re 0 d tht 0 0 is ot cosidered. 1 s epoet: 1 1 1 = e.g.) 7 = 7,

More information

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2. Chter Chter Syste of Rel uers Tertg Del frto: The del frto whh Gve fte uers of dgts ts del rt s lled tertg del frto. Reurrg ( o-tertg )Del frto: The del frto (No tertg) whh soe dgts re reeted g d g the

More information

Exponents and Powers

Exponents and Powers EXPONENTS AND POWERS 9 Exponents nd Powers CHAPTER. Introduction Do you know? Mss of erth is 5,970,000,000,000, 000, 000, 000, 000 kg. We hve lredy lernt in erlier clss how to write such lrge nubers ore

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

Application: Work. 8.1 What is Work?

Application: Work. 8.1 What is Work? Applcto: Work 81 Wht s Work? Work, the physcs sese, s usully defed s force ctg over dstce Work s sometmes force tmes dstce, 1 but ot lwys Work s more subtle th tht Every tme you exert force, t s ot the

More information

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms Uit Chpter- Prtil Frctios, Algeric Reltioships, Surds, Idices, Logriths. Prtil Frctios: A frctio of the for 7 where the degree of the uertor is less th the degree of the deoitor is referred to s proper

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Non-degenerate Perturbation Theory

Non-degenerate Perturbation Theory No-degeerate Perturbato Theory Proble : H E ca't solve exactly. But wth H H H' H" L H E Uperturbed egevalue proble. Ca solve exactly. E Therefore, kow ad. H ' H" called perturbatos Copyrght Mchael D. Fayer,

More information

Chem 253A. Crystal Structure. Chem 253B. Electronic Structure

Chem 253A. Crystal Structure. Chem 253B. Electronic Structure Chem 53, UC, Bereley Chem 53A Crystl Structure Chem 53B Electroic Structure Chem 53, UC, Bereley 1 Chem 53, UC, Bereley Electroic Structures of Solid Refereces Ashcroft/Mermi: Chpter 1-3, 8-10 Kittel:

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

Summer MA Lesson 4 Section P.3. such that =, denoted by =, is the principal square root

Summer MA Lesson 4 Section P.3. such that =, denoted by =, is the principal square root Suer MA 00 Lesso Sectio P. I Squre Roots If b, the b is squre root of. If is oegtive rel uber, the oegtive uber b b b such tht, deoted by, is the pricipl squre root of. rdicl sig rdicl expressio rdicd

More information

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD Jural Karya Asl Loreka Ahl Matematk Vol 8 o 205 Page 084-088 Jural Karya Asl Loreka Ahl Matematk LIEARLY COSTRAIED MIIMIZATIO BY USIG EWTO S METHOD Yosza B Dasrl, a Ismal B Moh 2 Faculty Electrocs a Computer

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information