CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

Size: px
Start display at page:

Download "CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS"

Transcription

1 Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER- WAVEFUNCTIONS, OBSERVABLES d OPERATORS. Represettos the sptl d mometum spces..a Represetto of the wvefucto the sptl coordtes bss { posto x }..A The Delt Drc..A Comptblty betwee the physcl cocept of mpltude probblty d the otto used for the er product...b Represetto of the wvefucto the mometum coordtes bss { mometum p }..B Represetto of the mometum p stte spce-coordtes bss { posto x }..B Idetfyg the mpltude probblty mometum p s the Fourer trsform of the fucto ( x)..c Tesor Product of Stte Spces. The Schrödger equto s postulte..a The Hmlto equtos expressed the cotuum sptl coordtes. The Schrodger Equto...B Iterpretto of the wvefucto Este s vew o the grulrty ture of the electromgetc rdto. Mx Bor s probblstc terpretto of the wvefucto. Determstc evoluto of the wvefucto Esemble..C Normlzto codto of the wvefucto Hlbert spce Coservto of probblty..d The Phlosophy of Qutum Theory.3 Expectto vlues.3.a Expectto vlue of prtcle s posto.3.b Expectto vlue of the prtcle s mometum.3.c Expectto (verge) vlues re clculted esemble of detclly prepred systems

2 .4 Opertors ssocted to observbles.4.a Observbles, egevlues d egesttes.4.b Defto of the qutum mechcs opertor F to be ssocted wth the observble physcl qutty f.4.c Defto of the Posto Opertor X.4.D Defto of the Ler Mometum Opertor P.4.D. Represetto of the ler mometum opertor P the mometum bss { mometum p }.4.D. Represetto of the ler mometum opertor P the sptl coordtes bss { posto x }.4.D3 Costructo of the opertors P,.4.E The Hmlto opertor P,.4.E. Evluto of the me eergy terms of the Hmlto opertor.4.e. Represetto of the Hmlto opertor the sptl coordte bss.5 Propertes of Opertors.5.A Correspodece betwee brs d kets.5.b Adjot opertors.5.c Hermt or self-djot opertors Propertes of Hermt (or self-djot) opertors: - Opertors ssocted to me vlues re Hermt (or self-djot) - Egevlues re rel - Egevectors wth dfferet egevlues re orthogol.5.d Observble Opertors.5.E Opertors tht re ot ssocted to me vlues 3 P.6 The commuttor.6.a The Heseberg ucertty relto.6.b Cojugte observbles Stdrd devto of two cojugte observbles.6.c Propertes of observble opertors tht do commute.6.d How to uquely detfy bss of egefuctos? Complete set of commutg observbles.7 Smulteous mesuremet of observbles.7.a Defto of comptble (or smulteously mesurble) opertors.7.b Codto for observbles A d B to be comptble.8 How to prepre the tl qutum sttes.8.a Kowg wht c we predct bout evetul outcomes from mesuremet?

3 .8.B After mesuremet, wht c we sy bout the stte? Refereces: Feym Lectures Vol. III; Chpter 6, Clude Cohe-Toudj, B. Du, F. Lloe, Qutum Mechcs, Wley. "Itroducto to Qutum Mechcs" by Dvd Grffths; Chpter 3. B. H. Brsde & C. J. Joch, Qutum Mechcs, Pretce Hll, d Ed. 3

4 CHAPTER- WAVEFUNCTIONS, OBSERVABLES d OPERATORS Qutum theory s bsed o two mthemtcl tems: wvefuctos d opertors. The stte of system s represeted by wvefucto. A exct kowledge of the wvefucto s the mxmum formto oe c hve of the system: ll possble formto bout the system c be clculted from ths wvefucto. Quttes such s posto, mometum, or eergy, whch oe mesures expermetlly, re clled observbles. I clsscl physcs, observbles re represeted by ordry vrbles. I qutum mechcs observbles re represeted by opertors;.e. by quttes tht upo operto o wvefucto gvg ew wvefucto. Ths chpter presets three m sectos: The frst cludes descrpto of the sptl-coordtes bss d the mometum-coordtes bss, whch re typclly used to represet qutum stte. The ext descrbes how to buld the qutum mechcs opertor correspodg to gve observble. The fl secto ddresses how to buld (mthemtcl) qutum stte from gve set of expermetl results. The key mthemtcl cocept used here s the complete set of commutg opertors. Represetto of the wvefuctos the sptl d mometum spces A rbtrry stte c be expded terms of bse sttes tht coveetly ft the prtculr problem uder study. For geerl descrptos, two bses re frequetly used: the sptl coordte bss d the ler mometum bss. These two bss re ddressed ths secto...a Represetto of the wvefucto the sptl coordtes bss { x, x } Chpter 9 helped to provde some clues o the proper terpretto of the wvefucto (the solutos of the Schrodger equto.) Ths cme through the lyss of the prtculr cse of electro movg cross dscrete lttce: the wvefucto s pctured s wve of mpltude probbltes (complex umbers whose mgtude s terpreted s probbltes). Notce, however, tht whe tkg the lmtg cse of the lttce spcg tedg to zero, oe 4

5 eds up wth stuto whch the electro s propgtg through cotuum le spce. Thus, ths lmtg cse tkes us to the study of prtcle movg cotuum spce. I logy to the dscrete lttce, where the locto of the toms guded the selecto of the stte bss { }, the cotuum spce we cosder the followg cotuum set, { x, x } Cotuum sptl-coordtes bse () I logy to the dscrete cse, x stds for stte whch prtcle s locted roud the coordte x. x For every vlue x log the le oe coceves correspodg stte. If oe cludes ll the pots o the le, complete bss set results s dcted (), whch wll be used to descrbe geerl qutum stte d, hece, to descrbe the oe-dmeso moto of prtcle. A gve stte specfes the prtculr wy whch the mpltude probblty of prtcle s dstrbuted log le. Oe wy of specfyg ths stte s by specfyg ll the mpltudeprobbltes tht the prtcle wll be foud t ech bse stte x; we wrte ech of these mpltudes s x. We must gve fte set of mpltudes, oe for ech vlue of x. Thus, = x x dx Represetto of the wvefucto () the sptl coordtes bss x s the mpltude probblty tht system the stte be foud the stte x. About the x otto We could use ltertve ottos, lke, for exmple, x (x ) = x x dx = x A Ψ (x ) dx ; s to mke ths expso to resemble the expso of vector terms of bsevectors x, d the correspodg coeffcets A Ψ (x ) plyg the role of weghtg-fctor coeffcets. Sometmes the followg otto s preferred:x ( x ) = x x dx = A Ψ x (x) dx ; () 5

6 x = (x) s the mpltude probblty tht system the stte be foud the stte x. Multplyg the expresso () bove by prtculr br x, we should obt, x = ( x ) (Ths result wll be justfed bt more rgorously the ext secto below; see the delt Drc secto). Tht s, ( x) x Ampltude probblty tht the prtcle tlly the stte be foud (mmedtely fter mesuremet) t the stte x. (3) Thus, we wll use dstctly the followg otto = x x dx.= Represetto of the x xdx. wve-fucto the (4) sptl coordtes bss umber Number Cuto: x does ot me [x]* (x) dx. Workg wth the sptl coordtes bse { x } my costtute the oly occso whch the otto x becomes cofusg wth the defto of the sclr product. Note: I Chpter 8 we used the otto (t) = A (t), where the mpltudes A (t) = were determed by the Hmlto equtos d = H j dt j j. I ths chpter, we re usg sted cotuum bse { x, x }; ccordgly the mpltudes wll be expressed s x, whch s lso wrtte s x. Soo we hve to ddress the how the Hmlto equtos look lke whe usg cotuum bse. The Delt Drc A subproduct of the mthemtcl mpulto expressg stte gve bss s the closure reltoshp tht the compoets of the bss set must comply: the Delt Drc reltoshp. Ths s llustrted for the cse of the spce-coordtes bss. 6

7 x x = = x = x [ x ] dx x [ x ] dx x x [ x ] dx x = x x [ x ] dx ( x ) ( x ) Or, equvletly x = f x x x [ x ] dx O the other hd, t s ccepted tht for rbtrry fucto f, the delt fucto s defed s ( x - x ) f x dx The lst two expressos re cosstet f, x x = ( x x ). Thus, we hve the followg result: Cse of dscrete sttes Delt Kroeecker Cse of cotuum sttes Delt Drc (x -x ) (5) m = m x x = ( x - x ) Comptblty betwee the physcl cocept of mpltude probblty d the otto used for the er product * x) x dx We kow tht gve stte, the mpltude probbltesx tht pper the expso = x x dx re determed by the Hmlto equtos. 7

8 Suppose we hve prtcle the stte d we wt to kow the mpltude probblty (fter gve mesuremet process) to fd the prtcle t the stte. Tht s, we wt to evlute. There re my pth wy for the stte to trst to stte. It could do t by pssg frst through y of the bse-sttes x. Sce ech stte x geertes pth, d ll these pths hve the sme tl d fl stte, the, ccordg to the rules estblshed Chpter 7, the totl mpltude probblty wll be gve by, x = ll x x x Frst, the sum over smll rego of wdth dx would be xx multpled by dx. The, sce x vres from to the expresso bove c be wrtte s, = x x dx (6) For the terms sde the sde the tegrl, let s use the otto troduced expresso (3) bove, x = x. Also, sce x = x * the x = x * =*(x), oe obts, = * x) x dx (7) The mpltude probblty s equl to the er product betwee the fuctos d..b Represetto of the wvefucto the mometum coordtes bss { p } I the prevous secto, rbtrry stte ws expressed terms of the compoets of the spce-coordtes bss { x, x }. Here we preset ltertve bss to express the stte, whch s the cotuum bse of mometum coordtes. We wll relze tht we re lredy fmlr wth the sttes comprsg ths ew bss. Recll tht Chpter 5 we troduced the Fourer trsform F= F(k) of fucto (x). It volved the troducto of the complex hrmoc fuctos e k, where e k (x) = e kx for k 8

9 ( x )= F(k) e kx dk Fourer trsform Bse-fucto e k evluted t x where the weght coeffcets F(k), referred to s the Fourer trsform of the fucto, re gve by, F(k) = e - k x' ( x' ) dx' However, t s coveet to express the lst two expressos terms of the vrble p = k, ( x )= (p) e ( p / ) x d p (8) where (p) = e Fourer trsform of -(p/ )x ( x' ) dx' (9) I expressos (8) d (9), the expresso terpretto, p( x ) = e ( p / ) x π e ( p / x π hve cler physcs Accordg to de Brogle, p represets ple wve of defte ler mometum p. () We c re-wrte expresso (8) terms of fuctos, 9

10 ( x )= ( p) Fourer trsform of ( x) e ( p / ) x d p p = ( p) p dp Fucto Sum of fuctos () Expressos (8) d () re equvlet. Plcg p brcket otto Frst, tkg to ccout expresso (4), = x xdx, Let s pply t to the fucto p, where p (x) = p π x p ( x ) dx e ( p / ) x ; we obt, The bove serves to defe the mometum sttes bss: { p, - < p < } p = x p ( x ) dx x e ( p / ) x dx π Represetto of the mometum stte p the spce-coordte bss { x } () x p p ( x ) = π e ( p / )x Ampltude probblty tht prtcle, stte of mometum p, be foud t the coordte x. (3) Ths s the de Brogle hypothess the lguge of mpltude probbltes. Plcg expresso () brcket otto

11 I expresso () we c mke the the followg ssocto, Hece, = (p) p dp p = (p) p dp (4) Fourer trsform ( x ) Expresso (4) gves s ler combto of the mometum sttes p defed () bove. Expressos (8), () d (4) re equvlet. The sttes defed () costtute bse (the justfcto comes from the Fourer trsform theory), { p, - < p < } cotuum bse of mometum-coordtes (5) Exercse: Prove tht p p = ( p p ) Now we formlly c justfy tht expresso (4): p = (p) I effect, multplyg (4) wth br p, oe obts, p = p (p ) p d p = (p ) p p dp usg p p = ( p p ) p = (p) (6)

12 Summry bout the mometum coordtes: A rbtrry wvefucto c be expressed s ler combto of mometum-coordtes p, = where (p) = p (p) d p = p p dp -(p/ )x e ( x' ) dx' p =(p) s the Fourer trsform of = (x) (7) p (p) Ampltude probblty tht prtcle the stte c be foud, upo mkg mesuremet, the stte p. p dp ( p) dp Probblty tht prtcle the stte be foud wth mometum wth the tervl ( p, p+ d p). < p > = p (p) dp = p p dp Averge ler mometum of esemble of systems the stte Expressos (4) d (7) summrzes the objectve of ths secto, showg expso of the stte two dfferet bss, the cotuum sptl-coordtes bse { x, x }; d the ler-mometum bse { p, - < p < }.

13 SUMMARY Coordtes bss = = x x dx x (x) dx ; Mometum bss = = p p dp p (p) d p (p) s the Fourer trsform of = (x) p s such tht, x p p ( x ) = π e ( p / )x..c Tesor Product of Stte Spces Cosder the stte spce comprsed of wvefuctos descrbg the sttes of gve system ( electro, for exmple). We use the dex- to dfferette t from the stte spce comprsed of wvefuctos descrbg the stte of other system (other electro, for exmple) whch s tlly locted fr wy from the system. The systems (the electros) my evetully get closer, terct, d the go fr wy g. How to descrbe the spce stte of the globl system? The cocept of tesor product s troduced to llows such descrpto Let { u (),,, 3,...} be bss the spce ε, d { v (),,, 3,...} be bss the spce The tesor product of of ε d ε, deoted by ε ε ε, s defed s spce whose bss s formed by elemets of the type, { u () v j () } ε 3

14 Tht s, elemet of ε ε s ler combto of the form, The tesor product,j c j u () v j () s defed wth the followg propertes, [ () ] () [ () () ] () [ () ] [ () () ] [ () () ] () [ () () () [ () () ] [ () ] + [ () () ] + [ () () ] () ] Two mportt cses my rse. Cse : The wvefucto s the tesor product of the type, () () Tht s c be expressed s the tesor product of stte from ε d stte from ε.,j b u () b j v j () j j u () v j () Cse : The wvefucto cot be expressed s the tesor product betwee stte purely from the spce ε d stte purely from the spce ε. I ths cse, the wvefuto tkes the form,, j c j u () v j () Let s cosder, for exmple the cse whch ech spce ε d ε hs dmeso., j c j u () v j () c u v() c u v() () () c u v() c u v() () () 4

15 c u v() c u v() () () Notce, cot be expressed the form () () To mke the cse eve smpler, let s ssume c = c =, c u () + c u () etglemet () v () cot be expressed the form of sgle term of the form () () v. The Schrödger Equto s postulte..a The Hmlto equtos expressed the cotuum sptl coordtes. The Schrödger Equto. 3 I chpter 8 we obted the geerl Hmlto equtos tht descrbe the tme evoluto of the wvefucto (t) = A ( t ), da H j ( t) Aj (8) dt j Chpter 9 descrbed the prtculr cse of electro movg lttce (the ltter costtuted by toms seprted dstce b. Whe we took the lmt b the Hmlto equtos (5) took the form ( x,t) ( x,t) V ( x,t) ( x,t) (9) t m x Let s cosder ow rbtrry geerl cse. eff How does the Hmlto equtos (8) look lke whe expressed the the cotuum spce coordtes { x, x }? Let s fd out such geerl forml expresso (oe tht s more geerl th expresso (9) ). Frst otce tht the mpltudes system, = j j A j A j (8) ccout for the stte descrbg the qutum Sce A j c lso be wrtte s A j = j, Eq. (5) c lso be expressed s, d = H j j dt j 5

16 Let s lso recll, from Chpter 7, tht the coeffcets H j opertor H (specfc to the problem beg solved.) Tht s, deped o t. d = H j j dt j I the cotuum spce coordtes we should expect, d x = dt x H x x d x (x) ( x ) re obted from the Hmlto H j H j. I geerl, H d d ( x ) = dt H( x, x )( x ) d x () where we hve defed H( x, x ) x H x Quotg Feym, 4 Accordg to (), the rte of chge of t x would deped o the vlue of t ll other pots x. x H x s the mpltude per ut tme tht the electro wll jump from x to x. It turs out ture, however, tht ths mpltude s zero except for pots x very close to x. Ths mes (s we sw the exmple of the ch of toms) tht the rght-hd sde of Eq. () c be expressed completely terms of d the sptl dervtves of, ll evluted t x. The correct lw of physcs s d H( x, x ) ( x ) d x = ( x ) + V ( x) ( x ) Postulte () m dx Where dd we get tht from? Nowhere. It cme out of the md of Schrodger, veted hs struggle to fd uderstdg of the expermetl observto of the expermetl world. Usg () () oe obts, 6

17 t V ( x, t) x m Schrodger Equto Ths equto mrked hstorc momet costtutg the brth of the qutum mechcl descrpto of mtter. The gret hstorcl momet mrkg the brth of the qutum mechcl descrpto of mtter occurred whe Schrodger frst wrote dow hs equto 96. For my yers the terl tomc structure of the mtter hd bee gret mystery. No oe hd bee ble to uderstd wht held mtter together, why there ws chemcl bdg, d especlly how t could be tht toms could be stble. (Although Bohr hd bee ble to gve descrpto of the terl moto of electro hydroge tom whch seemed to expl the observed spectrum of lght emtted by ths tom, the reso tht electros moved ths wy remed mystery.) Schrodger s dscovery of the proper equtos of moto for electros o tomc scle provded theory from whch tomc pheome could be clculted qutttvely, ccurtely d detl. Feym s Lectures, Vol III, pge 6-3. Although the result () s kd of postulte, we do hve some clues bout how to terpret t, bsed o the prtculr cse of the dymcs of electro crystl lttce, studed Chpter 9. ()..B Iterpretto of the Wvefucto Este s vew o the grulrty ture of the electromgetc rdto I Chpter 5, hrmoc fucto ws used to descrbe the moto of free prtcle logy to the exstet formlsm to descrbe electromgetc wves, π ε ( x, t) ε o Cos [ x νt] electromgetc wve λ where, the electromgetc testy I (eergy per ut tme crossg ut cross-secto re perpedculr to the drecto of rdto propgto) s proportol to ε ( x, t). Este ( the cotext of tryg to expl the results from the photoelectrc effect) troduced the grulrty terpretto of the electromgetc wves (lter clled photos), bdog the more clsscl cotuum terpretto. I Este s vew, the testy s terpreted s sttstcl vrble I ocε N h. Here N costtutes the verge umber of photos per secod crossg ut re perpedculr to the drecto of rdto propgto; ε N Averge vlues re used ths terpretto becuse the emsso process of photos by gve source s sttstcl ture. The exct umber of photos crossg ut re per ut tme fluctutes roud verge vlue N. 7

18 Mx Bor s Probblstc Iterpretto of the wvefucto I logy to Este s vew of rdto, Mx Bor proposed smlr vew to terpret the prtcle s wve-fuctos. I Mx Bor s vew, ( x, t) plys role smlr to ε ( x, t), ( x, t) s mesure of the probblty of fdg the prtcle roud gve plce x d t gve tme t. Ths terpretto ws troduced yers fter Schrodger (96) hd developed forml qutum mechcs descrpto. More specfclly, ( x, y,z, t) plys the role of probblty desty. Pctorlly, the prtcle s more lkely to be t loctos where the wvefuto hs pprecble vlue. Determstc evoluto of the wvefucto The predctos of qutum mechcs re sttstcl. I order to kow the stte of moto of prtcle, we must mke mesuremet But mesuremet ecessrly dsturbs the system wy tht cot be completely determed. However, otce tht, beg the soluto of dfferetl equto (the Schrodger equto), vres wth tme wy tht s completely determstc. Tht s, f were kow t t=, the Schrodger equto determes precsely ts form t y future tme. Tht s, QM mkes determstc predcto of mpltude probblty wve. However, the ltter does ot covey to determstc outcomes. There s oe further pot to cosder. How to determe the wvefucto t t=? How do the expermetl mesuremets led to the recostructo of the wvefucto? Or, how to prepre system deftely uque stte? If we could ot recostruct wvefucto, wht would be the beeft of hvg theoretcl formulto tht descrbes determstc evoluto of somethg we do ot kow? As t turs out, despte the fct tht mesuremet QM geerl ffect the stte of system, such recostructo s possble some cses (thk of system tht re sttory stes.) But lrger cotext, to beeft of the QM determstc formulto wht we eed s to prepre system (or my systems) defte stte; for the theory could the be used to mke predctos bout the evoluto of tht prtculr stte. We wll ddress ths ssue the ext chpters, fter the troducto of observbles d egesttes. We wll see tht fdg egesttes commo to dfferet observbles rrows the selecto pool of sttes whch the system c be foud. Ths procedure leds to the cocept of esemble of system costtuted by ( ths wy) eqully prepred systems, whch costtutes the lbortory whch the QM cocept re develop. (A the ed, 8

19 systems cot be determed wth bsolute certty smply becuse set of mesuremets t t= t most my led to the determto of but ot to uquely defe ). Let s expl the sttstcl terpretto bt further the cotext of esemble of detclly prepred systems. Esemble 5 Imge very lrge umber of detclly prepred depedet system (ssumed to be ll of them the sme stte), ech of them cosstg of sgle prtcle movg uder the fluece of gve exterl force. All these systems re detclly prepred. The whole esemble s ssumed to be descrbed by complex-vrble sgle wvefucto ( x, y, z, t), whch cots ll the formto tht c be obted bout them. descrbes the whole esemble... Esemble s used to mke probblstc predcto o wht my hppe prtculr member of the esemble. N It s postulted tht: If mesuremet of the prtcle s posto re mde o ech of the N member of the esemble, the frcto of tmes the prtcle wll be foud wth the volume elemet d 3 r =dx dy dz roud the posto r ( x, y, z, t) t the tme t s gve by (3) * ( x, y, z, t) ( x, y, z, t) d 3 r where * stds for the complex cojugte umber. Notce tht ths s othg but the lguge of probblty; ths cse, posto probblty desty P. P * ( x, y, z,t) ( x, y, z,t) ( x, y, z,t) ( x, y, z, t ) 9

20 Cuto: For coveece, we shll ofte spek of the wvefucto of prtculr system, BUT t must lwys be uderstood tht ths s shorthd for the wvefucto ssocted wth esemble of detcl d detclly prepred systems, s requred by the sttstcl ture of the theory. 6..C Normlzto codto for the wvefucto The probblstc terpretto of the wvefucto mples, therefore, the followg requremet: * 3 ( x, y, z,t) ( x, y, z,t) d r (4) All spce becuse gve prtcle, the lkelhood to fd t ywhere should be oe. Iheret to ths requremet s tht, ( r, t) (5) r Notce tht f s soluto of the Schrodger equto, the fucto c (c beg costt) s lso soluto. The multplctve fctor c therefore hs to be chose such tht the fucto c stsfes the codto (4). Ths process s clled ormlzg the wvefucto. I geerl, there wll be solutos to the Schrodger equto () whose soluto ted to fte vlue. Ths mes they re o-ormlzble d therefore c ot represet prtcle probblty desty. Such fuctos must be rejected o the grouds of Bor s probblty terpretto. Qutum mechcs sttes re represeted by squre- tegrble fuctos tht stsfy the Schrodger equto. The prtculr subset of squre tegrble fuctos form vector spce clled the Hlbert spce. QUESTION: Suppose tht s ormlzed t t. As the tme evolves, wll chge. How do we kow f t wll rem ormlzed? Here we show tht the Schrodger equto hs the remrkble property tht t utomtclly preserves the ormlzto of the wvefucto:

21 If stsfes the Schrodger equto The f the potetl s rel dt Proof: Let s strt wth d dt ( x, t) dx = (6) d ( x,t) dx ( x,t) dx (7) t We provde below grphc justfcto of (7). fx, t ) fx, t +) x x t fx, t +)dx - fx, t ) dx = t [fx, t + ) - fx, t) ] O the other hd, t ) t t t (8) We use the Schrodger equto (9) to clculte the tme dervtves, V ( x,t) t m x V ( x,t) m x V ( x,t) t m x Tkg the complex cojugte, d ssumg tht the potetl s rel, V( x,t) t m x Addg the lst two expressos, t t m x x

22 m Replcg (9) (8) we obt, Accordgly, d dt t m x x x x x x ( x,t) dx ( x,t) t m dx dx x x x m x x The expresso o the rght s zero becuse x x (9)..D The Phlosophy of Qutum Theory There hs bee cotroversy over the Qutum Theory s phlosophc foudtos. Nels Bohr hs bee the prcpl rchtect of wht s kow s the Copehge terpretto (sttstcl terpretto) Este ws the prcpl crtc of Bohr s terpretto. Hs sttemet God does ot ply dce wth the uverse, refers to the bdomet of strct cuslty d dvdul evets by qutum theory. Heseberg coutercts rgug: We hve ot ssumed tht the qutum theory (s opposed to the clsscl theory) s sttstcl theory, the sese tht oly sttstcl coclusos c be drw from exct dt. I the formulto of the cusl lw, mely, f we kow the preset exctly, we c predct the future t s ot the cocluso, but rther the premse whch s flse. We cot kow, s mtter of prcple, the preset ll ts detls. Lous de Brogle, o the other hd, rgues tht tht lmted kowledge of the preset my be rther lmtto of the curret mesuremet methods beg used. He recogzes tht

23 ) t s cert tht the methods of mesuremet do ot llow us to determe smulteously ll the mgtude whch would be ecessry to obt pcture of the clsscl type, d tht b) perturbtos troduced by the mesuremet, whch re mpossble to elmte, prevet us geerl from predctg precsely the results whch t wll produce d llow oly sttstcl predctos. The costructo of purely probblstc formule ws thus completely justfed. But, the sserto tht ) The ucert d complete chrcter of the kowledge tht expermet t ts preset stge gves us bout wht relly hppes mcrophyscs, s the result of ) rel determcy of the physcl sttes d of ther evoluto, costtutes extrpolto tht does ot pper y wy to be justfed. De Brogle cosders possble tht lookg to the future we wll be ble to terpret the lws of probblty d qutum physcs s beg the sttstcl results of the developmet of completely determed vlues of vrbles whch re t preset hdde from us. Lous de Brogle s vew gve bove hghlghts the objecto to qutum mechcs phlosophc determsm. Accordg to Este: The belef of exterl world depedet of the percevg subject s the bss of ll turl scece. Qutum mechcs, however, regrds the tercto betwee object d observer s the ultmte relty; rejects s megless d useless the oto tht behd the uverse of our percepto there les hdde objectve world ruled by cuslty; cofes tself to the descrpto of the reltos mog perceptos 7 Physcs hs gve up o the problem of tryg predctg exctly wht wll hppe defte crcumstce..3 Expectto vlues.3.a Expectto (or me) vlue of prtcle s posto Let s ssume we hve system cosstg of box cotg sgle prtcle, whch s (we ssume) stte. Sce (x) s terpreted s probblty, the expectto vlue of the prtcle s posto s defed by, x - But wht does ths tegrl exctly me? x ( x) dx (3) 3

24 It s worth to emphsze frst wht type of terpretto should be voded. 8 Expresso (3) does ot mply tht f you mesure the posto of the prtcle over d over g the - x ( x) dx would be the verge of the results. I fct, f repeted mesuremets were to be mde o the sme prtcle, the frst mesuremet (whose outcome s upredctble) wll mke the wvefucto to collpse to stte of correspodg prtcle s posto x (let s sy x ); subsequet mesuremets (f they re performed quckly) wll smply repet tht sme result x. O the cotrry, x - x ( x) dx mes the verge obted from mesuremets performed o my systems, ll the sme stte. Tht s, A esemble of systems s prepred, ech the sme stte, d mesuremet of the posto s performed ll of them. x s the verge from such mesuremet. descrbes the whole esemble... Esemble s used to mke probblstc predcto o wht my hppe prtculr member of the esemble. N Fg.. Esemble of detclly prepred systems. Whe we sy tht system s the stte, we re ctully referrg to esemble of systems ll of them the sme stte. Thus, represets the whole esemble. d x.3.b Clculto of m dt As tme goes o, the expectto vlue x my chge wth tme, sce the wvefucto evolves wth tme. Let s clculte ts rte of chge. d x dt d dt x ( x, t) dx x t ( x, t) dx x dx t 4

25 5 dx t t x For the cse where the potetl s rel, we obted expresso (9) tht, x x m t t x x m x dt x d x x x m x After tegrtg by prts, t gves x x m dt x d Itegrtg oe more tme by prts (just the secod term o the rght sde,) dx x m dt x d (3) We would be tempted to postulte tht the expectto (or me) vlue of the ler mometum s equl to dt x d m p. I tht cse, expresso (3) would gve, dt x d m p dx x = x (3) However, look t the fuctos sde the tegrl. How to uderstd tht term lke x would led to the verge vlue of the ler mometum? Ths ppers bt strge, to sy the lest. (Ths result wll mke more sese the sectos below, whe the cocept of qutum mechcs opertors s troduced)..3.c Expectto (verge) vlues re clculted esemble of detclly prepred systems I geerl, the me-vlue of gve physcl property f (mely, eergy, ler mometum, posto, etc.), more geerclly clled observble, s obted by mkg mesuremet ech of the N eqully prepred systems of esemble (d ot by vergg

26 repeted mesuremets o sgle system.) The whole esemble s ssumed to be descrbed by complex-vrble sgle wvefucto ( x, y, z, t). Whe mkg mesuremets o ech of the N detclly prepred systems of the esemble (see left-sde of the fgure below) let s ssume we get seres of results (see rghtsde of the fgure below) lke ths: N systems re foud to hve vlue of f equl to f, from whch we deduce tht the prtculr system collpsed to the stte f rght fter the mesuremet N systems re foud to hve vlue of f equl to f, from whch we deduce tht the prtculr system collpsed to the stte f rght fter the mesuremet etc. Accordgly, the verge vlue of f s clculted s follows, f v N f N f N N Usul procedure to clculte verge vlues (33) N Notce tht whe the totl umber of mesuremet N s very lrge umber, the rto N s othg but the probblty of fdg the system the prtculr stte f. QM postultes tht the vlue of the vlue f, f ψ should be terpreted s the probblty to obt f ψ = N Qutum Mechcs postulte (34) N Represetg the esemble ψ Hece, expresso (33) c be wrtte s, f v f f ψ (35) 6

27 ... Esemble... N Before the mesuremets The vlue of f ech system s ukow. N After the mesuremets The vlue of f hs bee mesured ech system; fterwrds we proceed to clculte the verge vlue < f >..4 Opertors ssocted to Observbles Quttes such s posto, mometum, or eergy (whch re mesured expermetlly) re clled observbles. I clsscl physcs, observbles re represeted by ordry vrbles (E, p, for exmple). I qutum mechcs observbles re represeted by opertors (quttes tht operte o fucto to gve ew fucto.) Whe system stte eters some pprtus, lke, for exmple, mgetc feld the Ster Gerlch expermet, or mser resot cvty, t my leve dfferet stte. Tht s, s result of ts tercto wth the pprtus, the stte of the system s modfed. Symbolclly, the pprtus c be represeted by correspodg opertor F such tht, = F (36) Note: We wll dstgush the opertors (from other quttes) by puttg smll ht o top of ts correspodg symbol. We show below how to ssocte qutum mechcs opertor F to gve physcl qutty f..4.a Observbles, egevlues d ege-sttes 7

28 Let s cosder physcl qutty or observble f ( f could be the prtcle s gulr mometum for exmple) tht chrcterzes the stte of qutum system. I qutum mechcs, the dfferet vlues tht gve physcl qutty f (observble) c tke, re clled ts egevlues; f, f, f 3, (37) The set of these qutum egevlues s referred to s the spectrum of egevlues of the correspodg qutty f. For smplcty, let ssume for the momet tht the spectrum of egevlues s dscrete. wll deote the stte where the qutty f hs the vlue f ; These sttes wll be clled egesttes (38) We wll ssume tht these egestes stsfy, m = ( x) m ( x) dx = m (39) Let s ssume lso tht the egesttes ssocted to the observble f costtute bss, { ; =,, 3, } Bss of egesttes A rbtrry stte c the be represeted by the expso, = A =. (4) where A = = ( x) ( x) dx. Sce the stte must be ormlzed stte, the A = = Accordg to expresso (35), the me vlue of f, whe the system s the stte, s gve by, f = v f A = f (4) Expresso (4) s stll very geerl, sce we do ot kow yet the egesttes. We descrbe ext how to fgure out those sttes. 8

29 .4.B Defto of the QM opertor F to be ssocted wth the observble physcl qutty f. 9, The opertor F to be ssocted wth the observble f s such tht, whe ctg o rbtrry stte, stsfes the followg: F f v Defto of the Opertor F ssocted to the observble f (4) (the verge vlue o the rght sde s clculted over the esemble represeted by the stte ) But, how to obt explct expresso for such opertor F? If the observble qutty f were, for exmple, the ler mometum, how to buld ts correspodg qutum mechcs opertor? Before buldg the opertors explctly, we frst we derve ths secto geerl selfcosstet expresso tht shows how opertor, ssocted to gve observble, should look lke (see expresso (47) below). Subsequetly, sectos.4.c d.4.d wll provde specfc procedure o how to costruct the posto d mometum opertors. Dervg self-cosstet expresso of QM opertor F If the system s the stte, = A =, the verge vlue of the quttyc f s gve by (4), f = v f A = f The requremet to buld the opertor F s, F = f = = v f A = f f * f (43) 9

30 Notce, we c obt more compct expresso for the opertor F f we use the otto, P proj, Projecto opertor (44) Expresso (44) descrbes opertor tht whe ctg o stte gves the projecto of tht stte log the stte ; tht s, P proj, = (45) Accordgly, (43) c be expressed s, F = [ f ] (46) stte umber opertor where deote the stte where the qutty f hs the vlue f ; Ths otto trck llows us to express the opertor more compct form, F = f (47) egevlues Projecto opertorp proj, bult out of egesttes ssocted to the physcl qutty f. Ths s self-cosstet expresso for the qutum opertor F tht wll be ssocted wth the clsscl qutty f. It s expresso tht s comptble wth the requremet tht Ψ F Ψ f. Note: The opertor defed (47) should rem the sme f we chged the bss to express the. Ths clm s supported by the fct tht the vlue of f, whch tervees the defto of F, should be depedet of the bss chose. v v Notce (47) s self-cosstet wth ts defto. By pplyg the opertor egesttes, t gves, F to oe of the F j = f j (48) j 3

31 Tht s, oce the opertor F (ssocted to the physcl qutty f ) s kow, the egefuctos of tht gve physcl qutty re the solutos of the equto F = where s costt. Stll, otce tht (47) d (48) gve just self-cosstet expressos for the opertor F. It s expresso tht s comptble wth the requremet tht F f v, but t s defed terms of egesttes j tht, for gve physcs qutty f, we do ot kow yet but would lke to fd out. Accordgly, F s ot completely kow yet. But, prphrsg Ldu, Although the opertor F s defed by (48), whch tself cots the egefuctos, o further coclusos c be drw from the results we hve obted. However, s we shll see below, the form of the opertors for vrous physcl quttes c be determed from drect physcl cosdertos, whch subsequetly, usg the bove propertes of the opertors, wll eble us to fd the egefuctos d egevlues by solvg the equto F = Expressos (4) d (47) wll gude us to buld the qutum opertors..4.c Defto of the Posto Opertor X We re lookg for opertor X such tht X gves us the me vlue of the posto whe the system s the stte, whch requres, X *( x) [ ( X )( x) ] dx x - x x ( x) dx, X =? (49) [ *( x) ] x [ ( x) ] dx ( X ) ( x ) = x ( x ) (5) Notce, we cot sy X = x; tht would be correct. (For stce, wht vlue of x would you choose to mke the expresso X = x vld?). More pproprte s frst to defe the detty fucto I, whch stsfes, I(x) = x, The (5) c be wrtte s, ( X ) ( x) = (I ) ( x) 3

32 becuse tht would gve [ X ]( x) = [I ] ( x) = I( x) ( x) = x ( x). Tht s, X = I Aswer (5) I summry, The Posto Opertor X X s the opertor ssocted to x X = I where I s the detty fucto; I (x) = x ( X ) x= x x (5) X = [ * x ] [ X x ] dx = [ * x ] x [x] x Notce, t s strghtforwrd to relze tht X s the opertor ssocted to 3 X s the opertor ssocted to x 3, etc. I geerl, x, d tht More geerl, X s the opertor ssocted to Averge vlue of physcl qutty x (53) Qutum mechcs opertor x v X x X v x v X f h(x) s polyoml or coverget seres, (54) the h( X ) wll be the opertor ssocted to h ( x) 3

33 For exmple: If physcl qutty chges s, h(x) = 3 x - 7 x 3 the the correspodg opertor wll be 3 X 3-7 X, tht s, the lst expresso s obted by evlutg h( X ). Averge vlue Qutum mechcs of physcl qutty opertor h (x) h( X ) v For exmple, f h(x) were clsscl potetl tht depeds oly o posto x, the h( X ) would be the the correspodg qutum mechcs potetl opertor. Tke the cse of the hrmoc osclltor, where V(x) = (/)k x the correspodg QM opertor s V = (/)k X..4.D Defto of the Ler Mometum Opertor Here we costruct the qutum Ler Mometum Opertor, d gve ts represetto both the mometum-coordtes d sptl-coordtes bss. Ths exmple wll help to llustrte tht opertors re geerl mthemtcl cocepts depedet of the bse used, but whose represetto depeds o the prtculr bse sttes beg selected..4.d The Ler Mometum Opertor P expressed the mometum sttes bss { p } I ths cse, the observble f refers to the ler mometum p. Before buldg the ler mometum opertor let s summrze wht we kow bout the mometum sttes. Accordg to de Brogle, for gve p we ssocte mometum stte p gve by expresso () bove, p x p ( x ) dx = x π e ( p / ) x dx (55) Represetto of the mometum stte p the spce-coordte bss { x } x p p ( x ) = π e ( p / ) x 33

34 Sometmes, for coveece, we wll use the otto mometum p or p sted of p. From the Fourer trsform theory we lered tht rbtrry stte c be expressed s ler combto of the mometum sttes, where = (p) = p = p p dp = p (p) d p (56) -(p/ )x e ( x' ) dx' Now we wt to buld the Ler Mometum Opertor tht wll be ssocted to the physcl qutty p. We re lookg for the opertor P such tht P gves us the me vlue of the mometum whe the system s the stte. P x, P =? But frst, f system s the stte = Wht s the verge mometum p? Aswer: p Hece, = p (p) d p We re lookg for the opertor P such tht P = p = p p dp = p (p) d p; P =? p (p) d p, p = = p (p) d p (d p) p (p ) (p) = (d p) (p ) p(p). 34

35 = (d p) (p ) p (p ) ( p p ) dp Usg p p = ( p p ) = ( p p ) = p p = (d p) (p ) p (p ) p p dp = [ p (p) d p] [ p (p ) p dp ] p = [ p (p ) p dp ] (57) Wth the ht tke from expresso (47), we relze the followg pertor, P = p p p dp Ler Mometum Opertor (58) would do the job I effect, pplyg P to rbtrry stte gves, P = [ = p p p dp], p p p dp, Accordg to (56) p =(p), whch gves P = p p (p) dp (59) Replcg (59) (57) oe obts, p = P (6) Ths cofrms the oprtor defed (58) s deed the mometum opertor. 35

36 Mtrx represetto of the Ler Mometum Opertor P the mometum coordtes bss { p, - < p < } Notce (57) tht pplyg P to prtculr stte p gves, Summry P p = p p (6) p P p = p p p pp' = p ( p p ) P = p P p = p ( p p ) (6) The Mometum Opertor P P = Elemets of the mtrx represetto of the opertor the mometum bss p p p dp = p p dp = p (p) d p where = (p) s the Fourer trsform of (x) P = p p p dp = p (p) p dp P = p (p) d p = p.4.d The ler mometum opertor P expressed the sptl coordtes bss { x, x } Expresso (59) dctes tht f the system were the stte d we wted to evlute P the we hve to frst expd the mometum bss = p (p)dp 36

37 Tht wy, oce ll the (p) vlues re kow, the we would be ble to evlute P = p p (p) dp Wht bout f the expso of the mometum bss { p, - < p < } s ot hdy vlble, d, sted, ts expso the sptl coordte s vlble? (.e. (x) s kow for every vlue of x, but ts Fourer trsform (p) s ot redy vlble). Wht to do to fd P (wthout hvg to go through the trouble of expressg terms of the mometum bss s expresso (59) requres)? Here ltertve to (59) s preseted. Applyg (58), P = oe obts, P = [ p p p dp, to the stte fucto = = p p p dp] = p p (p) dp p p p dp p (p ) dp x P = p (p) x p dp, [P x= p (p) p x dp Usg x p p ( x ) = π e ( p / ) x [P x= p (p) π e ( p / ) x dp, [P x = (p) p π e ( p / ) x dp, 37

38 = (p) d dx π e ( p / ) x dp = d dx (p) π e (p / ) x dp = d dx (p) p xdp, Hece, P = = d dx d dx x (63) The Mometum Opertor P ( the sptl-coordtes spce) P d = (64) dx (ltertve to expresso (58)) P = d dx whch leds to p v = P d = dx dx I pssg, otce tht the lst expresso s detcl to (3) where we clculted the rte of d x chge of the verge posto of prtcle m. At tht tme, the presece of sptldervtve ppered to mke o sese beg volved wht could be terpreted s dt d dx the velocty of prtcle. Now we see tht such sptl dervtve ppers becuse we re usg the represetto of the mometum opertor the sptl coordtes (tht sptl dervtve does ot pper whe workg the mometum bss). 38

39 .4.D3 Systemtc wy to express the opertors P, bss Costructo of the opertor ssocted to By defto: p = v = p v P, 3 P, etc., the sptl-coordtes p (p) d p (65) p p p dp The systemtc procedure cossts evlutg frst the fctor p p sde the tegrl. p p = p -(p/ )x e ' ( x' ) dx = p -(p/ )x e ( x' ) dx' Cotug wth smlr procedure s bove (tegrtg by prts), we obt, p p = p Replcg (66) (65) leds to, p = v d (66) dx p p Fctorg out = p p d dp dx d dp dx The tegrl term s the expso of the ket d the mometum bse dx p = v d dx 39

40 = * x,t d dx x,t ] dx If we defe the opertor P = The lst expresso becomes, d dx (67) Tht s, P = d dx ssocted wth p. p = v * x,t P x,t ] dx (68) stsfes the requremet for beg the qutum opertor to be More geerl, for postve teger, Tht s, P = p = v d dx * x, t d dx x,t ] dx (69) s the qutum mechcs opertor ssocted to p Averge vlue of physcl qutty p v p v p v Qutum mechcs opertor d dx d dx d dx If g(p, t) s polyoml, or bsolutely coverget seres, the clsscl mometum vrble p, oe obts, 4

41 g ( p, t) v = * x, t d g(, t) dx x,t ] dx (7) Averge vlue of physcl qutty v Qutum mechcs opertor d g dx g ( p, t) (, t) A exmple of (7) costtutes the QM opertor ssocted to the ketc eergy. m p v P m = = m d dx d m dx.4.e The Hmlto opertor.4.e. Me eergy terms of the Hmlto opertor Oe of the vrtues of usg QM opertors s tht me vlues c be expressed depedet of prtculr bss. For exmple, recll tht < x > = X d <p> = P. We re gog to do somethg smlr here for the verge eergy <E>. I Chpter 8, the Hmlto Opertor H ws recogzed through ts mtrx represetto [H], the ltter beg terpreted s eergy mtrx due to the fct tht, whe workg wth sttory sttes, the compoets of the mtrx were the eergy of the correspodg sttory sttes. I the lguge of egevlues used ths chpter we c wrte, H E = E E where { E, =,, 3, } s the bss costtuted by eergy sttory sttes For system rbtrry stte let s clculte the expectto (or me) vlue of eergy. = E E (7) Its me eergy s gve by, (7) E E v E ψ = E * E E 4

42 = E E E = H E E Ths fctor c be expressed terms of the Hmlto opertor From (7): H E = E E = H E E = E = H (73) v Thus, we hve foud g (s we dd for the ler mometum d the posto opertors) elegt wy to express me vlue ( ths cse for the eergy) tht does ot mke referece to the prtculr bse sttes. Whe explct otto of the bss sttes s requred to clculte sttory sttes bss { E, =,, 3, } E v, we my use the v E E E ψ (74) But, some cses t my be coveet to use dfferet bse. For geerl bss { j for j =,,3, } we wll hve, E = H v Expressg d the { j } bss = [ * ] H [ j j j ] = H j j (75), j.4.e. Represetto of the Hmlto Opertor the sptl coordte bss Smlr to the cse of the ler mometum opertor ddressed the prevous sectos, the Hmlto opertor c dopt dfferet shpes depedg o whether we re workg the sptl-coordtes bss or the mometum coordte bses. Here we ddress the represetto of the Hmlto opertor the sptl-coordtes 4

43 I (73), let s tke the cse of sptl coordte bss Defg E E v v = H = [ - = [ - = - x * x dx ] H x * x dx ] [ - x * [ - x x dx ] H x x dx ] x H x x dx dx ] - H( x, x ) x H x (76) where x H x s the mpltude per ut tme tht the electro wll jump from x to x. (see lso expresso () bove). E = v - = - x * ( x) * - - H( x, x ) x dx dx H( x, x ) ( x ) dx dx Accordgly E v = - But Schrodger estblshed tht (see expresso () bove) - H( x, x ) ( x ) d x = ( x ) + V ( x)( x ) d m dx d m dx ( x) * [ ( x ) + V ( x)( x )] dx If we defe the potetl opertor V, V Ψ V Ψ (77) E = v - ( x) * d [ m + V ] (x) dx dx H 43

44 E = H v Represetto of the Hmlto d H Opertor the sptl coordtes + V (78) m dx bss Notce, ccordg to expresso (67) P m = d m dx, therefore we c wrte, H P m V Summry Observble Me Opertor Opertor the sptl vlue coordtes represetto posto X X x x = X X = x mometum P d dx p p = P P d = dx d H m + V dx Eergy E E = H.5 Propertes of Opertors.5.A Correspodece betwee brs d kets Br Ket χ χ 44

45 m m m m b b m * m m m m m b m b m (79) bφ bφ Φ b * Φ b * Φ * Φ Φ Φ * Utl ow we hve defed the cto of ler opertor A o kets the cto of opertor o brs. χ. We wt to defe.5.b The Adjot opertor Cosder opertor A. We pcture opertor A tht whe ctg o rbtrry d wvefucto the result s, for exmple, 3 ; or ; or I, etc. For gve A, we dx wll defe ts correspodet djot opertor A. Through the defto we wll fd out wht does A do o wvefucto ; tht s s, f f A = 3 the we wll fd out A =?; or A d = dx etc. the we wll fd out A =? I ddto, we would lke to kow lso how to express the cto of opertor oto wvefuctos the lguge of brs d kets. Let A be opertor. For opertor ctg o ket, wht does A χ me? For opertor ctg o br, wht does A me? A s the djot opertor of A 45

46 f t whch fulflls the followg er product for y rbtrry wvefuctos d, A,, A (8) Iterpretto of the djot opertor brcket otto. Frst, strght forwrd trslto of expresso (8) s to wrte s s, A A (8) Tkg the cojugte vlues, A A We would lke to kow lso how to tke the opertors out of the br or the ket. Frst, A A Tht s, we defe A A (8) Secod, let s compre the ctos of opertor o the brs d kets A A I other words, Exmple: Show tht A A Tht s, A s defed through the followg expresso A ppled o the ket gves the ket A A ppled o the br (A ) = A Applyg the defto of djot opertor to A, A A (83) gves the br A 46

47 A A Applyg the defto of djot opertor to ( A ) A A, A * Usg the defto of djot * A (A ) A Ths mples, Notce, ) (A A (84) A A ) (A A Tht s, (A ) A (85) Usg (84) A A (86) Summry A A. A A. (87) A A Questo: How to terpret the followg qutty A? 47

48 O oe hd, Does t me ( A ) or ( A )? A = ( A ) A = ( A ) (88) O the other hd, A = A From (88) d (89) = ( A ) (89) ( A ) = ( A ) (9) Tht s, t uecessry to plce the prethess. Tht s, A, oe obts the sme result by mkg A to ct frst o the br (d the multply by ), or by mkg A to ct frst o the ket (d the multply by ). I short, A = ( A ) = ( A ) = A A = A = A (9) Exercse: Show tht the djot opertor A s ler. Exmple: Show tht (B ) = B 48

49 Let s pply the defto (8), A A, to the opertor A = ( B ) B B Hece, (B ) = B Exercse. Gve the opertor [ B *] * [ B ] * [ B ] * D B ( D, ) D = = d, wht s the opertor D? d x * x) [ d ψ * x) x dx d x Itegrtg by prts = - Ths mples, D = - D = ( - D, ) d φ x) x dx = d x Mtrx Represetto of the djot opertor (, d ]x dx d x [ m ) = ( m, ) * Hece ther mtrx represetto re relted through, - D x) ]* x dx [ m = [ m * (9) 49

50 (Notce the order of the dexes s reversed) Exercse: Show tht ( A B) = B A (93) Exmple: Wht s the djot opertor of the posto opertor X? ( X, ) (, X ) = * x) [ X ]x dx = * x) x x dx = x * x) x dx = [x x) ] * x dx = [ X x) ] * x dx ( X, ) = ( X ) Sce ths expresso s vld for y rbtrry sttes d, the X = X Tht s, the djot of the posto opertor s tself. (94).5.C Hermt or self-djot opertors My mportt opertors of qutum mechcs hve the specl property tht whe you tke the Hermt djot you get bck the sme opertor. =. (95) Such opertors re clled the self-djot or Hermt opertors. Exmple: The posto opertor X s self djot opertor becuse the exmple the prevous secto (see expresso 9). Exmple: Let s see f the ler mometum opertor P s self djot ( P, ) (,P ) = * x) [ = * x) d ]x dx d x d ψ x dx d x Itegrtg by prts X = X, s show 5

51 = - d φ x) x dx d x = [ d φ d x x) ]* x dx Tht s, P = P = ( P, ) (96) Propertes of Hermt (or self-djot) opertors Opertors ssocted to me vlues re Hermt (or self-djot) I secto.4 bove we defed qutum mechcs opertors ssocted to clsscl observble qutty. The defto volved the clculto of me vlues of observbles. From the fct tht me vlues re rel, we c drw some coclusos cocerg the propertes of those opertors. Tht s, f v = F Sce ths qutty s rel, t wll be equl t ts complex cojugte = F * = F F = F Usg defto of djot opertor F = F whch mples, F = F Opertors correspodg to observbles (97) (.e. opertors obted through the requremet f = F ) v must be hermts (self-djot). The egevlues of Hermt (self-djot) opertor re rel. Let j be d egevlue of F d j the correspodg egevector F j = j j (98) 5

52 Sce F s Hermt (self-djot), F = F, for y stte we wll hve, F ) = F, I prtculr, for =j, Usg (98) F j j = j F j j j j j j j whch mples = j * j = j j j = j j j ( for egevlues of Hermt opertors) (99) Egefuctos of Hermt opertor correspodg to dfferet egevlues re orthogol Let, F j = where j k F Sce k j j d F k = k j = k, j j d F k j = k F = F, d j s well s k re rel, we obt, F k j = Ths mples, k k j k j d F k j = k k j k j = k k, j j j Thus, ( j - k ) k j = j k mples k j = ( for Hermt opertors) ().5.D Observble Opertors Whe workg spce of fte dmeso, t c be demostrted tht t s lwys possble to form bss wth the ege-vectors of Hermt opertor. But, whe the spce s fte dmesol, ths s ot ecessrly the cse. Tht s the reso why t s useful to troduce the cocept of observble opertor. A Hermt (or self-djot) opertor ˆ s observble () opertor f ts orthoorml ege-sttes form bss... 5

53 .5.E Opertors tht re ot ssocted to me vlues I the prevous secto we ddressed opertors ssocted to ) clsscl physcl quttes f(x) tht depeds o the posto x, d ) physcl quttes g(p) tht deped o the mometum tur out to be hermt (self-djot) opertors. Here we explore buldg opertors ssocted to clsscl physcl quttes lke xp. Let s clculte Nvely, let s cll tht qutty *( x ) [ X P ] ( x ) dx xp v. e. oe would expect tht the clculto of the tegrl wll gve postve umber d thus reflect qutty ssocted to clsscl mesuremet of xp. We wll see below tht ths ssumpto s correct. As mtter of fct we wll relze tht X P s ot Hermt. xp v *( x ) [ X P ] ( x ) dx *(x) [ x d (x dx ) ] dx Rerrgg the order of the terms, x *(x) [ d (x dx ) ]dx - dx - dv Itegrtg by prts d [x *(x) ] } [ ) (x ]dx [ *(x) ] } [ ) (x ]dx - [x d *(x) ] } [ ) dx (x ]dx 53

54 - [x d *(x)] [ ) dx (x ]dx * + [x d *(x) ] (x) dx dx + [x d (x)] * (x) dx dx + [ X P ] * (x) (x) dx xp v + + [ * ( x ) [ X P ] (x) dx ] * * xp v () Ths result dctes tht xp v s ot rel qutty. Let s put the result () more explctly terms of opertors. Expresso () c be wrtte more explctly, *(x) [ P X ] ( x )dx = + [ [ X P ] (x) dx ] * * ( x ) X P = + X P ] * X P = + X P X P = + ( X P ) Although ths hs bee demostrted for detcl br d ket, the procedure wth dfferet br d ket would gve smlr result. Tht s, X P = + ( X P ) (3) whch shows more explctly tht the opertor X P s ot hermt 54

55 Also, sce ( A B) = B A X P = + X P = + P X (4) P X More properly, ths result should be expressed s, X P = I + P X where I s the detty opertor; Wht to do the f qutty lke xp s preset the clsscl Hmlto? How to buld the correspodg qutum Opertor? The result (4), tht X P P X, dctes tht dfferet qutum mechcs opertors my correspod to equvlet clsscl quttes For exmple x p, p x, (/)( x p + p x ) re equvlet clssclly. Stll, three dfferet opertors X P, P X, (/)( X P + P X ) c be ssocted to the sme clsscl qutty. The gudce to select the proper opertor s to mpulte the clsscl qutty such tht the resultg opertor result Hermt opertor. I ths prtculr cse of x p, t turs out tht, (/) ( X P + P X ) (5) fulflls.6 The commuttor I geerl, two opertor do ot commute; tht s, of X d P, for exmple). A B s dfferet th B A (tht s the cse The commuttor betwee two opertors s defed s, [ A, B ] AB B A (6) Accordg to (4), [ X, P ] (7).6.A The Heseberg ucertty relto I ths secto we wll be usg terms lke A ( A A ). Wht does ths term me? To get fmlr frst wth tht termology, let s work out explctly couple of terms. (You my skp the followg prgrph d go drectly to expresso (9)). 55

56 The meg of ( P - < p > ) Frst, let s expd the bsed formed by ts egesttes = p p dp () (Note: To dcte the mometum stte p sometmes I m usg the otto p. Tht s p = p. ) P = P = ( P p ) p dp ( p p ) p dp () Sce < p > s costt, the < p > = < p > p p dp () () () P - < p > = [ P - < p > ] = [ P - < p > ] = ( p - < p > ) p p dp ( p - < p > ) p p dp ( p - < p > ) p p dp We relze ths s the procedure to clculte stdrd devtos. I effect, [ P - < p > I ] = = = ( p - < p > ) p p dp ( p - < p > ) p p dp ( p - < p > ) p dp (8) Probblty wth whch the term ( p - < p > ) occurs For two gve observble opertors A d B, let s defe the correspodg stdrd devto (the sttstcs s tke from esemble chrcterzed by the wvefucto, ( A A ) (9) A 56

57 B ( B B ) To smplfy the otto, let s work wth the Hermt opertors d b defed s, A A d b B B () Notce, [, b] [ A, B ] () A d B c the be expressed s, σ ψ ψ ψ ψ () A σ B bψ bψ ψ b ψ Cosder the ot Hermt opertor C, C λ b where s rel costt (3) Notce: C λ b, d C C C C (4) ψ ( λ b )( λ b ) ψ ( b [,b ] ) Usg (), σ A [ A,B ] (5) σ B Notce tht the term [ A, B] must be purely mgry umber. The fucto f = f () defed s, f () σ A stsfes, ccordg to (5), f ( ) [ A,B ] (6) σ B I ddto f " ( ) B. Therefore the vlue of t whch f ' ( ) s mmum; such vlue s, 57

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER-0 WAVEFUNCTIONS, OBSERVABLES d OPERATORS 0. Represettos the sptl d mometum spces 0..A Represetto of the wefucto the sptl

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

24 Concept of wave function. x 2. Ae is finite everywhere in space.

24 Concept of wave function. x 2. Ae is finite everywhere in space. 4 Cocept of wve fucto Chpter Cocept of Wve Fucto. Itroucto : There s lwys qutty sscocte wth y type of wves, whch vres peroclly wth spce te. I wter wves, the qutty tht vres peroclly s the heght of the wter

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Dstrbuto Boltzm he gves d dstrbuto Boltzm s hs bth het wth cotct system tht probblty stte prtculr be should temperture t. low At system. sttes ll lbel

Dstrbuto Boltzm he gves d dstrbuto Boltzm s hs bth het wth cotct system tht probblty stte prtculr be should temperture t. low At system. sttes ll lbel Dr Roger Beett R.A.Beett@Redg.c.uk Rm. 3 Xt. 8559 Lecture 19 Dstrbuto Boltzm he gves d dstrbuto Boltzm s hs bth het wth cotct system tht probblty stte prtculr be should temperture t. low At system. sttes

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

Random variables and sampling theory

Random variables and sampling theory Revew Rdom vrbles d smplg theory [Note: Beg your study of ths chpter by redg the Overvew secto below. The red the correspodg chpter the textbook, vew the correspodg sldeshows o the webste, d do the strred

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Itō Calculus (An Abridged Overview)

Itō Calculus (An Abridged Overview) Itō Clculus (A Abrdged Overvew) Arturo Ferdez Uversty of Clfor, Berkeley Sttstcs 157: Topcs I Stochstc Processes Semr Aprl 14, 211 1 Itroducto I my prevous set of otes, I troduced the cocept of Stochstc

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

Xidian University Liu Congfeng Page 1 of 22

Xidian University Liu Congfeng Page 1 of 22 Rdom Sgl rocessg Chpter Expermets d robblty Chpter Expermets d robblty Cotets Expermets d robblty.... Defto of Expermet..... The Smple Spce..... The Borel Feld...3..3 The robblty Mesure...3. Combed Expermets...5..

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Z = = = = X np n. n n. npq. npq pq

Z = = = = X np n. n n. npq. npq pq Stt 4, secto 4 Goodess of Ft Ctegory Probbltes Specfed otes by Tm Plchowsk Recll bck to Lectures 6c, 84 (83 the 8 th edto d 94 whe we delt wth populto proportos Vocbulry from 6c: The pot estmte for populto

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

Quantum Mechanics Homework Solutions. 1.5 (page 16) Show that the z component of angular momentum for a point particle

Quantum Mechanics Homework Solutions. 1.5 (page 16) Show that the z component of angular momentum for a point particle Qutu Mechcs Hoework Solutos.5 (pge 6) Show tht the z copoet of gulr oetu for pot prtcle Lz p p whe epressed sphercl coordtes becoes Lz p r s. rcoss rss r(cos s ) r( s ) s r cos cos r(s s ) r(cos ) s r

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL

MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL Bullet of te Trslv Uversty of Brşov Vol 5 (54-1 Seres 1: Specl Issue No 1 MATLAB PROGRAM FOR THE NUMERICAL SOLUTION OF DUHAMEL CONVOLUTION INTEGRAL M BOTIŞ 1 Astrct: I te ler lyss of structures troug modl

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Application: Work. 8.1 What is Work?

Application: Work. 8.1 What is Work? Applcto: Work 81 Wht s Work? Work, the physcs sese, s usully defed s force ctg over dstce Work s sometmes force tmes dstce, 1 but ot lwys Work s more subtle th tht Every tme you exert force, t s ot the

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

EVALUATING COMPARISON BETWEEN CONSISTENCY IMPROVING METHOD AND RESURVEY IN AHP

EVALUATING COMPARISON BETWEEN CONSISTENCY IMPROVING METHOD AND RESURVEY IN AHP ISAHP 00, Bere, Stzerld, August -4, 00 EVALUATING COMPARISON BETWEEN CONSISTENCY IMPROVING METHOD AND RESURVEY IN AHP J Rhro, S Hlm d Set Wto Petr Chrst Uversty, Surby, Idoes @peter.petr.c.d sh@peter.petr.c.d

More information

Class II Mesoionic Xanthines as Potential Ten-Qubit Quantum Computer Substrate Registers

Class II Mesoionic Xanthines as Potential Ten-Qubit Quantum Computer Substrate Registers Clss II Mesooc Xthes s Potetl Te-Qubt Qutum Computer ubstrte Regsters * Rchrd L. Amoroso & lvtore Gdoto oetc Advced tudes Isttute, 608 Je treet, kld, CA oetcj@mdsprg.com * Abstrct: Clss II mesooc xthes

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

Chapter 2 Solving Linear Equation

Chapter 2 Solving Linear Equation EE7 Computer odelg Techques Egeerg Chpter Solvg er Equto A ler equto represets the ler depedece of qutty φ o set of vrbles through d set of costt coeffcets α through α ; ts form s α α... α φ If we replce

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have ES4 Sold Mehs Z Suo Prpl stress Prpl Stress Imge mterl prtle stte o stress The stte o stress s xed, but we represet the mterl prtle my wys by uttg ubes deret orettos For y gve stte o stress, t s lwys possble

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Physics 220: Worksheet5 Name

Physics 220: Worksheet5 Name ocepts: pctce, delectrc costt, resstce, seres/prllel comtos () coxl cle cossts of sultor of er rdus wth chrge/legth +λ d outer sultg cylder of rdus wth chrge/legth -λ. () Fd the electrc feld everywhere

More information

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III Itrodcto to Nmercl Alyss Mrc, 9 Nmercl Metods or PDEs Lrry Cretto Meccl Egeerg 5B Semr Egeerg Alyss Mrc, 9 Otle Revew mdterm soltos Revew bsc mterl o mercl clcls Expressos or dervtves, error d error order

More information

Chapter 2: Probability and Statistics

Chapter 2: Probability and Statistics Wter 4 Che 35: Sttstcl Mechcs Checl Ketcs Itroucto to sttstcs... 7 Cotuous Dstrbutos... 9 Guss Dstrbuto (D)... Coutg evets to etere probbltes... Bol Coeffcets (Dstrbuto)... 3 Strlg s Appoto... 4 Guss Approto

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information