Metric Spaces: Basic Properties and Examples

Size: px
Start display at page:

Download "Metric Spaces: Basic Properties and Examples"

Transcription

1 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure removed but oly dstce structure reted. t geerlses the de of dstce betwee two pots o the rel le. Wheever we study the theory of fuctos of rel vrble, the oto of dstce betwee two rel umbers tutvely comes. As for exmple, f we sy x, we me tht the bsolute dfferece betwee pressged rel umber d the vlues the vrble x ssumes, pproches zero mthemtcl otto, x 0. f oe keeps md Ctor s geometrc presetto of rel umbers by pots o drected le, the the otto x 0 s vewed s equvlet to mkg dstce betwee two pots x d o the rel le ted to zero. Thus the de of dstce betwee two pots o the rel le plys vtl role formultg the bsc thgs lke lmt, cotuty, dfferetblty, covergece the rel lyss. Let s observe some otble propertes of dstce x betwee two rel umbers x d. We gree to wrte x d(x, ), otto whch we wll crry to more geerlsed dscussos comg up. (P1) d(x, ) x 0 (o-egtvty) d d(x, ) = 0 ff x = 0,.e., ff x = (postve-defteess) (P) d(x, ) x = x d(, x) (symmetry) (P3) d(x, y) x y = x + y x + y d(x, ) + d(, y), ( trgle equlty). We ow geerlse the cocept of dstce to rbtrry o-empty set X, where dstce fucto s defed y wy we lke, the oly costrt beg the smulteous stsfcto of the propertes (P1), (P), (P3) by t. fct, we xomtze the three propertes, vz, o-egtvty d postve-defteess, symmetry d trgle equlty the followg defto. Defto Let X be o-empty set d d: X X be fucto tht stsfes the codtos : (d1) d(x, y) 0 x, y X d d(x, y) = 0 ff x = y (d) d(x, y) = d(y, x) x, y X (d3) d(x, y) d(x, z) + d(z, y) for y x, y, z X. 1

2 METC SPACES AND COMPLEX ANALYSS The fucto d(, ) stsfyg (d1), (d) d (d3) s clled metrc d the structure (X, d) s clled metrc spce. ere we re ot cocered wth the specfc objects (clled pots) of X d ot eve the specfc rule of ssgmet d(, ). Note 1: f oe defes d: X X + {0}, the the o-egtvty property s redudt. Note : Oce we re covced bout the uderlyg metrc d, we express (X, d) by mere X wth the metrc structure mpled. Note 3: The codtos whch d(, ) stsfes just mmc the propertes of the dstce we re ccustomed for rel umbers, d hece these propertes ber sme mes s ther rel-le couterprts. Note 4: The o-egtvty property of metrc s cosequece of ts other propertes s for y x, y X, 0 = d(x, x) d(x, y) + d(y, x) = d(x, y). 1 Note 5: metrc spce (X, d), d(x 1, x ) dx (, x + 1) for y x 1, x,..., x X. t s exteso of trgle equlty d kow s polygol equlty (see exercse 5). y d(x, x 4 5 ) x 4 x 5 d(x, x 3 4 ) d(x, y) d(z, y) 1 5 ) d(x, x x 3 x d(x, z) z 3 ) d(x, x x 1 d(x, x 1 ) x g () Trgle equlty g (b) Polygol equlty ( = 5) Note 6: At lest for hstorcl terest t s very curous tht the motvto of troducg metrc fucto spce evolved from clsscl brchstochroe problem of vrtol clculus. The brchstochroe problem, s we ll kow, dels wth fdg the shpe of smooth curve vertcl ple log whch hevy prtcle should slde uder the cto of grvty so tht t cosumes lest tme trversg from gve pot A to other gve pot B, A beg sted hgher th but ot vertclly bove B. Thus we get rel vlued fucto (tme) defed o the fmly of smooth curves jog two gve pots A d B. f l be specfc curve of ths fmly d t(l) be the correspodg tme of descet, brchstochroe problem ms t mmsg t(l) d hece fd the curve of quckest descet. A(x, y ) 1 1 B(x, y ) 0 0 Curve of quckest descet g mly of smooth curves (prmeter l ) jog A d B

3 METC SPACES: BASC POPETES AND EXAMPLES 3 Bsed o the dfferece the tme of descet oe my be cled to defe dstce betwee two smooth curves jog two gve pots A d B d mke foudto for defg rel-vlued fucto, vz. metrc, hvg spce of curves s ts dom. Exmple Let d: be fucto defed by d(x, y) = x y, x, y. To show tht (, d) s metrc spce. Soluto: Sce x y 0 d x y = 0 ff x = y, (d1) follows. The other propertes lso follow s they re bsclly (P) d (P3). Thus d s metrc o d cosequetly (, d) s metrc spce. As prerequste to the ext exmple, we ow stte d prove Cuchy-Schwrz equlty: Sttemet: f {p 1, p,..., p } d {q 1, q,..., q } be two sets of rel umbers, the G pq Proof: Let µ be y rel umber. Defe f (µ) = ( p + µ q) G p q G =1 f (µ) 0 d s qudrtc µ. f µ 1 d µ be two dstct rel roots of f (µ) = 0, the we my wrte f (µ) = ( p + µ q ) = q ( µ µ )( µ µ ) 1 Thus for y rel t stsfyg µ 1 < t < µ, f (t) becomes egtve cotrdctg the fct f(µ) 0 for ll µ. Thus f (µ) = 0,.e., the qudrtc equto cot hve two dstct rel roots. µ q + µ p q + p =0 ece pq p q G J G J G Altertvely, 0 pq p q d j j j = 1 G G G G + G = j = 1 e 0 j j j j p q + p q p p q q = p qj pj q pq pjq J j = 1 j = 1 j = 1 G = p q p q G j j (q.e.d.) (sce d j re dummy dces of summto)

4 4 METC SPACES AND COMPLEX ANALYSS pq p q G J G J G (q.e.d.) emrk Cuchy-Schwrz equlty my be deemed s exteso of the de of dot product- orm relto b b ecoutered vector lyss. Corollry: ( p + q) p + q G J G U V W 1/ Proof: ( p + q ) = p + q + p q 1/ 1/ p + q + p q + p q p q G G J + G J G L NM 1/ 1/ = p + q G J G O QP 1/ Tkg the postve squre root we get our desred result. 1/ (by C.S. equlty) Exmple 1.1. The -dmesol Euclde spce s metrc spce wth respect to the fucto d:, defed by d(x, y) = ( x y ) = 1 where x (x 1, x,..., x ) d y (y 1, y,..., y ), x, y s belogg to. Soluto: Obvously d(x, y) 0 x, y, d(x, y) = 0 ff ( x y ) U V W 1/ U V W 1/ = 0.e., ff x = y,,...,. ece, x = y ff d(x, y) = 0. Now let x (x 1, x,..., x, y,..., y ) d z (z 1, z,..., z ) be three rbtrry elemets of. Sce x, y, z,,..., d p = x y d q = y z, obvously p + q = (x z ),,...,.

5 METC SPACES: BASC POPETES AND EXAMPLES 5 By the corollry we just proved, 1/ 1/ 1/ U bp + qg V p + q W G G 1/ 1/ U b g V + W G b g G b g 1 1.e., x z x y y z = =.e., d(x, z) d(x, y) + d(y, z) (Trgle equlty) lly, d(x, y) = x y = y x U V W 1/ 1/ b g Gb g 1/ = d(y, x), (symmetry). All these prove tht d(, ) s metrc kow populrly s Euclde Metrc or sometmes Usul Metrc. As by product of ths cse we hve the followg exmple: Exmple The Euclde metrc d: s defed by d(x, y) = ( x1 y1) + ( x y), where x (x 1, x ) d y (y 1, y ). The metrc spce (, d) s clled Euclde ple. The proof s sme letter d sprt s the exmple So o the sme o-empty set X my metrcs c be defed, s result of whch the sme set X s edowed wth dfferet metrc spce structures. The followg exmple s ce llustrto. Exmple Let X be y o-empty set d d s metrc defed over X. Let m be y turl umber so tht we defe d m (x, y) = md(x, y) for y x, y X. We re to show tht d m (, ) s lso metrc. The ew metrc spces {(X, d m )/m = 1,,...} re thus obted from (X, d). Soluto: () d m (x, y) = md(x, y) 0 x, y X Moreover d m (x, y) = 0 ff md(x, y) = 0.e., ff d(x, y) = 0 (sce m s turl umber t our dsposl),.e., ff x = y. () d m (x, y) = d m (y, x) sce d(x, y) = d(y, x) () d m (x, y) md(x, y) m(d(x, z) + d(z, y)) = md(x, z) + md(z, y) d m (x, z) + d m (z, y), for y x, y, z X. ece propertes (d1) (d3) re stsfed by d m (, ). Ths metrc s clled dlto metrc. emrk 1.1. The choce of m beg turl umber hs o specfc dvtge. owever for m > 1, dlto d for 0 < m < 1, cotrcto of dstce occurs. Exmple The set s lso metrc spce wth respect to other metrc defed by d*(x, y) = x y, where x (x 1, x,..., x, y,..., y ), x, y, (1). = 1

6 6 METC SPACES AND COMPLEX ANALYSS Soluto: The codtos (d1) d (d) re strght forwrd s exmple or (d3), let x, y, z where x (x 1, x,..., x, y,..., y ) d z (z 1, z,..., z ); x, y, z,,,...,. urther d*(x, z) = x z = { + } x y + y z x y y z = x y + y z = d*(x, y) + d*(y, z) Thus (, d*) s metrc spce. The metrc d* s clled the rectgulr metrc o. Erler we hve show exmple tht the fucto d 1 defed by d 1 (x, y) = ( x y ) 1 1 ( x y ) + wth x (x 1, x, y ) s dstce fucto. Ag t redly follows from exmple tht d (x, y) = x 1 y 1 + x y s lso dstce fucto o. We re terested scg the dstce fuctos d 1 d d from the geometrcl pot of vew. The metrc d (, ) s kow s Txcb metrc s t mesures the dstce tx would trvel from pot A(x 1, x ) to some other pot B(y 1, y ) f there were o oe wy streets. Txcb metrc or ts geerlsto, vz, rectgulr metrc geometrclly presets the sum of projectos of the stdrd Euclde dstce [c.f. exmple 1.1. d 1.1.3] o the co-ordte xes. D x y C 1 1 (x y ) + (x y ) A(x, x ) 1 B(y, y ) 1 C x y 1 1 D g epresetto of Euclde metrc, Txcb metrc d Chebyshev metrc the bckrop of. The rectgulr metrc s used commucto theory uder the me mmg dstce tht mesures the dscrepcy betwee two dgtl messges. t ws troduced by. mmg (1950). (By dgtl messge of legth we me -compoet colum vector of 0 s d 1 s). The mmg dstce betwee two dgtl messges of sme legth s defed to be the umber of co-ordtes whch they dffer. So f x = (x 1, x,..., x ) T d y = (y 1, y,..., y ) T be y two dgtl messges of legth,.e., x s d y s re oly 0 s d 1 s, ther mmg dstce d (x, y) s gve by x y. f there s sgle dscrepcy betwee the set d

7 METC SPACES: BASC POPETES AND EXAMPLES 7 receved dgtl messges, ther mmg dstce s uty. Thus mmg dstce s metrc o the set of ll dgtl messges of pressged legth. Ag cosder the semcrculr pth wth AB s dmeter. The obvously t wll pss through C. 1 1, D x + y x + y B(y, y ) 1 y 1 A(x, x ) x C(y, x ) 1 g Semcrculr pth jog two pots x1 + y1 x + y Clerly D,, the md-pot of AB, s the cetre of the semcrculr pth d the legth of the semcrculr pth ACB s π DC = π x1 1 G J + G + y x + y y1 x J = π = π d 1 ( x y ) ( x y ) (x, y) Sce d 1 (x, y) s dstce fucto o d π > 1, by exmple 1.1.4, t follows tht d 3 (x, y) = π d 1 (x, y) s lso dstce fucto. Thus we observe tht upo the sme o-empty set, oe c defe more th oe dstce fucto or metrc; t mght be the strght ler dstce or broke-le dstce or eve semcrculr rcul dstce. So wheever we tlk of metrc spce over, we must keep md wht specfc kd of dstce we re thkg. Exmple The set s metrc spce wth respect to the metrc defed by d(x, y) = Mx.{ x y ;,,..., } where x (x 1, x,..., x, y,..., y ), x, y,,,...,. Soluto: Sce x y 0,,...,, Mx. { x y ;,,..., } 0. Ag f x = y, the x = y,,...,. So x y = 0,,..., d hece Mx. { x y ;,,..., } = 0 ;.e., d(x, y) = 0. O the other hd f d(x, y) = 0, the Mx. { x y ;,,..., } = 0

8 8 METC SPACES AND COMPLEX ANALYSS x y = 0,,...,, sce ech x y 0 x = y. Thus d(x, y) = 0 f d oly f x = y. Next let x, y where x (x 1, x,..., x, y,..., y ) wth x, y,,,...,. The d(x, y) = Mx. { x y ; =1,,..., } = Mx. { y x ;,,..., } = d(y, x). lly for x, y, z, where x (x 1, x,..., x, y,..., y ), z (z 1, z,..., z ), d x, y, z,,,...,. d(x, z) = Mx. { x z,,,..., } = Mx. { x y + y z ;,,..., } Mx. { x y + y z ;,,..., } = Mx. { x y ;,,..., } + Mx. { y y ;,,..., } = d(x, y) + d(y, z). Thus d s metrc o d hece (, d) s lso metrc spce. emrk exmple (1.1.6), the Chebyshev metrc presets the mxmum of the projectos of the stdrd Euclde dstce o the co-ordte xes (see fg 1.1.3). The metrc d bove s kow s Chebyshev metrc. Exmple The set of rel umbers s metrc spce wth respect to the metrc defed by d(x, y) = M. {1, x y }, x, y. Soluto: Sce x y 0 x, y, M. {1, x y } 0 Also f x = y, the M. {1, x y } = M. {1, 0} = 0 Ag f M. {1, x y } = 0, the x y = 0 whch mples x = y. Thus d(x, y) = 0, f d oly f x = y. Next d(x, y) = M. {1, x y } = M. {1, y x } = d(y, x). lly let x, y, z. So d(x, z) = M. {1, x z } f M. {1, x z } = 1 the s x z x y + y z, M. {1, x z } = M. {1, ( x y + y z )} M. {1, x y } + M. {1, y z } Ag f M. {1, x z } = x z, the lso M. {1, x z } M. {1, x y } + M. {1, y z } Uder ll crcumstces, d (x, z) d(x, y) + d(y, z) Thus d s metrc o d hece (, d) s metrc spce. emrk f (X, d) be y metrc spce, the t s esy to prove tht d 1 (, ) defed by d 1 (x, y) = M. {1, d (x, y)} x, y X s lso metrc o X. Ths metrc s kow s stdrd bouded metrc o X. fct, correspodg to y metrc d(, ) there lwys exsts metrc d 1 (, ) defed bove. the ext chpter we shll see tht ths metrc spce (X, d 1 ) every subset s bouded. Oe c geerlse the defto of bouded metrc correspodg to d (, ) s d (, ) where d (x, y) = M. {, d (x, y)} x, y X wth > 0 Exmple Let C[, b] be the set of ll rel-vlued cotuous fuctos over [, b]. The C[, b] s metrc spce wth respect to the metrc defed by d(f, g) = sup u [,b] f(u) g(u), f, g C[, b]

9 METC SPACES: BASC POPETES AND EXAMPLES 9 Soluto: Accordg to the defto, d(f, g) 0. urther f f = g the f (u) = g(u) u [, b]. Therefore f (u) g(u) = 0 u [, b] d hece sup f d(f, g) = 0 the sup u [, b] f = g. Thus d(f, g) = 0 f d oly f f = g. Next let f, g C[, b]. The, d(f, g) = sup u [, b] f (u) g(u) = 0. O the other hd f (u) g(u) = 0. Ths mes f (u) g(u) = 0 for ll u [, b] so tht u [, b] f(u) g (u) = sup u [, b] lly let f, g, h C[, b]. The u [, b], f (u) h(u) f (u) g(u) + g(u) h(u) sup u [, b] f (u) g(u) + sup = d(f, g) + d(g, h). u [, b] g(u) f (u) = d(g, f). g(u) h(u) Tkg supremum over [, b], we get sup u [, b] f (u) h(u) d(f, g) + f (g, h) d(f, h) d(f, g) + d(g, h). Thus d stsfes ll the codtos (d1) to (d3) mkg (C[, b], d) metrc spce. Note: Ths metrc d s clled the supmetrc o C[, b]. Exmple (1.1.8), the so clled supmetrc or uform metrc geometrclly presets mxmum potwse seprto betwee two cotuous fuctos f d g defed over [, b]. f(x) g(x) g f x= x=b g epresetto of supmetrc of exmple (1.1.8) Exmple C[, b] s lso metrc spce wth respect to the metrc defed by d*(f, g) = z b f ( u ) g ( u ) du for f, g C[, b]. Soluto: Sce f(u) g(u) s lso cotuous for f, g C[, b], t s tegrble over [, b]. So the defto s megful. Sce f(u) g(u) s o-egtve, d*(f, g) 0 for ll f, g C[, b]. urther f f = g, the f(u) g(u) = 0 u [, b] d cosequetly d*(f, g) z b = 0. Ag f f(u) g(u) du = 0, the sce f(u) g(u) s o-egtve d cotuous o [, b], f(u) g(u) = 0 u [, b] whch mples f = g.

10 10 METC SPACES AND COMPLEX ANALYSS Next let f, g C[ b]. d*(f, g) = zb f u g u du ( ) ( ) = zb gu f u du lly f f, g, h C[, b], the for ll u [, b] f(u) h(u) f(u) g(u) + g(u) h(u) z z b b f(u) h(u) du {f(u) g(u) + g(u) h(u) } du = zb zb ( ) ( ) = d*(g, f). f ( u) g( u) du + g( u) h( u) du d*(f, h) d*(f, g) + d*(g, h). Thus d* s metrc d (C[, b], d*) s metrc spce. Ths metrc d* s clled the tegrl metrc o C[, b]. Exmple (1.1.9), the tergrl metrc represets the bsolute re squeezed betwee two cotuous fuctos f d g over the tervl [, b]. D f C g x= x=b x b g epresetto of tegrl metrc gve exmple (1.1.9) emrk f we defe the tegrl d*(f, g) o [, b], the set of ll -tegrble fuctos over [, b], the d*(f, g) wll ot be metrc o [, b]. fct d*(f, g) = 0 does ot lwys mply f = g. e.g., let, f(x) = x [0, ] d g(x) = for x [0, 1) = 1 for x = 1 The obvously f g but z 0 f( u) g( u) du = 0. = for x (1, ] Exmple Let S be the set of ll sequeces of rel umbers. Let x = { x } d y = { y } be y two members of S. Defe d: S S by 1 x y d(x, y) =, m 1+ x y 1 = m beg y teger greter th 1. Show tht d s metrc o S.

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

Itō Calculus (An Abridged Overview)

Itō Calculus (An Abridged Overview) Itō Clculus (A Abrdged Overvew) Arturo Ferdez Uversty of Clfor, Berkeley Sttstcs 157: Topcs I Stochstc Processes Semr Aprl 14, 211 1 Itroducto I my prevous set of otes, I troduced the cocept of Stochstc

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each 01 Log1 Cotest Roud Theta Complex Numbers 1 Wrte a b Wrte a b form: 1 5 form: 1 5 4 pots each Wrte a b form: 65 4 4 Evaluate: 65 5 Determe f the followg statemet s always, sometmes, or ever true (you may

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n. Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

Unit 9. The Tangent Bundle

Unit 9. The Tangent Bundle Ut 9. The Taget Budle ========================================================================================== ---------- The taget sace of a submafold of R, detfcato of taget vectors wth dervatos at

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Vectors. Vectors in Plane ( 2

Vectors. Vectors in Plane ( 2 Vectors Vectors i Ple ( ) The ide bout vector is to represet directiol force Tht mes tht every vector should hve two compoets directio (directiol slope) d mgitude (the legth) I the ple we preset vector

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE merca Jr of Mathematcs ad Sceces Vol, No,(Jauary 0) Copyrght Md Reader Publcatos wwwjouralshubcom MX-MIN ND MIN-MX VLUES OF VRIOUS MESURES OF FUZZY DIVERGENCE RKTul Departmet of Mathematcs SSM College

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Xidian University Liu Congfeng Page 1 of 22

Xidian University Liu Congfeng Page 1 of 22 Rdom Sgl rocessg Chpter Expermets d robblty Chpter Expermets d robblty Cotets Expermets d robblty.... Defto of Expermet..... The Smple Spce..... The Borel Feld...3..3 The robblty Mesure...3. Combed Expermets...5..

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists. ANALYSIS HW 3 CLAY SHONKWILER () Fid ll smooth fuctios f : R R with the property f(x + y) = f(x) + f(y) for ll rel x, y. Demostrtio: Let f be such fuctio. Sice f is smooth, f exists. The The f f(x + h)

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

Modeling uncertainty using probabilities

Modeling uncertainty using probabilities S 1571 Itroduto to I Leture 23 Modelg uertty usg probbltes Mlos Huskreht mlos@s.ptt.edu 5329 Seott Squre dmstrto Fl exm: Deember 11 2006 12:00-1:50pm 5129 Seott Squre Uertty To mke dgost feree possble

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information