Dstrbuto Boltzm he gves d dstrbuto Boltzm s hs bth het wth cotct system tht probblty stte prtculr be should temperture t. low At system. sttes ll lbel

Size: px
Start display at page:

Download "Dstrbuto Boltzm he gves d dstrbuto Boltzm s hs bth het wth cotct system tht probblty stte prtculr be should temperture t. low At system. sttes ll lbel"

Transcription

1 Dr Roger Beett Rm. 3 Xt Lecture 19

2 Dstrbuto Boltzm he gves d dstrbuto Boltzm s hs bth het wth cotct system tht probblty stte prtculr be should temperture t. low At system. sttes ll lbels r chce y hve sttes lowest oly temperture rsed s temperture As occuped. beg to lkely more d more become sttes lyg hgher occuped. be ll bth, het wth cotct cse, ths I be to lkely eqully ot refore re mcrosttes populted. r r e p 1 r r e

3 he Boltzm p Dstrbuto r sully re re huge umbers mcrosttes tht c ll hve sme eergy. hs s clled d egeercy. I ths cse we c do dvdul e ergy level dvdul m crostte. r 1 e r e r our summtos bove over rr th sum over ech r 1 p( r ) g( r ) e g( r ) e r ech he summto s ow over ll dfferet eerges r d g(r ) s umber sttes possessg eergy r. he probblty s tht fdg system wth eergy r. r

4 esembles Etropy clled s bth het system embedded Our ow ts system o solted (our esemble cocl termed s 16 rom Lecture f l mcrococ esemble). solted he W l crococ m hs esemble probblty tht so eergy terl defed s mcrostte prtculr system fdg mcrostte. or y s sme system fluctutes eergy bth het I prtculr y fdg probblty d equl. ot s crostte m ow clculte we C derve hece system d such for etropy propertes? from sttstcl vrbles rmodymc

5 Etropy cocl esemble Embed our system het bth mde up (M- 1) replc subsystems to oe were terested. Ech subsystem my be oe my mcrosttes. he umber subsystems t h mcrostte s. he umber wys rrgg 1 systems µ stte 1, s ystems µ stte, 3. M! W!

6 Etropy cocl esemble S k p l p hs s geerl defto etropy d holds probbltes ech dvdul mcrostte re dfferet. If ll mcrosttes re eqully probble p = 1/W ( m crococl esemble) eve f S k p l p k W 1 1 W 1 l W k l W Whch brgs us cely bck to Boltzm relto

7 Etropy S k p l p cocl p 1 e esemble e he geerl defto etropy, combto wth Boltzm dstrbuto llows us to clculte rel propertes system. l p l S k p l p k p l 1 S p k l p k l

8 Eergy Free Helmholtz Ū eergy terl vlue verge s system. (Ū vlue verge s S) free Helmholtz ergy, e F brefly we tht stte fucto s hs. sttstcl to cetrl s It lectures. erler metoed mechcs. fucto Prtto he result our ppered s h t fctor. ormlsg mere th more much be to seems world mcroscopc lkg brdge s cts d eergy free to (qutum sttes) mcrosttes system. propertes scle lrge ll to hece k S l S F l

9 Helmholtz Free Eergy F S l F s stte fucto. C we ow clculte rml propertes our system? Lets gore Ū s verge d ssume = Ū. We c ow use our rmodymcs kowledge to defe our rmodymc vrbles. For smll r eversble chge: F S df d ds Sd df dq PdV ds R df ds PdV ds Sd Sd PdV Sd

10 Helmholtz Free Eergy df PdV Sd F S l Employg prtl dfferetls we fd: - F V P P F V l k V F V S S F We hve tmtely relted eerges mcrosttes system to pressure d etropy. V k l V

11 R espose free eergy fuctos d dervtves M odul elstcty re stress/str or force/ut re dvded by frctol deformto (Lecture 8): - K V P V V F V Most usefully volume: - C V het cpcty t costt Q V S V F V

12 Eergy Me Ū eergy terl vlue verge s fluctutes eergy terl ctul he system. temperture defed hve we becuse bth. het fluctutos? re ow bg H y re mportt? V S F ) l ( l V l l l l

13 Eergy Iterl Fluctutos by vlue me from deprtures mesure We devtos stdrd se u - wth would we s dstrbuto. y ) ( V r V V r e e C

14 Eergy Iterl Fluctutos ) ( 1 e e C V r V r C V ) (

15 Fluctutos Iterl Eergy W e hve clculted vrce reltve / Ū s most use: - fluctuto C V But Ū d CV re extesve propertes proportol to sze system ~ N, umber prtcles system. tesve d s sze depedet. 1 N

16 Fluctutos Iterl Eergy or typcl mcroscopc systems wth ~10 fluctutos / Ū ~ F 3 1 N prtcles Fluctutos re ty d hece d Ū c be cosdered detcl for ll prctcl purposes. Mcroscopc systems het bth effectvely hve eergy determed. Smlr reltoshps c be foud for or reltve fluctutos propertes mcroscopc systems. r

17 Dr Roger Beett Rm. 3 Xt Lecture 0

18 S ummry Sttstcl Mechcs M crostte he stte system defed mcroscopclly complete descrpto o tomc scle. M crostte he stte s tystem mcroscopc sze specfed by few mcroscopclly observble quttes oly. Sttstcl Weght (W or ) o f mcrostte s umber mcrosttes c ompsg mcrostte. Postulte equl pror p robbltes for solted system defte mcrostte, W mcrosttes comprsg ths mcrostte occur wth equl probblty. E qulbrum Postulte for solted mcroscopc system, defed by,v,n (whch re fxed) d vrble prmeters, equlbrum correspods to those vlues for whch sttstcl weght W(,V,N, ) tts ts m xmum.

19 S ummry Sttstcl Mechcs Boltzm defto Etropy S(, V, N, ) k lw (, V, N, ) emperture defto Pressure defto Geerl defto Etropy S k V, N P 1 S(, V, N ) p l p S(, V, N ) V, N

20 S ummry Sttstcl Mechcs B oltzm Dstrbuto p s probblty tht t temperture s stte wth eergy. P rtto Fucto p summed 1 e e over ll mcrosttes system Me Eergy l H elmholtz free eergy F = - S

21 mterls Prmgetc our develop to model smple s hs proves t but Mechcs stt. uderstdg sgfct. very be to hve whch toms cot Prmgets ( momets dpole getc m ot do hese ). to respod c but or ech wth terct ( mgetc exterl ppled B. feld ) depedet s thought be c dpoles he crystl rrged mgets br (tomc) lttce.

22 mterls Prmgetc (tomc) depedet s thought be c dpoles he lttce. crystl rrged mgets br hk feld B I e dpol ch e sttes two oe exst c ( feld wth lged p u p s ( lged t or ) sp ow d. ) eergy hve dpoles up p S - + dow sp, B. B mgetsto how out fd to wt We feld. ppled d temperture o depeds mterl

23 mterls Prmgetc or ech depedet re dpoles ll As verge t look to eed oly relly we ll use c We dpole. oe propertes bth het s dpoles r o Cocl esemble. d mcrosttes possble two hve We lredy erges e Fucto Prtto et g 1 for dpole. sgle our x B e e e k B B h cos cosh B x

24 Prmgetc mterls We c ow clculte versus sp dow. p 1 e p cosh probblty sp up 1 x x e p e x 1 cosh x Probblty Sp lged ( = - B) Sp tlged ( = + B) X= B/

25 Prmgetc mterls We c ow clculte me mgetc momet our dvdul dpole. x 1 p e p e cosh x cosh x p p ( e cosh x 1 x Ad hece me eergy dvdul x th x B th e x x ) cosh x sh x

26 mterls Prmgetc dpole dvdul for ecessry vlues hve We or ll terct ot do dpoles our becuse d smlrly. behve must dpoles : eergy d hs refore N dpoles sold A drecto ( momet mgetc me Ad : feld) ppled tht ote N = - B M x N N M h t x NB N h t

27 mterls Prmgetc mgetsto he L momet mgetc s volume ut per temperture hgh or feld wek lmt I d <<1 x h t x : so x V x N V M L th B V N V Nx L

28 Prmgetc mterls Probblty Sp p Sp Dow Mgetsto M getsto / N /V X= b/

29 Ref, Fgure Sturto M getzto C ure s Lw P rmgetsm: M 0 χh χ N ( 0 μ )/() ure Susceptblty C

30 P rmgetc mterls C ure s Lw he susceptblty s mgetsto per ppled feld testy whch for smll mgetstos s gve by H = B/ 0. 1 L 0 H N V I s Cure s lw. It holds very well for prmgetc mterls wth wekly terctg dpoles. So well tht c be used for temperture clbrto for exmple Cerum Mgesum trte obeys cures lw to 0.01K! t

31 Cure Lw M 1 NgBgμ BkB Ng μ B 4k B CH where C = Ng B /(4kB) s Cure costt Sce mgetc susceptblty s defed s = M/ H Cure Lw results: C

32 v s. plot 1/ = /C gves strght le grdet C-1 d tercept zero = C gves strght le prllel to X- xs t costt vlue showg temperture depedece mgetc momet.

33 C ure L w 1. As sgle electros re mgets, f you plce m mgetc f eld, y ll lg wth feld. However eergy dfferece b etwee lged wth feld d gst feld s << rml eergy t room temperture. Get r dom oretto equl popultos lgmet wth/gst feld.. As you lower, eergy dfferece becomes more mportt d populto chges more lg t- prllel to feld. 3. o expl ths behvor, Cure veted prmeter clled M getc Susceptblty, χ, whch s mesure how ttrcted smple s to mgetc feld. Normlly mesured s ppret mss crese. As more electros lg t- prllel to feld t low temperture, χ creses. I fct χ s versely proportol to t he feld: ths s C ure L w ( 1/ χ ) = C C = he Cure Costt

34 Dr Roger Beett Rm. 3 Xt Lecture 1

35 Cpcty Het upo depeds tht eergy hs sold prmgetc Our emperture t het mgetc hve must refore t cpcty. t cpcty het mesures oe Expermetlly H. testy feld mgetc costt mgetc wekly s compoud prmgetc our s H = B/ 0. costt lso s B so B NB x NB N h t h t B NB dq C H H H h t

36 Het Cpcty C H NB th B Nk B sech B 0.4 Mgetc Het Cpcty C H / N k /X = / B

37 Schottky Het C H Cpcty B Nk sech B hs s fct geerl result for het cpcty y two level system. Oe exmple we hve lredy ecoutered s S chottky defect. 0.4 Mgetc Het Cpcty C H / N k /X = / B

38 Sold Prmgetc Isolted treted prevously oe problem to smlr Very eergy totl (fx) costr we Here bth. het system. solted sp dpoles, totl N - d fel B ppled wth lged up. fucto clerly s umber gve to correspods () eergy gve A weght: sttstcl wth toms up p s - ) ( ) ( ) ( N B B B N! )! (! ) ( N N W

39 Isolted Prmgetc Hece Etropy s gve by: - Sold S( ) k lw ( ) k l ( N N! )!! or lrge N (~10 F 3 c use Strl g S hould look fmlr t s S chottky Vccy formto. ) s Approxmto S( ) k N l N l ( N )l( N ) 1 S S( ) ( ) sme S( ) problem s d d 1 S( )

40 Sold Prmgetc Isolted : toms up sp desty fd to, for olve S - up sp fdg probblty to detcl s hs lecture! lst wth strted we bth het tom N B k S B l ) ( 1 1 x e N 1 1 d d S S S ) ( ) ( ) ( 1 ) ( ) ( N B

41 Negtve emperture From our prevous dervto we hd 1 k B l N k B l N If < N/ more th hlf dpoles re t- prllel d becomes egtve! Wht s egtve temperture? We kow tht s temperture popultos sp-up d sp- dow oly become equl! A egtve temperture stte must refore be hotter th = s ts s more eergetc stte system.

42 emperture Negtve sttstcl d etropy temperture egtve For E. fuctos decresg be must weght fte stte system possess f hppe c hs xmum eergy m wth prmget our s such =N. B prtculr ll for hppes ths where exst systems No eerges electroc eerges, vbrtol (I.e. spects or spect such oe f However, eerges). mgetc d so ors, from decoupled effectvely subsystem s cosdered be subsystem my tht terct, ot do y equlbrum beg equlbrum wthout terl rech to ors. wth where systems mgetc for cse s hs qucker much s sps tomc betwee tmes relxto vbrtol d sps betwee relxto th lttce. modes

43 Negtve emperture I prmget lowest possble eergy = -N B d hghest =+ N B. hese re b oth uque mcrosttes so S=0. I betwee we postve eergy c oly rech sttes wth wth egtve temperture. s System Eergy 0.5 System Eergy E ergy / N B E ergy / N B emperture / emperture

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Random variables and sampling theory

Random variables and sampling theory Revew Rdom vrbles d smplg theory [Note: Beg your study of ths chpter by redg the Overvew secto below. The red the correspodg chpter the textbook, vew the correspodg sldeshows o the webste, d do the strred

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

Chapter 2: Probability and Statistics

Chapter 2: Probability and Statistics Wter 4 Che 35: Sttstcl Mechcs Checl Ketcs Itroucto to sttstcs... 7 Cotuous Dstrbutos... 9 Guss Dstrbuto (D)... Coutg evets to etere probbltes... Bol Coeffcets (Dstrbuto)... 3 Strlg s Appoto... 4 Guss Approto

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq. Rederg quto Ler equto Sptl homogeeous oth ry trcg d rdosty c be cosdered specl cse of ths geerl eq. Relty ctul photogrph Rdosty Mus Rdosty Rederg quls the dfferece or error mge http://www.grphcs.corell.edu/ole/box/compre.html

More information

Ionization Energies in Si, Ge, GaAs

Ionization Energies in Si, Ge, GaAs Izt erges S, Ge, GAs xtrsc Semcuctrs A extrsc semcuctrs s efe s semcuctr whch ctrlle muts f secfc t r murty tms hve bee e s tht the thermlequlbrum electr hle ccetrt re fferet frm the trsc crrer ccetrt.

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise Prticle i Box We must hve me where = 1,,3 Solvig for E, π h E = = where = 1,,3, m 8m d the stte fuctio is x A si for 0 x, d 0 otherwise x ˆ d KE V. m dx I this cse, the Hermiti opertor 0iside the box The

More information

Xidian University Liu Congfeng Page 1 of 22

Xidian University Liu Congfeng Page 1 of 22 Rdom Sgl rocessg Chpter Expermets d robblty Chpter Expermets d robblty Cotets Expermets d robblty.... Defto of Expermet..... The Smple Spce..... The Borel Feld...3..3 The robblty Mesure...3. Combed Expermets...5..

More information

Z = = = = X np n. n n. npq. npq pq

Z = = = = X np n. n n. npq. npq pq Stt 4, secto 4 Goodess of Ft Ctegory Probbltes Specfed otes by Tm Plchowsk Recll bck to Lectures 6c, 84 (83 the 8 th edto d 94 whe we delt wth populto proportos Vocbulry from 6c: The pot estmte for populto

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Section 7.2 Two-way ANOVA with random effect(s)

Section 7.2 Two-way ANOVA with random effect(s) Secto 7. Two-wy ANOVA wth rdom effect(s) 1 1. Model wth Two Rdom ffects The fctors hgher-wy ANOVAs c g e cosdered fxed or rdom depedg o the cotext of the study. or ech fctor: Are the levels of tht fctor

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Physics 220: Worksheet5 Name

Physics 220: Worksheet5 Name ocepts: pctce, delectrc costt, resstce, seres/prllel comtos () coxl cle cossts of sultor of er rdus wth chrge/legth +λ d outer sultg cylder of rdus wth chrge/legth -λ. () Fd the electrc feld everywhere

More information

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields Lecture 38 (Trpped Prticles) Physics 6-01 Sprig 018 Dougls Fields Free Prticle Solutio Schrödiger s Wve Equtio i 1D If motio is restricted to oe-dimesio, the del opertor just becomes the prtil derivtive

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

: : 8.2. Test About a Population Mean. STT 351 Hypotheses Testing Case I: A Normal Population with Known. - null hypothesis states 0

: : 8.2. Test About a Population Mean. STT 351 Hypotheses Testing Case I: A Normal Population with Known. - null hypothesis states 0 8.2. Test About Popultio Me. Cse I: A Norml Popultio with Kow. H - ull hypothesis sttes. X1, X 2,..., X - rdom smple of size from the orml popultio. The the smple me X N, / X X Whe H is true. X 8.2.1.

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin

More Regression Lecture Notes CE 311K - McKinney Introduction to Computer Methods Department of Civil Engineering The University of Texas at Austin More Regresso Lecture Notes CE K - McKe Itroducto to Coputer Methods Deprtet of Cvl Egeerg The Uverst of Tes t Aust Polol Regresso Prevousl, we ft strght le to os dt (, ), (, ), (, ) usg the lest-squres

More information

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER-0 WAVEFUNCTIONS, OBSERVABLES d OPERATORS 0. Represettos the sptl d mometum spces 0..A Represetto of the wefucto the sptl

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS

CHAPTER-10 WAVEFUNCTIONS, OBSERVABLES and OPERATORS Lecture Notes PH 4/5 ECE 598 A. L Ros INTRODUCTION TO QUANTUM MECHANICS CHAPTER- WAVEFUNCTIONS, OBSERVABLES d OPERATORS. Represettos the sptl d mometum spces..a Represetto of the wvefucto the sptl coordtes

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

The E vs k diagrams are in general a function of the k -space direction in a crystal

The E vs k diagrams are in general a function of the k -space direction in a crystal vs dagram p m m he parameter s called the crystal mometum ad s a parameter that results from applyg Schrödger wave equato to a sgle-crystal lattce. lectros travelg dfferet drectos ecouter dfferet potetal

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17 CS 70 Discrete Mthemtics d Proility Theory Sprig 206 Ro d Wlrd Lecture 7 Vrice We hve see i the previous ote tht if we toss coi times with is p, the the expected umer of heds is p. Wht this mes is tht

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Dopant Compensation. Lecture 2. Carrier Drift. Types of Charge in a Semiconductor

Dopant Compensation. Lecture 2. Carrier Drift. Types of Charge in a Semiconductor Lecture OUTLIE Bc Semcoductor Phycs (cot d) rrer d uo P ucto odes Electrosttcs ctce ot omesto tye semcoductor c be coverted to P tye mterl by couter dog t wth ccetors such tht >. comested semcoductor mterl

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics More ttistics tutoril t wwwdumblittledoctorcom Itroductio to mthemticl ttistics Chpter 7 ypothesis Testig Exmple (ull hypothesis) : the verge height is 5 8 or more ( : μ 5'8" ) (ltertive hypothesis) :

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

i+1 by A and imposes Ax

i+1 by A and imposes Ax MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 09.9 NUMERICAL FLUID MECHANICS FALL 009 Mody, October 9, 009 QUIZ : SOLUTIONS Notes: ) Multple solutos

More information

is completely general whenever you have waves from two sources interfering. 2

is completely general whenever you have waves from two sources interfering. 2 MAKNG SENSE OF THE EQUATON SHEET terferece & Diffrctio NTERFERENCE r1 r d si. Equtio for pth legth differece. r1 r is completely geerl. Use si oly whe the two sources re fr wy from the observtio poit.

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Cooper and McGillem Chapter 4: Moments Linear Regression

Cooper and McGillem Chapter 4: Moments Linear Regression Cooper d McGllem Chpter 4: Momets Ler Regresso Chpter 4: lemets of Sttstcs 4-6 Curve Fttg d Ler Regresso 4-7 Correlto Betwee Two Sets of Dt Cocepts How close re the smple vlues to the uderlg pdf vlues?

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core Topc : Algebr Topc

More information

Inference on One Population Mean Hypothesis Testing

Inference on One Population Mean Hypothesis Testing Iferece o Oe Popultio Me ypothesis Testig Scerio 1. Whe the popultio is orml, d the popultio vrice is kow i. i. d. Dt : X 1, X,, X ~ N(, ypothesis test, for istce: Exmple: : : : : : 5'7" (ull hypothesis:

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions: Physcs 121 Smple Common Exm 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7 Nme (Prnt): 4 Dgt ID: Secton: Instructons: Answer ll 27 multple choce questons. You my need to do some clculton. Answer ech queston on the

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Lecture 9: Tolerant Testing

Lecture 9: Tolerant Testing Lecture 9: Tolerat Testg Dael Kae Scrbe: Sakeerth Rao Aprl 4, 07 Abstract I ths lecture we prove a quas lear lower boud o the umber of samples eeded to do tolerat testg for L dstace. Tolerat Testg We have

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

CH 39 USING THE GCF TO REDUCE FRACTIONS

CH 39 USING THE GCF TO REDUCE FRACTIONS 359 CH 39 USING THE GCF TO EDUCE FACTIONS educig Algeric Frctios M ost of us lered to reduce rithmetic frctio dividig the top d the ottom of the frctio the sme (o-zero) umer. For exmple, 30 30 5 75 75

More information