Probabilistic approach to the distribution of primes and to the proof of Legendre and Elliott-Halberstam conjectures VICTOR VOLFSON

Size: px
Start display at page:

Download "Probabilistic approach to the distribution of primes and to the proof of Legendre and Elliott-Halberstam conjectures VICTOR VOLFSON"

Transcription

1 Probblstc pproch to the dstrbuto of prmes d to the proof of Legedre d Ellott-Hlberstm cojectures VICTOR VOLFSON ABSTRACT. Probblstc models for the dstrbuto of prmes the turl umbers re costructed the rtcle. The uthor foud d proved the probblstc estmtes of the devto R() ( ) L( ). The uthor hs lyzed the probblstc models of the dstrbuto of prmes the turl umbers d ffrmed the vldty of the probblstc estmtes of proved devtos R() stroger th the estmtes mde uder the ssumpto of Rem cojecture. Legedre's cojecture ws proved ths pper wth probblty rbtrrly close to 1 bsed o the probblty estmtes. Probblstc models for the dstrbuto of prmes the rthmetc progresso k l, ( kl, ) 1re lso bult ths pper. The uthor hs proved the probblty estmtes for the devto R(,k,l) (, k, l) L( ) / ( k). The uthor hs lyzed the probblty models of the dstrbuto of prmes the rthmetc progresso d ffrmed the vldty of probblstc estmtes of proved devtos R(,k,l) stroger th the estmtes mde uder the ssumpto of the eteded Rem cojecture. Ellott-Hlberstm A cojecture { m( kl, ) 1 R(,k,l) } C / l ( ) ws proved ths pper wth probblty 1k rbtrrly close to 1 for ll 0 1 bsed o the probblty estmtes. 1. INTRODUCTION The probblstc methods hve recetly bee used to model the dstrbuto of prme umbers. Hrdy, Lttlewoods d Krmer were the frst to mke t ther cojectures. These cojectures showed tht whe modelg the dstrbuto of prmes probblstc methods provde stroger results th the theory of fuctos of comple vrble d therefore cot be uderestmted. The tsk of studyg the dstrbuto of vlues of rel rthmetc fuctos c be ssocted wth the theory of summto of rdom vrbles some cses [1]. It turs out tht the questo of the symptotc behvor of these fuctos c be reduced to the kow lmt theorems of the probblty theory. Keywords: probblstc model, lmt dstrbuto of the rdom vrble, orml dstrbuto, probblty estmtes, prme umbers, Rem cojecture, Legedre cojecture, Crmer cojecture, Ellott-Hlberstm cojecture. 1

2 It s terestg to see the probblstc ssessmet of rel rthmetc fuctos of the umber of prmes the turl umbers d rthmetc progresso. Ths questo s dscussed ths pper. Ths rtcle cosders severl probblty spces such tht the ctul rthmetc fucto of the umber of prmes the turl umbers d rthmetc progresso re reltvely smple sums of rdom vrbles. The symptotc lw of prme umbers proved for the frst tme usg the theory of fuctos of comple vrble s well kow the followg form: ( ) ~ / l( ), (1.1) where ( ) s the umber of prmes ot eceedg postve teger. The lytcl pproch of Chebyshev ws erly ttempt to estmte the vlue: R( ) ( ) / l( ). (1.) I [] the estmte: / l( ) ( ) b / l( ) (1.3) ws show to be vld. Chebyshev showed tht 0. 91db Vlues more close to 1 were obted subsequet ppers. From (1.3) t follows: ( 1) / l( ) ( ) / l( ) ( b 1) / l( ). (1.4) However, estmtes of type (1.4) re ccurte: R( ) O( / l( )). (1.5) The symptotc lw of the prme umbers gves more ccurte vlue ( ) usg the tegrl logrthm: ( ) ~ L( ). (1.6) The ccurcy of the formul (1.6) s gve by: 1/ ( ) L( ) O( l( )), (1.7) f the Rem hypothess s true. There s lso Legedre s formul:

3 ( ) ~ / l( ) B. (1.8) But the formul (1.8) s less ccurte th equto (1.6). Ths rses the questo whether t possble to get better probblstc ssessmet of the ccurcy of the formul: ( ) / l( ) o(1/ l( )). (1.9) To swer ths questo, we cosder probblstc models of the dstrbuto of prmes the turl umbers.. PROBABILISTIC MODELS OF THE DISRIBUTION OF PRIMES IN THE NATURAL NUMBERS Cosder the frst probblstc model. Let there be blls dstgushble to the touch. Number them by cosecutve turl umbers from 1 to d put them ll bo. Select oe bll from the bo t rdom. If ts umber belogs to pre-selected teger postve jectve sequece, the we cosder the evet s success, d f the umber does ot belog to the selected sequece, the we cosder ths evet s flure. We ssume tht the probblty of the successful evet s p. Accordgly, the probblty of flure evets wll be equl to1 p. We troduce the rdom vrble I 1 dctor of the success of the evet. The vlue of the rdom vrble s equl to I1 1, f t s success d vlue s equl to I1 0, f t s flure. Retur the frst bll the bo, toss blls the bo d choose the secod bll from the bo t rdom. If the bll umber belogs to the selected sequece, the ssg to the rdom vrble the vlue I 1. If the bll umber does ot belog to the selected sequece, the ssg to the rdom vrble the vlue I 0. The retur the secod bll the bo, too. Repet t tmes. Sce the blls re ech tme retured to the bo d every et bll s resmpled the sme codtos, the rdom vrbles I re depedet. Thus, we obt sequece of depedet rdom vrbles dctors of success of the evet: I1, I,... I. The epectto of rdom vrble I s equl to: M( I ) p1 (1 p) 0 p. (.1) The vrce of rdom vrble I s equl to: D I p p p p p p. (.) ( ) (1 ) (1 ) (1 ) 3

4 Let us cosder the rdom vrble equl to the sum: I( ) I. (.3) 1 Defe the chrcterstcs of the rdom vrble I( ). The epectto of the rdom vrble I( ) bsed o (.1) d (.) d the lerty of epecttos s equl to: M ( I( X )) M ( I ) M ( I ) p. (.4) 1 1 Bsed o (.), (.3) d depedecy of the rdom vrbles I, the vrce of the rdom vrble I( ) s equl to;. (.5) 1 1 D( I( )) D( I ) D( I ) p(1 p) Thus, we hve the depedet, detclly dstrbuted rdom vrbles I1, I,... I wth bouded dsperso. Therefore, the rdom vrble I( ) I hs boml dstrbuto. The lmtg dstrbuto for the rdom vrble I( ) for the fed probblty p s the orml dstrbuto. Bsed o Movre-Lplce theorem [3], the followg relto s held: lm { P( I( ) M ( I( )) C D( I( ))} F( C), (.6) where P() the probblty of the evet s specfed pretheses d FC ( ) s the fucto of the module of the stdrd orml dstrbuto t pot C. Let us substtute the chrcterstcs of the rdom vrble I( ) from (.4) d (.5) to the epresso (.6) d obt: 1 lm { P( I( ) p C p(1 p) )} F( C). (.7) The vlue FC ( ) teds rpdly to 1 wth cresg C, bsed o the propertes of the orml dstrbuto. Thus, we c choose such vluec tht the probblty of the evet: I( ) p C p(1 p) (.8) s rbtrrly close to 1. 4

5 Ths s dvtge of probblstc ssessmets s t gves the opportuty to select prtculr vlue C. For emple, formul (.8) hs the beeft, s compred to the formul (1.7), whch the ccurcy cot be evluted. Deote by ( f, A, B) the umber of members of the teger, postve, jectve sequece f( ) o the tervl [ AB)., It ws proved [4] tht the desty of the sequece f( ) of the turl umbers wth the tervl [ AB), defed by the formul: ( f, A, B) / ( B A) (.9) s fte probblty mesure. codtos. The sequece of prme umbers s teger, postve, jectve,.e. stsfes the bove O the bss of the symptotc lw of prme umbers d (.9), t ws lso show [4] tht the probblty of choosg prme wth the tervl of the turl umbers [, ) s equl to: p 1/ l( ) o(1/ l( )). (.10) The rdom vrble I( ), ths cse, c be cosdered s the umber of prmes ot eceedg turl umber - ( ) [1]. Thus the formul (.7) for the sequece of prmes d lrge my be wrtte o the bss of (.10): P( ( ) (1/ l( ) o(1/ l( )) < C (1/ l( ) o(1/ l( ))(1 1/ l( ) o(1/ l( ))) F( C). (.11) of evet: O the bss of (.11), for lrge vlues we c choose vlue such tht the probblty ( ) (1/ l( ) o(1/ l( )) C (1/ l( ) o(1/ l( ))(1 1/ l( ) o(1/ l( ))) (.1) s rbtrrly close to 1. Let us lyze formul (.1). It gves the upper boud ( ) for the devto of the umber of prmes ot eceedg from the vlue / l( ) o(1/ l( )),.e. the estmte of ccurcy for the formul (1.9). 5

6 Cosder ths probblstc model the cse whe o 1/ l s the fucto: f ( ) ( 1) / l ( ) L( ) / 1/ l( ). (.13) 1 Substtute fucto (.13) to the formul for the vrce of the rdom vrble I( ) the frst probblstc model d obt: dt ( ) dt l( t) D1 ( I( )) L( )(1 L( ) / ) L( ) L ( ) /. (.14) l( t) By substtutg (.14) to (.1) we fd tht the probblty of the evet: ( ) ( ) ( ) / L C L L (.15) s rbtrrly close to 1. Let us lyze ths probblstc model. After smplg ( ths model) the bll returs to the bo g. Therefore, ths model t s possble to choose the sme bll severl tmes. Ths does ot hppe whe we clculte the umber of members of the sequece the rge of the turl umbers from 1 to the rel stuto. Cosder the secod probblstc model of the dstrbuto of prmes, whch s free from ths drwbck. It wll be bsed o the of Crmer s model. Let ( P ) be fte seres of urs cotg blck d whte blls? The chce of drwg whte bll from U beg p, whle the composto of U1 d U my be rbtrry chose. We ow ssume tht oe bll s drw from ech ur, so tht fte seres of ltertely blck d whte blls s obted. If P deotes the umber of the ur from whch the -th whte bll the seres s drw? The umber PP,,... 1 wll from cresg sequeces of tegers, Ad we shll cosder the clss C of ll possble sequeces. Obvously the sequece S of ordry prme umbers (p ) belogs to ths clss. We shll deote by I( ) the umber of those P, whch re. We deote by I the rdom vrble tht tkes the vlue 1 f whte bll gets from the -th ur d the vlue 0 otherwse. Thus we hve I( ) I. 1 6

7 Thus, the probblty model s free from the bove drwbcks. We shll fd the chrcterstcs of rdom vrbles of the secod probblstc model. The epectto of the rdom vrble I s equl to: M( I) 1 p 0 (1 p ) p. (.16) The vrce of the rdom vrble I s equl to: D I p p p p p p. (.17) ( ) (1 ) ( ) (1 ) (1 ) Defe chrcterstcs I( ). Bsed o (.16) the epectto I( ) s equl to:. (.18) M ( I( X )) M ( I ) M ( I ) p The vrce of the rdom vrble I( ) (bsed o depedet rdom vrbles I d formuls (.17) s equl to:. (.19) D( I( )) D( I ) D( I ) p (1 p ) p ( p ) The lmtg dstrbuto of the rdom vrble I( ) s orml, bsed o Lypuov theorem [3]. Therefore, bsed o formuls (.6), (.17) d (.19), we obt: lm ( ( ) ( ) } 1 1 1, (.0) { P I p C p p F( C) where FC ( ) s the vlue of the module of the fucto of the stdrd orml dstrbuto t pot C. Formul (.0) (for lrge vlues ) c be wrtte s: ( ( ) ( ) ) ( ) (.1) P I p C p p F C The probblty teds rpdly to 1 wth cresg, bsed o the propertes of the orml dstrbuto. Thus, we c choose such vlue C, tht probblty (.1) s rbtrrly close to 1. We shll fd the chrcterstcs of the probblstc model for the sequece of prme umbers. Let us mke heurstc ssumpto tht the probblty of turl umber to be prme s equl to1/ l( ), the the probblty of choosg the whte bll the Krmer s model 7

8 s p 1/ l() for. Bsed o Krmer rdom vrble I( ) c be regrded s the umber of prmes ot eceedg turl umber - ( ). The epectto of the rdom vrble I( ) for the sequece of the prme umbers, bsed o formul (.18) d the heurstc ssumpto, s equl to: M ( I( )) 1/ l( ) dt l( t). (.) The vrce of the rdom vrble I( ) for the sequece of prme umbers, bsed o formul (.19) d the ssumpto, s equl to: l( t) l ( t) D( I( )) 1/ l( ) (1/ l( )) dt. (.3) dt Bsed o (.1) we obt (for lrge ): dt dt dt P( I( ) C ) F( C), (.4) l( t) l( t) l ( t) where FC ( ) s the vlue of the fucto of the module of the stdrd orml dstrbuto t pot C. Thus, we c choose such vlue C, tht probblty (.4) s rbtrrly close to 1. The questo rses cocerg the ppromto sg formuls (.) d (.3). There re ssertos 1,, 3 for prtl summto [5] bsed o the Euler-McLur formul. Asserto 1. Assume tht the fucto F( ) s cotuously dfferetble d mootoclly decresg o the tervl [ A, ) d lm F( X) 0. The F( A ) F( ) d C O( F( )), where 0 A C lm[ F( A ) F( ) d]. 0 A Asserto. Suppose tht there ests the fucto F o the tervl [ A, ) wth the followg propertes: 1. lm F ( ) 0.. It hs dervtves of the desred order. 3. (k F 1) ( ) 0. (k1) B k ( K)! F ( A) 4. 1, (k1) B (k )! F ( A) k where B s - Beroull umber. The C F( A) / F( A) /1, wherec lm[ F( A ) F( ) d] 8. 0 A

9 k Asserto 3. The followg estmte s stsfed for the fucto F( ) 1/ l ( ) o the tervl [ A, ): C 0.60F( k 1), wherec lm[ F( A ) F( ) d]. 0 We obt the followg estmte bsed o sserto 1: A 1/ l( ) dt / l( t) C O(1/ l( )). 1 1/ l ( ) dt / l ( t) C O(1/ l ( )). From ssertos d 3 t follows tht C , C These vlues re eglgble for lrge. The fucto 1/ l( ) 1/ l ( ) decreses mootoclly oly for vlues 7, d therefore sserto 1 s pplcble to ths tervl. Let us clculte seprtely the sum d the tegrl o the tervl from to 7. The sum s equl to d the tegrl to I vew of the dfferece betwee the sum d the tegrl, overll estmte of the costt s equl to C for vrce,.e. t s lso eglgble. 3. ANALYSIS OF THE PROBABILISTIC MODELS OF THE DISTRIBUTION OF THE PRIME NUMBERS Compre the vrce of the frst probblstc model defed by formul (.14) wth the vrce of the secod probblstc model defed by formul (.3). We use specl cse of Cuchy-Schwrz equlty for comprso: ( ( ) ( ) ) ( ) ( ) u v d u d v d. (3.1) The equto (3.1) s wrtte s f u ( ) 1 d v ( ) 0. We hve: ( v( ) d) v ( ) d, (3.) dt ( ) l( t) dt, (3.3) l ( t) 9

10 bsed o (3.) for lrge vlues. From (3.3) we obt: D ( I( )) D ( I( )). (3.4) 1 The bsed o (3.4), we hve the followg upper boud: D ( I( )) D ( I( )) L( ), (3.5) 1 dt where L( ). l( t) The questo turlly rses bout the vldty of these probblty estmtes s the probblty estmtes for devtos r( ) ( ) L( ) re stroger th estmte (1.7) mde uder the ssumpto of the Rem cojecture. To cofrm these probblty estmtes we hve to fd lredy proved lower boud for dt dt the fucto Rtht ( ) hs the order less th D ( I( )) l( t) l ( t) cert vlue. strtg from The pper [6] cots such ssessmet. Lttlewoods showed tht the vlue Rcot ( ) hve the order less th: lll( ) l( ) (3.6) s teds to fty. Therefore, t suffces to compre the order of the squre of the fucto dt dt (3.6) wth the vlue D ( I( )) l( t) l ( t). Let us fd the lmt of the vlue: l (ll( )) A lm { }. (3.7) dt dt l ( )( ) l( t) l ( t) We fd tht the vlue of (3.7) s equl to: l (l( )) lll( ) { { l( ) (ll( ))l ( ) A lm } lm } 0, (3.8) 10

11 (usg L'Hosptl's Rule d the dervtve o the upper lmt of tegrto), sce both epressos the sum ted to 0. Thus, the fucto (3.6) hs the order of mgtude smller dt dt th D ( I( )) l( t) l ( t) probblstc models.. It vldtes estmtes mde bsed o the frst d secod The secod probblty model s more ccurte th the frst probblty model, s t does ot hve the dsdvtges of the frst oe. O the other hd, bsed o (3.5), dsperso for the frst probblstc model (.14) s greter th tht for the secod probblstc model (.3), so t c be used for the upper estmte (.15). Thus, the frst probblstc model s strctly proved (wthout ssumg the secod probblstc model) d equlty (.15) (for the frst probblstc model) s rgorously proved sserto. 9 Numercl clcultos show tht the equlty s t lest stsfed for vlues 10. However, Lttlewoods, s metoed erler, proved the theorem [6] d showed tht ths cse s ot lwys held. But ths theorem does ot fd such vlue tht the equlty ( ) L( ) s stsfed. Skewers hve lredy swered ths questo. He foud such vlue ep ep ep ep(7.705) [7] d cofrmed ths fct. The probblstc models of the dstrbuto of prmes the turl umbers lsted bove correspod to the specfed Lttlewoods theorem d prove tht the equlty sg c be chged. It hs bee coclusvely estblshed tht these devtos ccel ech other [8]. Ths s cosstet wth the results obted o the stdrd orml dstrbuto of the devto. Therefore, the term of the dstrbuto of prme umbers s well fouded the termology of the theory of probblty. 4. APPLICATION OF THE PROBABILISTIC MODELS OF THE DISTRIBUTION OF PRIMES IN THE NATURAL NUMBERS Suppose tht the Rem cojecture s true. The (for suffcetly lrge umber A 0 d ) there lwys ests t lest oe prme betwee the umbers [9]: d A 1/ l( ). (4.1) vlues: Smlrly, from (.14) t follows tht there lwys ests t lest oe prme betwee the d C L( ) L ( ) / (4.) 11

12 wth probblty rbtrrly close to 1. Bsed o (4.6), ote tht the codto: L( ) L ( ) / L( ). (4.3) s held. Thus, codto (4.) s stroger th (4.1). umbers: Recll tht the Krmer cojecture ssumes tht there lwys est prmes betwee the d B l ( ). (4.4) for lrge vlues d pproprte B 0.Therefore, from (4.4) we hve: 1/ A C L L B l( ) ( ) ( ) / l ( ). (4.5) Thus, the codto (4.4) s stroger th (4.), but (4.4) s oly the cojecture. Legedre cojecture, tht there ests t lest oe prme betwee the squres of cosecutve postve tegers re well kow. Asserto 4. Legedre cojecture s held wth probblty rbtrrly close to 1. Proof. It s kow [9], tht the Legedre cojecture wll be proved, f we show, tht there lwys ests t lest oe prme betwee some lrge vlues d bsed o the strctly prove frst probblstc model d relto (4.).. We shll prove t, Thus, we must prove, tht: L( ) L ( ) /. (4.6) It s kow, tht: L( ) / l( ) C / l ( ) (1/ l( ) C / l ( )), (4.7) where 1C. If e d 1 C, the: 1/ l( ) C / l ( ) 1. (4.8) 1

13 Therefore, for the vlue e from (4.7) d (4.8), t follows thtl( ) (1/ l( ) C / l ( )). So, for the vlues e we hve tht L( ) L ( ) / L( ). Q.E.D. 5. PROBABILISTIC MODELS OF THE DISTRIBUTION OF PRIMES IN THE ARITHMETIC PROGRESSIONS Let us cosder the thrd probblstc model. Suppose there s rthmetc progresso f () k l where ( kl, ) 1. Wrte the vlues f (0) l, f (1) k l, f () k l,... f ( ) k l o dfferet blls, dstgushble to the touch, put them bo d m. Choose t rdom the frst bll from the bo d ssg the vlue I1 1to the rdom vrble of the dctor of success, f the frst bll umber s prme or the vlue I1 0 to the rdom vrble, f ot. The retur the bll the bo, m the blls d tke out the secod bll from the bo. Assg the vlue I 1 to the rdom vrble (the dctor of success), f the secod bll umber s prme or the vlue I 0to the rdom vrble f ot. Repet t g / ktmes. Sce the blls re retured to the bo d the et bll s selected uder the sme codtos, the rdom vrbles I re depedet d the probblty to choose prme ech test p s equl to p p. We hve lredy cosdered the chrcterstcs of the rdom vrble: M ( I ) D( I ) p(1 p). the formul: p, The desty of the sequece g, ( ) s proporto of the sequece f( ) s determed by P( g / f,1, ) ( g,1, ) / ( f,1, ), (5.1) where ( g,1, ), ( f,1, ) re the umbers of members of the sequece gd ( ) f( ), respectvely, the rge of the turl umbers [1, ). 13

14 Bsed o [4], the desty P( g / f,1, ) s fte probblty mesure the rge of the turl umbers[1, ). Therefore, p P( g / f,1, ) s stsfed. The probblty of rdomly selected bll umber to be prme s equl to: p k / ( k)(1/ l( ) o(1/ l( ))), (5.) where ( k) s the Euler fucto (bsed o Drchlet's theorem bout the umber of the prmes rthmetc progresso d (5.1)). Let us cosder the rdom vrble: k / I(, k) ( I ). (5.3) 1 From the lerty of the epectto d (5.) we obt tht: M( I(, k)) ( p) / k (1/ l( ) o(1/ l( ))) / ( k). (5.4) Bsed o the depedece of rdom vrbles I, the vrce of the rdom vrble I(, k) s equl to: k D( I(, k)) p(1 p) / k (1/ l( ) o(1/ l( )))[1 ( (1/ l( ) o(1/ l( )))] ( k) ( k).(5.5) The rdom vrble I(, k) the probblstc model c be cosdered, followg [1], s the umber of members of the rthmetc progresso f ( ) k l, ( kl, ) 1, whch re the prmes. We cosder the thrd probblstc model for the cse, whe o 1/ l s the fucto f ( ) ( 1) / l ( ) L( ) / 1/ l( ). Substtute the fucto f( ) to the 1 formul for the epectto (5.4) of the rdom vrble I(, k) d obt: M 1 3( I (, k )) ( ) ( k) L. (5.6) Now we substtute the fucto f( ) the formul for the vrce (5.5) of rdom vrble I(, k ) d get: 1 kl( ) L( ) kl ( ) 3( (, )) L( )[1 ] D I k ( k) ( k) ( k) ( k). (5.7) 14

15 The rdom vrble I(, k) s the sum of the depedet rdom vrbles I wth fte vrce d thus, t hs the boml dstrbuto. Bsed o Movre-Lplce theorem [3] the lmt dstrbuto for I(, k) s orml, therefore the epresso s true for lrge vlues : P( I(, k) M ( I(, k)) C D( I(, k) ) F( C), (5.8) where FC ( ) s the fucto of the module of the stdrd orml dstrbuto t pot C. Substtute the chrcterstcs of the rdom vrble I(, k) to the epresso (5.8) defed by the formuls (5.6) d (5.7) d obt: 1 L( ) kl ( ) ( k) ( k) ( k) P( I(, k) L( ) C ) F( C). (5.9) Thus, bsed o the epresso (5.9) we c select the vlue such tht the probblty of the evet 1 L( ) kl ( ) ( k) ( k) ( k) I(, k) L( ) C s rbtrrly close to 1. Note tht formuls (5.8) d (5.9) re vld for lrge vlues / k. Let us lyze the thrd probblstc model. I ths model, s the frst oe, the bll s retured to the bo fter t ws chose. Therefore, there s the possblty to choose the sme bll few tmes ths model. Such evet does ot hppe the rel stuto, whe oe clcultes the umber of prmes of the rthmetcl progresso p k / ( k)l( ) wth the tervl of the turl umbers from 1 to. Therefore, ths probblstc model requres clrfcto. Cosder the fourth probblstc model tht s free from the drwbck of the thrd probblstc model. We wll be bsed o Crmer s model dscussed bove. Let mke heurstc ssumpto, tht the probblty of member of the rthmetc progresso k l,( k, l) 1, k l to be prme ( Krmer s model the probblty to choose from -th ur whte bll) s equl to: p k / ( k)l( ). (5.10) The sequece of prmes the rthmetc progresso s specfed teger, o-egtve, strctly cresg, therefore belogs to the clss C Krmer s model. Cosder the rdom vrble I( ) ( I) 1 15, where the rdom vrble I tkes the vlue 1 f we get whte bll

16 from the -th ur d the vlue 0 otherwse. Summrzg Krmer rdom vrble I ( ) c be regrded s the umber of members of the rthmetc progresso re the prmes. model: f (t) kt l, ( kl, ) 1, whch We hve lredy determed the chrcterstcs of the rdom the secod probblstc. M ( I( )) ( p ), D( I( )) ( p )(1 p ) 1 1 Bsed o (5.10) we fd the epectto of the rdom vrble I: ( ) 1 M ( I( )) k / ( k) k / ( k) dt 1 1 l( ) t k l l( kt l). (5.11) The ppromto sg formul (5.11) should be cosdered s formuls (.) d (.3), therefore the dfferece betwee the sum d the tegrl s eglgble (for lrge vlues t ). Chge the vrbles (5.11) u kt l d obt: dt du du M ( I( )) k / ( k) k / k( k) 1/ ( k) l( kt l) l( u) l( u) t 1 u kl. (5.1) ukl Equto (5.1) c be wrtte s: du kl du M ( I( )) 1/ ( k) 1/ ( k)[ L( ) ]. (5.13) ukl l( u) l( u) kl du The vlue of the tegrl (5.13) s bouded by ( k l ) / l(), d the l( u) followg relto s held for lrge vlues : M( I( )) L( ) / ( k). (5.14) The vrce of the rdom vrble Is ( ) equl to: 1 1 du du D( I( )) k / ( k) k / ( k) 1/ ( k) k / ( k) l( k l) l ( k l) l( u) l ( u) kl kl 1 1.(5.15) The ppromto sg formul (5.15) should be cosdered the sme sese s (5.11). As showed erler, the dfferece betwee the sum d the tegrl s eglgble for lrge 16

17 vlues.the vlue of the tegrl (5.15) s bouded by kl du l ( u) ( k l ) / l () followg formul s held for the vrce of the rdom vrble I(for ( ) lrge vlues ): d the du D I k k k du kl ( ( )) 1/ ( ) / ( ) l( u) l ( u). (5.16) The rdom vrble Is ( ) the sum of mutully depedet rdom vrbles I. Bsed o Lypuov theorem the lmt dstrbuto for the rdom vrble Is ( ) orml, therefore the epresso (for lrge vlues ) s true: P( I( ) M( I( )) C D( I( )) F( C), (5.17) where FC ( ) s the vlue of the fucto of the module of the stdrd orml dstrbuto t pot C. Substtute the chrcterstcs obted for the rdom vrble I ( ) (5.14), (5.16) to the epresso (5.17) d obt: k du P( I( ) L( ) / ( k) C L( ) / ( k) ) F( C) ( k). (5.18) l ( u) Thus, bsed o (5.18), you c select such vluec tht the probblty of the evet k du I( ) L( ) / ( k) C L( ) / ( k) ( k) s rbtrrly close to 1. l ( u) 6. ANALISYS OF THE PROBABILIISTIC MODELS OF THE DISTRIBUTION OF PRIMES IN THE ARITHMETIC PROGRESSION We hve the followg dsperso relto for probblstc models of the dstrbuto of the prmes rthmetc progressos: D( I( )) D ( I(, k)) L( ) / ( k), (6.1) 3 where the vlue D 3 ( I(, k )) s defed by (5.7) for the thrd probblstc model d D( I( )) s defed by (5.16) for the fourth probblstc model. Relto (6.1) s proved by the prtculr cse of Cuchy-Schwrz equlty usg formul (3.1). The geerlzed Rem cojecture s equvlet to the formul: (, k, l) L( ) / ( k) C l( ), (6.) 1 17

18 where (, k, l) s the umber of prmes ot eceedg the umber the rthmetcl progresso k l,( k, l) 1. Comprg (5.9) d (5.18) for the probblstc models of dstrbuto of prmes the rthmetc progresso wth formul (6.) we see tht these estmtes re stroger. However, s show erler, bsed o Lttlewoods s work, these estmtes re vld. O the other hd, formul (6.) s vld for ll k d formuls (5.9) d (5.18) re vld oly wth cert probblty. The ppromte clculto ofte use prctce d therefore formuls (5.9), (5.18) re coveet to use these cses. The vlue of the costt C these formuls s selected depedg o the desred ccurcy. The secod d fourth probblstc models re cojectures, sce they re bsed o ssumptos. The frst d the thrd probblstc models re the proved ssertos. As metoed erler, formuls (5.8) d (5.9) re vld for the vlue / ktedg to fty,.e. whe k o( ). For emple, the cse whe k ( 0 1 ). Ths correspods to Ttchmrsh theorem [10]: Let we hve 0 1 d1k. The there ests costt C C( ) such tht: (, k, l) C / ( k)l( ) for ll ( l, k) 1,0 l k d Theorem [11]: O the ssumpto of the prevous theorem, for ech k we c fd such c 1, c, tht there ests more th c1 ( k) dfferet vlues l, for whch: (, k, l) c / ( k)l( ). Cosder formul (5.9). The umber of prmes the rthmetc progresso kt l,( k, l) 1 ot eceedg depeds o the vlues k., The vlue L( ) / ( k) s the verge vlue over ll l d depeds oly o the vlues k., The vlue C D(, k) depeds o the ccurcy ( C) d vlues k., If we hve two rthmetcl progressos kt l1,( k, l1) 1d kt l,( k, l) 1, the from formul (5.9) we get: 1 L( ) kl ( ) ( k) ( k) ( k) I(, k) L( ) C (6.3) wth probblty rbtrrly close to 1. Smlrly to the bove theorem of Lttlewoods [6], t c be proved, tht (,4,1) (,4,3) C l l l( ) / l( ). (6.4) 4 Comprg formuls (6.3) d (6.4) we see tht (6.3) s more geerl th (6.4). 18

19 The fourth probblstc model s more ccurte th the thrd oe, s t s free of ts drwbcks. O the other hd, bsed o (6.1), the dsperso of thrd probblstc model (5.7) s greter th tht of the fourth probblstc model (5.16) d therefore t c be used to get upper-boud estmte the equlty (5.18). Sce the thrd probblstc model s rgorously proved d (5.18) s lso rgorously proved sserto. 7. APPLICATION OF THE PROBABILISTIC MODELS OF THE DISTRIBUTION OF PRIMES IN THE ARITHMETIC PROGRESSION Bsed o the thrd probblstc model, there ests t lest oe prme umber belogg to the rthmetc progresso k l,( k, l) 1 betwee the vlues: d D L( ) / k kl ( ) / ( ) (7.1) for the fed vlue k, lrge d pproprte D 0 wth the probblty close to 1. The codto (7.1) s stroger th the correspodg codtos resulted from the eteded Rem cojecture. Bsed o (5.18) we obt: m( kl, ) 1 I(, k) L( ) / ( k) C1 L( ) / ( k) kl ( ) / C1 L( ) / ( k), (7.) where the mmum s tke over ll l coprme wth k. Accordg to Ellott Hlberstm cojecture for ll 0 1d ll A 0 such C 0 tht s held: there ests A { m (, k, l) L( ) / ( k) } C / l ( ) (7.3) 1k ( kl, ) 1 for ll. Ths cojecture ws proved by Bomber d Vogrdov for vlues 1/. Asserto 5. Ellott-Hlberstm cojecture s held wth probblty rbtrrly close to 1 for ll 0 1. Proof. Bsed o the wek estmte (7.) we eed to prove tht: A C1 L( ) / ( k) C / l ( ). (7.4) 19

20 From L C d (7.4) we see tht we must prove the equlty: ( ) / l( ) / l ( ) C C k C. A 1 / l( ) / l ( ) 1/ ( ) / l ( ) 1k Bsed o the Ldu theorem [1]: ( ) C / l(l( )), (7.5) 3 f. Therefore, bsed o (7.5), we obt: 1/ ( ) l l( ) / C (7.6) 3 for.thus, bsed o (7.6), we obt: 1/ ( k) 1/ C l l( k) / k 1/ C l l( ) 1/ k (7.7) 3 3 1k k k sce (1) () 1. Bsed o sserto 3 we obt: dt y 1/ k C O(1/ y) y 3 C O(1/ y) O( y). (7.8) 3 1/ 3ky t Therefore, the equlty: / 1/ k C4 (7.9) 3k s stsfed. Substtute the estmte (7.7) (7.9) d obt: 1k 1/ ( k) C / C l l( ) / 4 3 1/ / ( k) C4 / C3 l l( ). (7.10) 1k Therefore, bsed o (7.10), we obt the estmte: C L( ) / ( k) C / l( ) C / l ( ) ( C / C l( ) l l( )), (7.11) / k where 0 1. From (7.11) t follows tht the estmte s held: (l l( )) C L k C C ( 1)/ 1/ ( 1)/ 1 ( ) / ( ) (7.1) 1/ 1k l( ) 0

21 for vlues 1 where 0 1.The followg equlty for vlues s held: (1 )/ A l ( ) (7.13) for y A 0 d 0 1. Therefore, bsed o (7.1) d (7.13) s held: ( 1)/ A C C / l ( ) (7.14) for vlues dc 0. Bsed o (7.), (7.1) d (7.14) we obt the estmte for the vlues m( 1, ) : A m { I(, k) L( ) / ( k) } C L( ) / ( k) C / l ( ). (7.15) ( kl, ) 1 1 1k Q.E.D. 8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK Ellott-Hlberstm cojecture wth the probblty close to 1 ws proved ths pper usg the wek estmte (7.). However, s show [13], from the vldty of Ellott-Hlberstm cojecture t follows, tht there s fte umber of the prme prs tht dffer by o more th 1. I hope tht usg the strog estmte (7.) t wll be ble to fd the probblstc pproch to the soluto of the bry Goldbch problem d to prove tht there s fte umber of prme tws. 9. ACKNOWLEDGEMENTS Thk you, everyoe, who hs cotrbuted to the dscusso of ths pper. Refereces 1. Kublus I. Probblstc methods umber theory, Vlus, p.. Buchstb A.A., Number Theory, Publshg House "Educto", Moscow, p. 3. Shryev A.N., Probblty-, Publsher MTsNMO, M, p. 1

22 4. Volfso V.L. Probblstc models d ssuptos of cojectures bout prme umbers, Appled fhyscs d mthemtcs, Volfso V.L., The dstrbuto of prme tuples the turl umbers, Appled Physcs d Mthemtcs, 013, Lttlewood J. E. Reserches the theory of the Rem zet fucto, Proc. Lod. Mth.Soc. (),0 (19), Skeweys S. O the dfferece ( ) l( ), Proc. Lod. Mth. Soc. (3), 5 (1955), Crmer H. Stude űber de Nullstelle der Remsche Zetfukkto, Mth.Z., 4 (1918), Crmer H. Some theorem cocerg prme umbers, Arkv mt., Astr. Och Fys., 15, 5 (190) 10. Ttchmrsh E.C. O the zeros of the Rem zet-fucto, Proc. Lod. Mth. Soc. (), 30 (199), Prchr K. The dstrbuto of prme umbers. Publsher "Mr", M, p. 1. Ldu E. Über de Verluf der zhletheoretsche Fukto, (), Arch. D. Mth u. Phys. (3), 5 (1903), Myrd J., Smll gps betwee prmes, upublshed t

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Chapter 3 Supplemental Text Material

Chapter 3 Supplemental Text Material S3-. The Defto of Fctor Effects Chpter 3 Supplemetl Text Mterl As oted Sectos 3- d 3-3, there re two wys to wrte the model for sglefctor expermet, the mes model d the effects model. We wll geerlly use

More information

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE

DISCRETE TIME MODELS OF FORWARD CONTRACTS INSURANCE G Tstsshvl DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE (Vol) 008 September DSCRETE TME MODELS OF FORWARD CONTRACTS NSURANCE GSh Tstsshvl e-ml: gurm@mdvoru 69004 Vldvosto Rdo str 7 sttute for Appled

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics Itroducto to mthemtcl ttstcs Fl oluto. A grou of bbes ll of whom weghed romtely the sme t brth re rdomly dvded to two grous. The bbes smle were fed formul A; those smle were fed formul B. The weght gs

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Z = = = = X np n. n n. npq. npq pq

Z = = = = X np n. n n. npq. npq pq Stt 4, secto 4 Goodess of Ft Ctegory Probbltes Specfed otes by Tm Plchowsk Recll bck to Lectures 6c, 84 (83 the 8 th edto d 94 whe we delt wth populto proportos Vocbulry from 6c: The pot estmte for populto

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

MATRIX AND VECTOR NORMS

MATRIX AND VECTOR NORMS Numercl lyss for Egeers Germ Jord Uversty MTRIX ND VECTOR NORMS vector orm s mesure of the mgtude of vector. Smlrly, mtr orm s mesure of the mgtude of mtr. For sgle comoet etty such s ordry umers, the

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

Xidian University Liu Congfeng Page 1 of 22

Xidian University Liu Congfeng Page 1 of 22 Rdom Sgl rocessg Chpter Expermets d robblty Chpter Expermets d robblty Cotets Expermets d robblty.... Defto of Expermet..... The Smple Spce..... The Borel Feld...3..3 The robblty Mesure...3. Combed Expermets...5..

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

Random variables and sampling theory

Random variables and sampling theory Revew Rdom vrbles d smplg theory [Note: Beg your study of ths chpter by redg the Overvew secto below. The red the correspodg chpter the textbook, vew the correspodg sldeshows o the webste, d do the strred

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Itō Calculus (An Abridged Overview)

Itō Calculus (An Abridged Overview) Itō Clculus (A Abrdged Overvew) Arturo Ferdez Uversty of Clfor, Berkeley Sttstcs 157: Topcs I Stochstc Processes Semr Aprl 14, 211 1 Itroducto I my prevous set of otes, I troduced the cocept of Stochstc

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Metric Spaces: Basic Properties and Examples

Metric Spaces: Basic Properties and Examples 1 Metrc Spces: Bsc Propertes d Exmples 1.1 NTODUCTON Metrc spce s dspesble termedte course of evoluto of the geerl topologcl spces. Metrc spces re geerlstos of Euclde spce wth ts vector spce structure

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core Topc : Algebr Topc

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers

Regression. By Jugal Kalita Based on Chapter 17 of Chapra and Canale, Numerical Methods for Engineers Regresso By Jugl Klt Bsed o Chpter 7 of Chpr d Cle, Numercl Methods for Egeers Regresso Descrbes techques to ft curves (curve fttg) to dscrete dt to obt termedte estmtes. There re two geerl pproches two

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics

4 Linear Homogeneous Recurrence Relation 4-1 Fibonacci Rabbits. 组合数学 Combinatorics 4 Ler Homogeeous Recurrece Relto 4- bocc Rbbts 组合数学 ombtorcs The delt of the th moth d - th moth s gve brth by the rbbts - moth. o = - + - Moth Moth Moth Moth 4 I the frst moth there s pr of ewly-bor rbbts;

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EU (Uversty of Bsque coutry) I Sold Stte Physcs Addres: Prctctes

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Solutions Manual for Polymer Science and Technology Third Edition

Solutions Manual for Polymer Science and Technology Third Edition Solutos ul for Polymer Scece d Techology Thrd Edto Joel R. Fred Uer Sddle Rver, NJ Bosto Idols S Frcsco New York Toroto otrel Lodo uch Prs drd Cetow Sydey Tokyo Sgore exco Cty Ths text s ssocted wth Fred/Polymer

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

Numerical differentiation (Finite difference)

Numerical differentiation (Finite difference) MA umercl Alyss Week 4 To tk d wrte portle progrms we eed strct model of ter computtol evromet. Ftful models do est ut tey revel tt evromet to e too dverse forcg portle progrmmers to lot eve te smplest

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Asymptotic Formulas Composite Numbers II

Asymptotic Formulas Composite Numbers II Iteratoal Matematcal Forum, Vol. 8, 203, o. 34, 65-662 HIKARI Ltd, www.m-kar.com ttp://d.do.org/0.2988/mf.203.3854 Asymptotc Formulas Composte Numbers II Rafael Jakmczuk Dvsó Matemátca, Uversdad Nacoal

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

Modeling uncertainty using probabilities

Modeling uncertainty using probabilities S 1571 Itroduto to I Leture 23 Modelg uertty usg probbltes Mlos Huskreht mlos@s.ptt.edu 5329 Seott Squre dmstrto Fl exm: Deember 11 2006 12:00-1:50pm 5129 Seott Squre Uertty To mke dgost feree possble

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY

A METHOD FOR THE RAPID NUMERICAL CALCULATION OF PARTIAL SUMS OF GENERALIZED HARMONICAL SERIES WITH PRESCRIBED ACCURACY UPB c Bull, eres D, Vol 8, No, 00 A METHOD FOR THE RAPD NUMERAL ALULATON OF PARTAL UM OF GENERALZED HARMONAL ERE WTH PRERBED AURAY BERBENTE e roue o etodă ouă etru clculul rd l suelor rţle le serlor roce

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1,

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1, Lecture (Part II) Materals Covered Ths Lecture: Chapter 2 (2.6 --- 2.0) The umber of ways of parttog dstct obects to dstct groups cotag, 2,, obects, respectvely, where each obect appears exactly oe group

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

INTRODUCTION ( ) 1. Errors

INTRODUCTION ( ) 1. Errors INTRODUCTION Numercl lyss volves the study, developmet d lyss of lgorthms for obtg umercl solutos to vrous mthemtcl problems. Frequetly umercl lyss s clled the mthemtcs of scetfc computg. Numercl lyss

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

A MULTISET-VALUED FIBONACCI-TYPE SEQUENCE

A MULTISET-VALUED FIBONACCI-TYPE SEQUENCE Avces Applctos Dscrete Mthemtcs Volume Number 008 Pes 85-95 Publshe Ole: Mrch 3 009 Ths pper s vlble ole t http://wwwpphmcom 008 Pushp Publsh House A MULTISET-VALUED IBONACCI-TYPE SEQUENCE TAMÁS KALMÁR-NAGY

More information

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN

European Journal of Mathematics and Computer Science Vol. 3 No. 1, 2016 ISSN ISSN Euroe Jour of Mthemtcs d omuter Scece Vo. No. 6 ISSN 59-995 ISSN 59-995 ON AN INVESTIGATION O THE MATRIX O THE SEOND PARTIA DERIVATIVE IN ONE EONOMI DYNAMIS MODE S. I. Hmdov Bu Stte Uverst ABSTRAT The

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Chapter 2: Probability and Statistics

Chapter 2: Probability and Statistics Wter 4 Che 35: Sttstcl Mechcs Checl Ketcs Itroucto to sttstcs... 7 Cotuous Dstrbutos... 9 Guss Dstrbuto (D)... Coutg evets to etere probbltes... Bol Coeffcets (Dstrbuto)... 3 Strlg s Appoto... 4 Guss Approto

More information