SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS

Size: px
Start display at page:

Download "SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS"

Transcription

1 Bullet of Mthemtcl Alyss d Applctos ISSN: , URL: Volume 4 Issue 4 01, Pges SOME SERIES IDENTITIES FOR SOME SPECIAL CLASSES OF APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS RELATED TO GENERALIZED POWER AND ALTERNATING SUMS COMMUNICATED BY R.K. RAINA B.-J. FUGÈRE, S. GABOURY, R. TREMBLAY Astrct. The purpose of ths pper s to ot severl seres dettes volvg some clsses of geerlzed Apostol-Beroull d Apostol-Euler polyomls troduced ltely y Srvstv et l. 16, 17] s well s the geerlzed sum of teger powers, the geerlzed ltertg sum d the logues of the expsos of the hyperolc tget d the hyperolc cotget. The method used s tht of geertg fuctos. It c e foud tht my dettes recetly oted re specl cses of our results. 1. Itroducto, Deftos d Nottos The geerlzed Beroull polyomls B α x of order α C, the geerlzed Euler polyomls E α x of order α C d the geerlzed Geocch polyomls G α x of order α C, ech of degree s well s α, re defed respectvely y the followg geertg fuctos see,4, vol.3, p.53 et seq.], 8, Secto.8] d 10]: α t e t e xt B α 1 xt t < π; 1 α : 1, 1.1! 0 α e t e xt + 1 xt t < π; 1 α : 1 1.! d α t e t e xt G α xt! t < π; 1 α : The lterture cots lrge umer of terestg propertes d reltoshps volvg these polyomls 1,, 3, 4, 5, 15]. Q.-M. Luo d Srvstv 1, 14] troduced the geerlzed Apostol-Beroull polyomls B α x of order α, 1991 Mthemtcs Suject Clssfcto. Prmry 11B68; Secodry 11S80. Key words d phrses. Beroull umers d polyomls, Euler umers d polyomls, Geocch umers d polyomls, Apostol-Beroull polyomls, Apostol-Euler polyomls, Apostol-Geocch polyomls, Geerlzed power sums, Geerlzed ltertg sums. Sumtted Jue 19, 01. Pulshed Novemer 6,

2 Q.-M. Luo 9] vestgted the geerlzed Apostol-Euler polyomls x of order α d the geerlzed Apostol-Geocch polyomls G α x of order α see lso,10, 11, 13]. The geerlzed Apostol-Beroull polyomls B α x; λ of order α C, the geerlzed Apostol-Euler polyomls x; λ of order α C, the geerlzed Apostol-Geocch polyomls G α x; λ of order α C re defed respectvely y the followg geertg fuctos α t λe t e xt B α x; λt t + l λ < π; 1 α : ! d 0 α λe t e xt + 1 α t λe t e xt + 1 It s esy to see tht 0 0 G α x; λt! x; λt! 77 t + l λ < π; 1 α : t + l λ < π; 1 α : B α x B α x; 1, E α x x; 1 d G α x G α x; 1. Recetly, Srvstv et l. 16, 17] hve vestgted some ew clsses of Apostol-Beroull, Apostol-Euler d Apostol-Geocch polyomls wth prmeters, d c defed y the followg geertg fuctos. Defto 1.1. Let,, c R +, d N 0. The geerlzed Apostol- Beroull polyomls B α x; λ;,, c of order α, the geerlzed Apostol-Euler polyomls x; λ;,, c of order α d the geerlzed Apostol-Geocch polyomls G α x; λ;,, c of order α re defed respectvely y the followg geertg fuctos α t λ t t c xt B α x; λ;,, c t t!, l + l λ < π; 1 α : 1, 1.7 α λ t + t c xt x; λ;,, c t t!, l + l λ < π; 1 α : d α t λ t + t c xt G α x; λ;,, c t t!, l + l λ < π; 1 α : If we te 1, c e 1.7, 1.8 d 1.9 respectvely, we hve 1.4, 1.5 d 1.6. Ovously, whe we set λ 1, α 1, 1, c e 1.7, 1.8 d 1.9, we hve clsscl Beroull polyomls B x, clsscl Euler polyomls E x d clsscl Geocch polyomls G x.

3 78 For ech N 0, S defed y S j 1.10 s clled the sum of teger powers. The expoetl geertg fucto for S s gve y 19] S t! e+1t 1 e t We ow defe the geerlzed sum of teger powers s follows. Defto 1.. For rtrry rel or complex λ, the geerlzed sum of tegers powers S ; λ s defed y the geertg relto S ; λ t! λe+1t 1 λe t It s ovous tht 0 For N 0 d N, T defed y s clled the ltertg sum. gve y 0 S ; 1 S T The expoetl geertg fucto for T s T t! 1 1 e t 1 + e t The geerlzed ltertg sum of order α s defed 7] s follows. Defto 1.3. For y rtrry rel or complex prmeter λ, the geerlzed ltertg sum of order α, T α ; λ s defed y the followg geertg fucto: T α ; λ t 1 λ 1! e t α 1 + λe t It s esy to oserve tht T 1 ; 1 T I ths pper, we preset severl seres dettes volvg the geerlzed Apostol- Beroull d the geerlzed Apostol-Euler polyomls defed respectvely y 1.7 d 1.8. I Secto, we ot severl symmetry dettes for the geerlzed Apostol-Beroull polyomls relto etwee the these polyomls d the geerlzed sum of teger powers 1.1. I Secto 3, we prove severl dettes volvg the geerlzed Apostol-Euler, the geerlzed ltertg sum d the logues of the expsos of the hyperolc tget d the hyperolc cotget. Some dettes re lso oted y usg the reltoshps etwee the geerlzed Apostol-Beroull, Apostol-Euler d Apostol-Geocch polyomls.

4 79. Symmetry dettes for the geerlzed Apostol-Beroull polyomls I ths secto, we estlsh some symmetry dettes volvg the geerlzed Apostol-Beroull polyomls B α x; λ;,, c defed the frst secto d the geerlzed sum of teger powers defed y 1.1. Ths s doe y usg the method of geertg fuctos. These results provdes geerlzto of ow dettes 18, 1,, 3] Theorem.1. For ll tegers µ > 0, ν > 0, α 1, 0, for,, c R + d for λ C, we hve the followg detty: B α νx + µ 1ν l ; λ;,, c µ ν +1 S µ 1, λ B α 1 µy; λ;,, c l B α µx + ] ν 1µ l ; λ;,, c ν µ +1 S ν 1, λ B α 1 νy; λ;,, c l ]..1 Proof. Cosderg gt tα 1 c µνxt λ µνt µνt λ µt µt α λ νt νt α. We hve to expd the lst fucto to seres two wy to prove the theorem. We hve gt tα 1 c µνxt λ µνt µνt λ µt µt α λ νt νt α α 1 µt c νxµt λ µνt µνt α 1 νt µ α ν α 1 λ µt µt λ νt νt λ νt νt c νt l α l c µt c νxµt λ ν µt 1 α 1 µ α ν α 1 λ µt µt ν λ νt ν t 1 λ νt νt ν 1 µ α ν α 1 S µ 1, λ 0 1 µ α ν α B α νx ν l B α µ 1ν l µt ; λ;,, c! ] t νx +! 0 B α 1 µy; λ;,, c νt! µ 1ν l ; λ;,, c S µ 1, λ B α 1 µy; λ;,, c l µ ν +1 ] ] t!..

5 80 By expdg dfferet wy, we hve gt 1 B α ν α µ α µx S ν 1, λ B α 1 νy; λ;,, c ν 1µ l ; λ;,, c ν µ +1 l ] ] t!..3 By settg 1, c e Theorem 1, we ot oe of the results exhted y Zhg d Yg 3, Eq. 8]: Corollry.. For ll tegers µ > 0, ν > 0, α 1, 0 d for λ C, we hve B α νx; λ µ ν +1 S µ 1, λ B α 1 µy; λ 0 0 B α µx; λ ν µ Puttg x 0, y 0 d α 1 Theorem 1, we hve: 0 S ν 1, λ B α 1 νy; λ..4 Corollry.3. For ll tegers µ > 0, ν > 0, 0 d for,, c R + d λ C, we hve the followg relto: ] µ 1ν l B ; λ;,, c µ 1 ν S µ 1, λ l 0 ].5 ν 1µ l B ; λ;,, c ν 1 µ S ν 1, λ l. Flly, susttutg λ 1, 1, c e.5, we fd µ 1 ν B S µ 1 ν 1 µ B S ν result gve y Tueter 18]. 0 Theorem.4. For ll tegers µ > 0, ν > 0, α 1, 0, for,, c R +, d for λ C, we hve the followg detty: λ +j µ ν B α νx + ν l + µν ν µ l ; λ;,, c 0 0 B α µy + jµ l ; λ;,, c ν µ B α µx + µ l + µν ν µ l ; λ;,, c 0 0 λ +j B α νy + jν l ; λ;,, c..7

6 81 Proof. Let the fucto ht e gve y ht tα c µνxt λ µ µνt µνt λ ν µνt µνt λ µt µt α+1 λ νt νt α+1,.8 whch c e expded s follows: ht 1 α µt λ µν α λ µt µt c µνxt µ µνt µνt α νt λ νt νt λ νt νt λ ν µνt µνt λ µt µt α µνt νt µt µt µν α λ µt µt c µνxt λ µ e µνt l α 1 νt λe νt l 1 λ νt νt λ ν e νµt l 1 λe µt l 1 1 α µν α c µν ν µt l µt l c λ µt µt c µνxt λ e νt l 0 α νt λ νt νt λ j e jµt l c µνyt α c µνxt + νt l µν ν µt l + l c l c 1 µν α λ µt λ µt µt 0 α λ j νt λ νt νt + jµt l l c 1 µν α λ B α νx + ν l + µν ν µ l µt ; λ;,, c! 0 λ j B α µy + jµ l νt ; λ;,, c! 0 1 µν α λ +j µ ν B α µy + jµ l ; λ;,, c 0 0 B α νx + ν l ] + µν ν µ l t ; λ;,, c!..9 Sce ht s symmetrc µ d ν, we c lso expd ht s follows: ht 1 λ +j ν µ B α µν α νy + jν l ; λ;,, c 0 0 B α µx + µ l ].10 + µν ν µ l t ; λ;,, c!.

7 8 By equtg the coeffcet of t! o the rght-hd sdes of these lst two.9 d.10, we get the detty.7. Settg 1, c e Theorem yelds result gve recetly y Zhg d Yg 3, Eq. 18] : Corollry.5. For ll tegers µ > 0, ν > 0, α 1, 0 d for λ C, we hve λ +j µ ν B α νx + νµ ; λ B α µy + jµν ; λ λ +j ν µ B α µx + µν ; λ B α νy + jνµ ; λ. Puttg ν 1 d y 0 Theorem gves the ext corollry:.11 Corollry.6. For ll tegers µ > 0, α 1, 0, for,, c R +, d for λ C, we hve the followg detty: λ µ B α λ j µ B α µx + x + l + µ 1 l ; λ;,, c µ 1 l j l ; λ;,, c B α B α 0; λ;,, c ; λ;,, c..1 Theorem.7. For ll tegers µ > 0, ν > 0, α 1, 0, for,, c R +, d for λ C, we hve the followg detty: 0 B α B α λ +j µ ν B α µy; λ;,, c νx + ν l + µν ν µ l + jµ l λ +j ν µ B α νy; λ;,, c µx + µ l + µν ν µ l + jν l ; λ;,, c ; λ;,, c..13 Proof. The proof of Theorem 3 s smlr to tht of Theorems 1 d. I the proof of Theorem 3, we frst me use of 1.7 order to expd the fucto ht defed y.8 d the pply the symmetry of ht µ d ν to ot secod expso of ht. The detls volved re strghtforwrd d we leve them s exercse. If we set 1, c e Theorem 3, we recover result gve recetly y Zhg d Yg 3, Eq. 3] :

8 83 Corollry.8. For ll tegers µ > 0, ν > 0, α 1, 0 d for λ C, we hve λ +j µ ν B α νx + νµ + j; λ B α µy; λ 0 λ +j ν µ B α µx + µ ν + j; λ B α νy; λ. Puttg ν 1 d y 0 Theorem 3 gves the ext corollry:.14 Corollry.9. For ll tegers µ > 0, α 1, 0, for,, c R +, d for λ C, we hve the followg detty: λ µ B α λ j µ B α x + l + µ 1 l ; λ;,, c µx + µ 1 l + j l ; λ;,, c l c B α 0; λ;,, c B α 0; λ;,, c Some dettes relted to geerlzed Apostol-Euler polyomls I ths secto, we derve some dettes cocerg the geerlzed Apostol- Euler polyomls x; λ;,, c defed y 1.8, the geerlzed ltertg sum 1.16 d the logues of the expsos of hyperolc cotget d hyperolc tget troduced 0]. These results exted some ow formuls 6, 7, 1]. We coclude ths secto y gvg some dettes sed o reltoshps etwee the geerlzed Apostol-Euler polyomls x; λ;,, c d the geerlzed Apostol-Beroull polyomls B α x; λ;,, c d etwee the geerlzed Apostol-Beroull polyomls B α x; λ;,, c d the geerlzed Apostol- Geocch polyomls G α x; λ;,, c defed y 1.9. Theorem 3.1. For N 0, µ, ν N, α 1,,, c R +, d for λ C. If µ d ν hve the sme prty, the the followg detty holds true: µ ν l 0 ν µ l 0 νx µx αν l ; λ;,, c T α µ; λ αµ l ; λ;,, c T α ν; λ. 3.1 Proof. Let the fucto gt e gve y gt c µνxt 1 λ 1 µ e µνt l α λ µt + µt α λ νt + νt α 3.

9 84 Mg use of 1.8 d 1.16 to expd gt to ot frst: gt 1 α c ανt l α l c c νxµt 1 λ 1 µ e µνt l λ µt + µt 1 α 1 α 0 E α νx αν l µ ν l µt ; λ;,, c! λe νt l νx α T α µ; λ νt l! αν l ; λ;,, c T α µ; λ t!. 3.3 Now, sce µ d ν hve the sme prty, the the fucto gt s symmetrc µ d ν. Therefore, we c expd gt s follows: gt 1 α ν µ l 0 µx αµ l ; λ;,, c T α ν; λ t!. 3.4 By equtg the coeffcet of t! o the rght-hd sde of the lst two equtos 3.3 d 3.4, we thus recover the detty 3.1 sserted y Theorem 4. As specl cse, f we set 1, c e Theorem 4, we ot the followg corollry gve recetly y Lu d Srvstv 7, Eq. 30]. Corollry 3.. For N 0, µ, ν N, α 1 d for λ C. If µ d ν hve the sme prty, the the followg detty holds true: µ ν α νx ; λ T µ; λ ν µ α µx; λ T ν; λ Now, lettg α λ 1, we recover the result gve y Yg d Qo 1, Eq. 18]: Corollry 3.3. For N 0 d µ, ν N. If µ d ν hve the sme prty, the we hve µ ν E νx T µ ν µ E µx T ν Theorem 3.4. For N 0, µ, ν N, α 1,,, c R +, d for λ C. If µ d ν hve the sme prty, the the followg detty holds true: λ +j µ ν νx + ν + jµ l µ + ν l ; λ;,, c µy; λ;,, c λ +j ν µ 0 µx + µ + jν l µ + ν l ; λ;,, c νy; λ;,, c. 3.7

10 85 Proof. Let the fucto gt e gve y gt c µνxt c 1 µνyt νt µ ] 1 µt ν ] λ λ λ µt + µt α+1 λ νt + νt α whch c e expded, wth the help of 1.8, s follows: gt 1 α c µνxt 1 1 λ νt µ α λ µt + µt νt 1 µt µ+νt α 1 λ µt ν λ µt + 1 λ νt + νt λ νt + 1 α α νt c µνxt λ λ µt + µt 0 jµt α λ j λ νt + νt 1 α λ +j c µνxt + νt l l c α λ µt + µt 0 α λ νt + νt 1 α 1 α λ +j jµt l µ + νt l l c l c νx + ν + µj l µ + ν l ; λ;,, c νt µy; λ;,, c! λ +j µ ν µy; λ;,, c 0 νx + ν + µj l ] µ + ν l ; λ;,, c t!. µt! Usg the fct tht gt s symmetrc sce µ d ν hve the sme prty, we c lso expd gt the followg the wy: gt 1 α λ +j ν µ νy; λ;,, c 0 0 µx + µ + νj l ] µ + ν l ; λ;,, c t!. 3.9 Equtg coeffcets of t! the rght-hd sde of the lst two equtos gves the detty of the Theorem 5. Lettg 1, c e Theorem 5, we fd the followg corollry gve recetly y Lu d Srvstv 7, Eq. 43].

11 86 Corollry 3.5. For N 0, µ, ν N, α 1 d for λ C. If µ d ν hve the sme prty, the the followg detty holds true: λ +j µ ν νx + νµ + j; λ µy; λ λ +j ν µ µx + µ ν + j; λ νy; λ. 0 0 Accordg to 0], we hve the followg logues of the expsos of hyperolc cotget d hyperolc tget, respectvely: λe z + 1 λe z 1 λe z 1 λe z + 1 E 0; λ z! From 3.11, we c ot the followg theorem. B 0; λ + λb 1; λ z 1, 3.11! Theorem 3.6. For N 0, µ, ν N, α 1,,, c R +, d for λ C. Let δ,j deotes the Kroecer delt defed y δ, 1 d δ,j 0 for j. If µ s odd d ν s eve the the followg detty holds true: δ +1,1 + B +1 0; λ] µ µ ν µx µ l ; λ;,, c l j µ ν νx ν l ; λ;,, c l 0 E α 1 µy; λ;,, c. ] + j T 1 j ν; λeα 1 j νy; λ;,, c 0 ] T 1 µ; λ 3.13 Proof. Whe µ s odd d ν s eve, the fucto gt, gve elow, s ot symmetrc µ d ν, so we hve o the oe hd gt 1 α c µνxt 1 λ 1 ν e µνt l 1 λ 1 µ e µνt l α 1 λ νt + νt λ µt + µt 1 λ 1 ν e µνt l α 1 λ µt + µt 1 1 λ 1 µ e µνt l α µt l µνxt α 1 1 λ 1 ν e µνt l c l c λ νt + νt 1 λ 1 ν e µνt l α 1 λe µt l + 1 λ µt + µt 1 1 B 0; λ + λb 1; λ µνt l α 1! µx µ l νt ; λ;,, c! 0

12 µt l T 1 ν ; λ! 0 1 B α 1 0; λ + λb 1; λ] µ 1 0 µ ν 1 µx µ l ; λ;,, c 0 ] ] 1 + j l T 1 j ν; λeα 1 j νy; λ;,, c j E α 1 j νy; λ;,, c µtj j! 87 t ! O the other other hd, we c lso expd gt s follows: gt 1 α c µνxt 1 λ 1 µ e µνt l α 1 λ µt + µt λ νt + νt α 1 λ νt + νt 1 α νt l µνxt 1 λ 1 c l c µ e µνt l α 1 λ µt + µt 1 + λe νt l α 1 λ νt + νt 1 α 1 νx ν l µt νt l ] ; λ;,, c T 1! µ; λ! 0 E α 1 µy; λ;,, c νt! 0 1 µ ν α 1 νx ν l ; λ;,, c 0 0 l ] T 1 µ; λeα 1 µy; λ;,, c Sce λb x + 1; λ B x; λ x 1 see 14] the ] t!. B 0; λ + λb 1; λ δ,1 + B 0; λ Mg use of ths lst relto 3.15 volvg the Apostol-Beroull polyomls d umers d equtg the coeffcets of t! 3.14 d 3.15, we ot Susttutg 1, c e Theorem 6 furshes the followg corollry. Corollry 3.7. For N 0, µ, ν N, α 1 d for λ C. Let δ,j deotes the Kroecer delt defed y δ, 1 d δ,j 0 for j. If µ s odd d ν s eve the the followg detty holds true: δ +1,1 + B +1 0; λ] µ T 1 j ν; λeα 1 j νy; λ j µ ν µx; λ

13 88 µ ν νx; λ T 1 µ; λeα 1 µy; λ Lettg λ , we get the result oted y Lu d Wg 6, Theorem.4]. Corollry 3.8. For N 0, µ, ν N, α 1. If µ s odd d ν s eve the the followg detty holds true: B +1 0 µ µ ν + 1 µx T 1 j j νeα 1 j νy 0 0 µ ν νx T 1 µeα 1 µy We c proceed smlrly to Theorem 3.6, ut usg ths tme 3.1 to estlsh the ext result. 0 0 Theorem 3.9. For 1, µ, ν N, α 1,,, c R +, d for λ C. If µ s eve d ν s odd the the followg detty holds true: E 0; λµ µ ν µx µ l ; λ;,, c 0 0 ] + j l T 1 j ν; λeα 1 j νy; λ;,, c j ν µ µx µ l ; λ;,, c 0 ] 3.18 l T 1 ν; λeα 1 νy; λ;,, c 0 µ ν νx ν l ; λ;,, c 0 ] l T 1 µ; λeα 1 µy; λ;,, c. A terestg specl cse of Theorem 7 s oted y settg 1, c e d λ Corollry For 1, µ, ν N, α 1. If µ s eve d ν s odd the the followg detty holds true: 1 E 0µ µ ν µx T 1 j j νeα 1 j νy 0 0 µ ν νx T 1 µeα 1 µy result gve frst y Lu d Wg 6, Theorem.7].

14 89 Flly, we would le to meto tht my other dettes c e oted from those show ths pper. As exmple, t s esy to see tht the two followg reltoshps hold etwee the Apostol-Beroull d Apostol-Euler polyomls d the Apostol-Beroull d Apostol-Geocch polyomls. Respectvely, we hve for N 0, µ, ν N, α N,,, c R +, d for λ C, d x; λ;,, c α! B α +αx; λ;,, c + α! 3.0 B α x; λ;,, c Gα x; λ;,, c α. 3.1 Let us see two exmples of pplcto of these two results. Frst, comg 3.0 wth Theorem 4 yelds Theorem For N 0, µ, ν N, α N,,, c R +, d for λ C. If µ d ν hve the sme prty, the the followg detty holds true: µ ν! B α αν l +α νx ; λ;,, c l T α µ; λ + α! 0 ν µ! B α +α µx αµ l ; λ;,, c l T α ν; λ. + α! 0 3. Next, cosderg 3.1 wth Theorem 1 gves Theorem 3.1. For ll tegers µ > 0, ν > 0, α N, 0, for,, c R + d for λ C, we hve the followg detty: G α µ 1ν l νx + ; λ;,, c µ ν S µ 1, λ G α 1 µy; λ;,, c l G α µx + ] ν 1µ l ; λ;,, c ν µ +1 S ν 1, λ G α 1 νy; λ;,, c l Refereces ] M. Armowtz d I.A. Stegu, Hdoo of mthemtcl fuctos wth formuls, grphs d mthemtcl tles, Ntol Bureu of Stdrds, Wshgto, DC, Yu. A. Brychov, O multple sums of specl fuctos, Itegrl Trsform Spec. Fuct , L. Comtet, Advced comtorcs: The rt of fte d fte expsos, Trslted from frech y J.W. Nehuys, Redel, Dordrecht, A. Erdely, W. Mgus, F. Oerhettger, d F. Trcom, Hgher trscedetl fuctos, vols.1-3,, E.R. Hse, A tle of seres d products, Pretce-Hll, Eglewood Clffs, NJ, Hogme Lu d Wepg Wg, Some dettes o the Beroull, Euler d Geocch polyomls v power sums d lterte power sums, Dscrete Mthemtcs ,

15 90 7. D.-Q. Lu d H.M. Srvstv, Some seres dettes volvg the geerlzed Apostol type d relted polyomls, Comput. Mth. Appl. DOI: /j.cmw Y. Lue, The specl fuctos d ther pproxmtos, vols. 1-, Q.-M. Luo, Apostol-Euler polyomls of hgher order d guss hypergeometrc fuctos, Twese J. Mth , , q-extesos for the Apostol-Geocch polyomls, Ge. Mth , , Exteso for the geocch polyomls d ts fourer expsos d tegrl represettos, Os J. Mth , Q.-M. Luo d H.M. Srvstv, Some geerlztos of the Apostol-Beroull d Apostol- Euler polyomls, J. Mth.Al.Appl , Q.-M. Luo d H.M. Srvstv, Some geerlztos of the postol-geocch polyomls d the strlg umers of the secod d, Appl. Mth. Comput , Q.M. Luo d H.M. Srvstv, Some reltoshps etwee the Apostol-Beroull d Apostol-Euler polyomls, Comput. Mth. Appl , F. Mgus, W. Oerhettger d R.P. So, Formuls d theorems for the specl fuctos of mthemtcl physcs, Thrd elrged edto, Sprger-Verlg, New Yor, H.M. Srvstv, M. Grg, d S. Choudhry, A ew geerlzto of the Beroull d relted polyomls, Russ J. Mth. Phys , , Some ew fmles of geerlzed Euler d Geocch polyomls, Twese J. Mth , H.J.H. Tueter, A symmetry of power sum polyomls d Beroull umers, Amer.Mth.Mothly , , The Froeus prolem, sums of powers of tegers, d recurreces for the Beroull umers, J. Numer Theory , Wepg Wg d Wewe Wg, Some results o power sums d Apostol-type polyomls, Itegrl Trsform Spec. Fuct , S.-L. Yg d Z.-K. Qo, Some symmetry dettes for the Euler polyomls, J. Mth. Res. Exposto , S.L. Yg, A detty of symmetry for the Beroull polyomls, Dscrete Mth , Zhzheg Zhg d Hqg Yg, Severl dettes for the geerlzed Apostol-Beroull polyomls, Comput. Mth. Appl , B.-Je Fugère Deprtmet of Mthemtcs d Computer Scece, Royl Mltry College, Kgsto, Otro, Cd, K7K 5L0 E-ml ddress: fugerej@rmc.c Seste Goury Deprtmet of Mthemtcs d Computer Scece, Uversty of Queec t Chcoutm, Queec, Cd, G7H B1 E-ml ddress: s1gour@uqc.c Rchrd Tremly Deprtmet of Mthemtcs d Computer Scece, Uversty of Queec t Chcoutm, Queec, Cd, G7H B1 E-ml ddress: rtreml@uqc.c

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

On a class of analytic functions defined by Ruscheweyh derivative

On a class of analytic functions defined by Ruscheweyh derivative Lfe Scece Jourl ;9( http://wwwlfescecestecom O clss of lytc fuctos defed by Ruscheweyh dervtve S N Ml M Arf K I Noor 3 d M Rz Deprtmet of Mthemtcs GC Uversty Fslbd Pujb Pst Deprtmet of Mthemtcs Abdul Wl

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Systems of second order ordinary differential equations

Systems of second order ordinary differential equations Ffth order dgolly mplct Ruge-Kutt Nystrom geerl method solvg secod Order IVPs Fudzh Isml Astrct A dgolly mplct Ruge-Kutt-Nystróm Geerl (SDIRKNG) method of ffth order wth explct frst stge for the tegrto

More information

Patterns of Continued Fractions with a Positive Integer as a Gap

Patterns of Continued Fractions with a Positive Integer as a Gap IOSR Jourl of Mthemtcs (IOSR-JM) e-issn: 78-578, -ISSN: 39-765X Volume, Issue 3 Ver III (My - Ju 6), PP -5 wwwosrjourlsorg Ptters of Cotued Frctos wth Postve Iteger s G A Gm, S Krth (Mthemtcs, Govermet

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

Some identities involving the partial sum of q-binomial coefficients

Some identities involving the partial sum of q-binomial coefficients Some dettes volvg the partal sum of -bomal coeffcets Bg He Departmet of Mathematcs, Shagha Key Laboratory of PMMP East Cha Normal Uversty 500 Dogchua Road, Shagha 20024, People s Republc of Cha yuhe00@foxmal.com

More information

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases

Analytical Approach for the Solution of Thermodynamic Identities with Relativistic General Equation of State in a Mixture of Gases Itertol Jourl of Advced Reserch Physcl Scece (IJARPS) Volume, Issue 5, September 204, PP 6-0 ISSN 2349-7874 (Prt) & ISSN 2349-7882 (Ole) www.rcourls.org Alytcl Approch for the Soluto of Thermodymc Idettes

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

Union, Intersection, Product and Direct Product of Prime Ideals

Union, Intersection, Product and Direct Product of Prime Ideals Globl Jourl of Pure d Appled Mthemtcs. ISSN 0973-1768 Volume 11, Number 3 (2015), pp. 1663-1667 Reserch Id Publctos http://www.rpublcto.com Uo, Itersecto, Product d Drect Product of Prme Idels Bdu.P (1),

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Least Squares Method For Solving Integral Equations With Multiple Time Lags

Least Squares Method For Solving Integral Equations With Multiple Time Lags Eg. & Tech. Jourl, Vol.8, No., Lest Squres Method For Solvg Itegrl Equtos Wth Multple Tme Lgs Dr.Suh N. Sheh*, Hyt Adel Al* & Hl Mohmmed Ysee* Receved o:6//9 Accepted o:// Astrct The m purpose of ths work

More information

DERIVATIVES OF KRONECKER PRODUCTS THEMSELVES BASED ON KRONECKER PRODUCT AND MATRIX CALCULUS

DERIVATIVES OF KRONECKER PRODUCTS THEMSELVES BASED ON KRONECKER PRODUCT AND MATRIX CALCULUS Jourl of heoretcl d ppled Iformto echology th Februry 3. Vol. 48 No. 5-3 JI & S. ll rghts reserved. ISSN: 99-8645 www.jtt.org E-ISSN: 87-395 DERIVIVES OF KRONECKER PRODUCS HEMSEVES SED ON KRONECKER PRODUC

More information

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002) Nevlle Robbs Mathematcs Departmet, Sa Fracsco State Uversty, Sa Fracsco, CA 943 (Submtted August -Fal Revso December ) INTRODUCTION The Lucas tragle s a fte tragular array of atural umbers that s a varat

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS Jourl of Algebr Nuber Theory: Advces d Applctos Volue 6 Nuber 6 ges 85- Avlble t http://scetfcdvces.co. DOI: http://dx.do.org/.864/t_779 ON NILOTENCY IN NONASSOCIATIVE ALGERAS C. J. A. ÉRÉ M. F. OUEDRAOGO

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS IRRS 9 y 04 wwwrppresscom/volumes/vol9issue/irrs_9 05pdf OWERS OF COLE ERSERIC I-RIIGOL RICES WIH COS I-IGOLS Wg usu * Q e Wg Hbo & ue College of Scece versty of Shgh for Scece d echology Shgh Ch 00093

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants Rochester Isttute of echology RI Scholr Wors Artcles 8-00 bocc d ucs Nubers s rdgol trx Deterts Nth D. Chll Est Kod Copy Drre Nry Rochester Isttute of echology ollow ths d ddtol wors t: http://scholrwors.rt.edu/rtcle

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

arxiv:math/ v2 [math.co] 2 Oct 2001

arxiv:math/ v2 [math.co] 2 Oct 2001 000]Prmry 05A10, 05A19, 05A30, 11B65, 33D15; Secodry 11P8 THE WP BAILEY TREE AD ITS IMPLICATIOS rxv:mth/0109141v [mth.co] Oct 001 GEORGE ADREWS AD ALEXADER BERKOVICH Abstrct. Our object s thorough lyss

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations.

Numerical Solution of Higher Order Linear Fredholm Integro Differential Equations. Amerc Jorl of Egeerg Reserch (AJER) 04 Amerc Jorl of Egeerg Reserch (AJER) e-iss : 30-0847 p-iss : 30-0936 Volme-03, Isse-08, pp-43-47 www.jer.org Reserch Pper Ope Access mercl Solto of Hgher Order Ler

More information

Applied Mathematics and Computation

Applied Mathematics and Computation Aled Mtemtcs d Comutto 17 (011) 570 578 Cotets lsts vlble t SceceDrect Aled Mtemtcs d Comutto ourl omege: www.elsever.com/locte/mc Some geerlztos of te Aostol Geocc olyomls d te Strlg umbers of te secod

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

On quaternions with generalized Fibonacci and Lucas number components

On quaternions with generalized Fibonacci and Lucas number components Polatl Kesm Advaces Dfferece Equatos (205) 205:69 DOI 0.86/s3662-05-05-x R E S E A R C H Ope Access O quateros wth geeralzed Fboacc Lucas umber compoets Emrah Polatl * Seyhu Kesm * Correspodece: emrah.polatl@beu.edu.tr

More information

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix

An Alternative Method to Find the Solution of Zero One Integer Linear Fractional Programming Problem with the Help of -Matrix Itertol Jourl of Scetfc d Reserch Pulctos, Volue 3, Issue 6, Jue 3 ISSN 5-353 A Altertve Method to Fd the Soluto of Zero Oe Iteger Ler Frctol Progrg Prole wth the Help of -Mtr VSeeregsy *, DrKJeyr ** *

More information

The Lucas and Babbage congruences

The Lucas and Babbage congruences The Lucas ad Baage cogrueces Dar Grerg Feruary 26, 2018 Cotets 01 Itroducto 1 1 The cogrueces 2 11 Bomal coeffcets 2 12 Negatve 3 13 The two cogrueces 4 2 Proofs 5 21 Basc propertes of omal coeffcets modulo

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

#A27 INTEGERS 13 (2013) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES

#A27 INTEGERS 13 (2013) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES #A27 INTEGERS 3 (203) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES Emrah Kılıç Mathematcs Departmet, TOBB Uversty of Ecoomcs ad Techology, Akara, Turkey eklc@etu.edu.tr Neşe Ömür Mathematcs Departmet,

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM

GENERALIZED OPERATIONAL RELATIONS AND PROPERTIES OF FRACTIONAL HANKEL TRANSFORM S. Res. Chem. Commu.: (3 8-88 ISSN 77-669 GENERLIZED OPERTIONL RELTIONS ND PROPERTIES OF FRCTIONL NKEL TRNSFORM R. D. TYWDE *. S. GUDDE d V. N. MLLE b Pro. Rm Meghe Isttute o Teholog & Reserh Bder MRVTI

More information

On Solution of Min-Max Composition Fuzzy Relational Equation

On Solution of Min-Max Composition Fuzzy Relational Equation U-Sl Scece Jourl Vol.4()7 O Soluto of M-Mx Coposto Fuzzy eltol Equto N.M. N* Dte of cceptce /5/7 Abstrct I ths pper, M-Mx coposto fuzzy relto equto re studed. hs study s geerlzto of the works of Ohsto

More information

Numerical Solution of Second order Integro- Differential Equations(Ides) with Different Four Polynomials Bases Functions

Numerical Solution of Second order Integro- Differential Equations(Ides) with Different Four Polynomials Bases Functions Numercl Soluto of Secod order Itegro- Dfferetl Equtos(Ides) wth Dfferet Four Polyomls Bses Fuctos wo O A R M Deprtmet of Mthemtcs Uersty of Ilor Deprtmet of Mthemtcs d Sttstcs he Poly Id Astrct: - I ths

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

h-analogue of Fibonacci Numbers

h-analogue of Fibonacci Numbers h-aalogue of Fboacc Numbers arxv:090.0038v [math-ph 30 Sep 009 H.B. Beaoum Prce Mohammad Uversty, Al-Khobar 395, Saud Araba Abstract I ths paper, we troduce the h-aalogue of Fboacc umbers for o-commutatve

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications MATH999 Drected Studes Mthemtcs Mtr Theory d Its Applctos Reserch Topc Sttory Probblty Vector of Hgher-order Mrkov Ch By Zhg Sho Supervsors: Prof. L Ch-Kwog d Dr. Ch Jor-Tg Cotets Abstrct. Itroducto: Bckgroud.

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

ON THE MIKI AND MATIYASEVICH IDENTITIES FOR BERNOULLI NUMBERS

ON THE MIKI AND MATIYASEVICH IDENTITIES FOR BERNOULLI NUMBERS #A7 INTEGERS 4 (4) ON THE MIKI AND MATIYASEVICH IDENTITIES FOR BERNOULLI NUMBERS Takash Agoh Departmet of Mathematcs, Tokyo Uversty of Scece, Noda, Chba, Japa agoh takash@ma.oda.tus.ac.jp Receved: 3/9/3,

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index

Bond Additive Modeling 5. Mathematical Properties of the Variable Sum Exdeg Index CROATICA CHEMICA ACTA CCACAA ISSN 00-6 e-issn -7X Crot. Chem. Act 8 () (0) 9 0. CCA-5 Orgl Scetfc Artcle Bod Addtve Modelg 5. Mthemtcl Propertes of the Vrble Sum Edeg Ide Dmr Vukčevć Fculty of Nturl Sceces

More information

Linear Open Loop Systems

Linear Open Loop Systems Colordo School of Me CHEN43 Trfer Fucto Ler Ope Loop Sytem Ler Ope Loop Sytem... Trfer Fucto for Smple Proce... Exmple Trfer Fucto Mercury Thermometer... 2 Derblty of Devto Vrble... 3 Trfer Fucto for Proce

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION JAMES MC LAUGHLIN AND PETER ZIMMER Abstrct We prove ew Biley-type trsformtio reltig WP- Biley pirs We

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS ZETA REGULARIZATION METOD APPLIED TO TE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS Jose Jver Grc Moret Grdute studet of Physcs t the UPV/EU (Uversty of Bsque coutry) I Sold Stte Physcs Addres: Prctctes

More information

APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS

APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS APPLICATION OF THE CHEBYSHEV POLYNOMIALS TO APPROXIMATION AND CONSTRUCTION OF MAP PROJECTIONS Pweł Pędzch Jerzy Blcerz Wrsw Uversty of Techology Fculty of Geodesy d Crtogrphy Astrct Usully to pproto of

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES

AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES AN EULER-MC LAURIN FORMULA FOR INFINITE DIMENSIONAL SPACES Jose Javer Garca Moreta Graduate Studet of Physcs ( Sold State ) at UPV/EHU Address: P.O 6 890 Portugalete, Vzcaya (Spa) Phoe: (00) 3 685 77 16

More information

About k-perfect numbers

About k-perfect numbers DOI: 0.47/auom-04-0005 A. Şt. Uv. Ovdus Costaţa Vol.,04, 45 50 About k-perfect umbers Mhály Becze Abstract ABSTRACT. I ths paper we preset some results about k-perfect umbers, ad geeralze two equaltes

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk The Sgm Summto Notto #8 of Gottschlk's Gestlts A Seres Illustrtg Iovtve Forms of the Orgzto & Exposto of Mthemtcs by Wlter Gottschlk Ifte Vsts Press PVD RI 00 GG8- (8) 00 Wlter Gottschlk 500 Agell St #44

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Keywords: Heptic non-homogeneous equation, Pyramidal numbers, Pronic numbers, fourth dimensional figurate numbers.

Keywords: Heptic non-homogeneous equation, Pyramidal numbers, Pronic numbers, fourth dimensional figurate numbers. [Gol 5: M 0] ISSN: 77-9655 IJEST INTENTIONL JOUNL OF ENGINEEING SCIENCES & ESECH TECHNOLOGY O the Hetc No-Hoogeeous Euto th Four Ukos z 6 0 M..Gol * G.Suth S.Vdhlksh * Dertet of MthetcsShrt Idr Gdh CollegeTrch

More information

A Study on New Sequence of Functions Involving the Generalized Contour Integral

A Study on New Sequence of Functions Involving the Generalized Contour Integral Globl Jourl of Scece Froter Reerch Mthetc d Deco Scece Volue 3 Iue Vero. Yer 23 Type : Double Bld Peer Revewed Itertol Reerch Jourl Publher: Globl Jourl Ic. (USA Ole ISS: 2249-4626 & Prt ISS: 975-5896

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi Faculty of Sceces ad Matheatcs, Uversty of Nš, Serba Avalable at: http://wwwpfacyu/float Float 3:3 (009), 303 309 DOI:098/FIL0903303J SUBCLASS OF ARMONIC UNIVALENT FUNCTIONS ASSOCIATED WIT SALAGEAN DERIVATIVE

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 2006, #A12 LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX Hacèe Belbachr 1 USTHB, Departmet of Mathematcs, POBox 32 El Ala, 16111,

More information

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America

2006 Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America SOLUTION OF SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS Gauss-Sedel Method 006 Jame Traha, Autar Kaw, Kev Mart Uversty of South Florda Uted States of Amerca kaw@eg.usf.edu Itroducto Ths worksheet demostrates

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials

Bivariate Vieta-Fibonacci and Bivariate Vieta-Lucas Polynomials IOSR Joural of Mathematcs (IOSR-JM) e-issn: 78-78, p-issn: 19-76X. Volume 1, Issue Ver. II (Jul. - Aug.016), PP -0 www.osrjourals.org Bvarate Veta-Fboacc ad Bvarate Veta-Lucas Polomals E. Gokce KOCER 1

More information

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1) Joural of Pure ad Appled Algebra 216 (2012) 1268 1272 Cotets lsts avalable at ScVerse SceceDrect Joural of Pure ad Appled Algebra joural homepage: www.elsever.com/locate/jpaa v 1 -perodc 2-expoets of SU(2

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM

EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM EVALUATION OF FUNCTIONAL INTEGRALS BY MEANS OF A SERIES AND THE METHOD OF BOREL TRANSFORM Jose Javer Garca Moreta Ph. D research studet at the UPV/EHU (Uversty of Basque coutry) Departmet of Theoretcal

More information

Department of Statistics, Dibrugarh University, Dibrugarh, Assam, India. Department of Statistics, G. C. College, Silchar, Assam, India.

Department of Statistics, Dibrugarh University, Dibrugarh, Assam, India. Department of Statistics, G. C. College, Silchar, Assam, India. A Dscrete Power Dstruto Surt Chkrort * d Dhrujot Chkrvrt Dertet of Sttstcs Drugrh Uverst Drugrh Ass Id. Dertet of Sttstcs G. C. College Slchr Ass Id. *el: surt_r@hoo.co. Astrct A ew dscrete dstruto hs

More information

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS . REVIEW OF PROPERTIES OF EIGENVLUES ND EIGENVECTORS. EIGENVLUES ND EIGENVECTORS We hll ow revew ome bc fct from mtr theory. Let be mtr. clr clled egevlue of f there et ozero vector uch tht Emle: Let 9

More information

Study of Correlation using Bayes Approach under bivariate Distributions

Study of Correlation using Bayes Approach under bivariate Distributions Iteratoal Joural of Scece Egeerg ad Techolog Research IJSETR Volume Issue Februar 4 Stud of Correlato usg Baes Approach uder bvarate Dstrbutos N.S.Padharkar* ad. M.N.Deshpade** *Govt.Vdarbha Isttute of

More information