Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order

Size: px
Start display at page:

Download "Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order"

Transcription

1 hpter Ite Sequeces d Seres. Sequeces A sequece s set o umers wrtte dete order,,,... The umer s clled the rst term, s clled the secod term, d geerl s th clled the term. Deto.. The sequece {,,...} s usull deoted, { } or { }. A sequece o rel umers c e cosdered s ucto rom N to R. Emple.. Some sequeces c e deed gvg ormul or the th term. () + +,,,..., 4 + () ( ) ( + ) ( ) ( + ) { } (c) { } { } (d) π cos 6 { }

2 Emple.. Some sequeces do ot hve smple deg equto. () The sequece { p } where p s the populto o the world s o Jur o er () The Focc sequece { } s deed recursvel the codtos The rst ew terms re,, + ( ) {,,,,5,8,,... } Deto..4 A sequece { } hs the lmt L d we wrte lm L or s or ever ε > there s correspodg teger N such tht I L < ε wheever > N. lm ests, we s tht the sequece coverges (or s coverget). Otherwse, we s tht the sequece dverges (or s dverget). Theorem..5 I lm ( ) L d ( ) the lm L. Theorem..6 e two coverget sequeces wth lmts A d B respectvel. The Let { } d { } () the sequece { + } s coverget d the lmt s A + B, () the sequece { } s coverget d the lmt s AB..e., lm A d lm B, the d lm( + ) A + B lm( ) AB

3 Theorem..7 (Squeeze Theorem) Gve three sequeces { }, { } d { } c, there s such tht c or ll d the lm lm c lm L L Theorem..8 I lm, the lm. Proo. Let d c. The Sce the Squeeze Theorem, c or ll lm lm d lm c lm lm. Deto..9 A sequece { } s clled cresg + or ll. It s clled decresg or ll. It s clled mootoc t s ether cresg or decresg. + Emple.. The sequece + 5 s decresg. Emple.. The sequece s decresg. +

4 Deto.. A sequece { } s ouded ove there s umer M such tht M or ll. It s ouded elow there s umer m such tht m or ll. I t s ouded ove d elow, { } s clled ouded. Theorem.. Ever ouded, mootoc sequece s coverget.. Seres Gve sequece { } we dd the terms together, we get epresso o the orm whch s clled te seres d s deoted. Sometmes t s mpossle to dd up seres: However, whe we tr to dd up the seres we see tht the cumultve sums s s s s gets closer to the umer s gets gger. So t s resole to s tht the sum o the te seres s d we wrte

5 Deto.. Gve sequece { } the sequece o prtl sums o { } s the sequece { } s s + s + + s deed s s. k k Deto.. Gve seres , the sequece o prtl sums { } coverges to umer s, the the seres s sd to e coverget d we wrte s o { } s or s The umer s s clled the sum o the seres. I seres s ot coverget, the t s sd to e dverget. Emple.. The geometrc seres + r + r + r +... r +... r s coverget r < d dverget otherwse. Emple..4 Fd the sum o the seres, where <. Emple..5 Show tht the seres ( + ) s coverget d d ts lmt.

6 Theorem..6 I the seres coverges, the lm. Remrk..7 The coverse o Theorem..6 s ot true. Emple..8 Show tht the seres s dverget orollr..9 I lm does ot ests or lm, the the seres dverges. Theorem.. I d re coverget seres, the so re c, ( + ) d ( ) d () c c () ( + ) (c) ( ) +. Itegrl Test Theorem.. Suppose s cotuous, postve, decresg ucto o [, ), d (). The the seres s coverget d ol the mproper tegrl () s coverget (equls to te umer)..e.,

7 () I () s coverget, the s coverget. () I () s dverget, the s dverget. Emple.. Test the seres + or covergece. Emple.. The p-seres p s coverget ol p >..4 The omprso Test Theorem.4. (omprso Test) Suppose d re seres wth postve terms. () I s coverget d () I s dverget d or ll, the s lso coverget. or ll, the s lso dverget. Emple.4. Determe whether the seres s coverget or ot. Emple.4. Test the seres l or covergece.

8 Theorem.4.4 (Lmt omprso Test) Suppose d re seres wth postve terms. () I lm c >, the ether oth seres coverge or oth dverge. () I lm (c) I lm, d coverges, the lso coverges., d dverges, the lso dverges. Emple.4.5 Test the seres l or covergece usg Lmt omprso Test..5 Altertg Seres A ltertg seres s seres whose terms re ltertel postve d egtve. For emple: Theorem.5. I the ltertg seres () ( ) + or ll () lm, the the seres coverges ( > ) stses 4

9 .6 Asolute overge, Root Test d Rto Test Deto.6. A seres s sd to e solutel coverget t s coverget the seres s coverget A seres s sd to e codtoll coverget t s coverget ut ot solutel coverget.... Emple.6. The seres ( ) s solutel coverget. Emple.6. The seres ( ) s ot solutel coverget, ut t s codtoll coverget. Theorem.6.4 I seres s solutel coverget, the t s coverget. Theorem.6.5 (Rto Test) Gve seres, + () lm L <, the the seres coverges solutel, lm the the seres dverges. + () L > ( or ) Emple.6.6 Test the covergece o the seres ( ).

10 Emple.6.7 Test the covergece o the seres! Theorem.6.8 (Root Test) Gve seres, () lm L <, the the seres coverges solutel, () L > ( or ) lm the the seres dverges..7 Power Seres A power seres s seres o the orm where s vrle d 's re costts clled the coecets o the seres. For ech ed vlue o, the seres s seres o costts (whch we re mlr wth), d we m ppl the tests or covergece s eore. A power seres m coverge or some vlues o or dverge or other vlues o. The sum o the seres s ucto ( ) Emple.7. I we tke or ll, the the power seres ecomes the geometrc seres Ths seres coverges to whe < d dverges whe (c. Emple..).

11 Emple.7. For wht vlues o does the seres coverge? Theorem.7. I power seres pot, < p. Proo coverges t pot p, the t coverges solutel t ever Sce the seres p s seres o costt umers coverges, Theorem..6, the sequece { p } coverges to zero d hece t s ouded. Thereore there ests M > such tht p < M. osequetl, s pot such tht < p, the p p Mr where r <. Sce the geometrc seres p coverges the omprso Test. Mr s coverget, lso orollr.7.4 I power seres dverges t pot p, the t dverges t ever pot, > p. Deto.7.5 Let seres e power seres. A umer R s clled the rdus o covergece o the or ech umer r, such tht r < R, the seres o costts r coverges d or ech umer p, p > R, the seres

12 dverges. p Deto.7.6 The tervl o coverge o the seres s the set o ll vlues or whch the power seres coverges. I R s the rdus o covergece, the tervl o covergece s oe o the R, R, R, R, R, R or R, R. ollowg: ( ) [ ] ( ] [ ) Emple.7.7 Seres Rdus o overgece Itervl o overgece (, ) [,).8 Mclur's Seres Theorem.8. I the power seres hs rdus o covergece R >, the the ucto deed s deretle o the tervl ( ) ( ) R, R d () ( ) () ( ) d The rd o covergece o seres () & () re oth R.

13 Emple.8. Show tht ( ) ( ) < d l ( < ) Emple.8. I ucto hs power seres represetto the ts coecets re gve ( ) ( R) < ( ) ()!. The seres ( ) ( ) ( ) ()! () () + +! ()! +... s clled the Mclur's seres o. Emple.8.4 Fd the Mclur's seres o the ucto e ( ) d ts rdus o covergece. Emple.8.5 Fd the Mclur's seres o s. For wht vlues does t coverge?

14 hpter Three-Dmesol Altc Geometr d Vectors. Three-Dmesol oordte Sstems To locte pot ple, two umers re ecessr. A pot the ple m e represeted s ordered pr (, ) o rel umers. Where s the -coordte d s the -coordte. To locte pot spce, three umers re requred. A pot,, c o rel umers. spce m e represeted ordered trple ( ) I order to represet pots spce, we rst choose ed pot O (the org) d three drected les through O tht re mutull perpedculr. These les re clled the coordte ces d re leled -s, -s, d z -s. Usull, we thk o the - d - es re eg horzotl d z -s eg vertcl. I three dmesol geometr, equto,, d z represets surce R. Emple.. Descre d sketch the surce () z () R represeted the equto Proposto.. The dstce P P etwee the pots P (, z ) d (, z ) P, P s, ( ) + ( ) + ( z ) P z Proposto.. A equto o sphere wth cetre ( h k, l), d rdus r s ( h) + ( k) + ( z l) r I prtculr, the cetre s the org O, the equto o the sphere s + + z r

15 Emple..4 Show tht + + z z s the equto o sphere, d d ts cetre d rdus.. Vectors Deto.. A two-dmesol vector s order pr, o rel umers. A three dmesol vector s ordered trple,, o rel umers. The umers, d re clled the compoets o the vector. Deto.. () The legth o two dmesol vector, s gve + () The legth o three dmesol vector,, s gve + + Deto.. I, d,, the the vector + s deed + Smlrl, or three dmesol vectors, + +,, ,,,,, Deto..4 I, d c s sclr, the the vector c s deed c c, c Smlrl, or three dmesol vectors, c, c, c, c,

16 There re three vectors R tht pl specl role. Let,, j,, k,, The, j, d k re vectors tht hve legth d pot the drecto o the postve -, -, d z -es. I,, the we c wrte,,,, + + j + k,,,, + +,,,, +,, A ut vector s vector whose legth s. For stce, j, d k re ll ut vectors. I, the the ut vector tht hs the sme drecto s s ˆ Emple..5 Fd the ut vector the drecto o the vector j k. The Dot Product Deto.. I,, d,,, the the dot product o d s the umer gve + + Theorem.. I,, d c re vectors the three dmesol spce, d c sclr, the... ( + c) + c 4. ( c) c( ) ( c) 5.

17 Theorem.. I θ s the gle etwee the ozero vectors d, the cosθ orollr..4 I θ s the gle etwee the ozero vectors d, the Emple..5 cosθ Fd the gle etwee,, d 5,, Deto..6 Two vectors re perpedculr or orthogol the gle etwee them s π. Theorem..7 Two vectors d re orthogol d ol.4 The ross Product Deto.4. I,, d,,, the cross product o d s the vector j k Emple.4. I,, 4 d,7, 5 d. ( ) ( ) j + ( )k Theorem.4. The vector s orthogol to oth d.

18 Theorem.4.4 I θ s the gle etwee d ( θ π ), the Theorem.4.5 Two ozero vectors sθ d re prllel d ol Theorem.4.6 I,, d c re vectors, d c sclr, the.. ( c ) ( c ) ( c). ( c) c ( ) c c c ( c) ( ) c 6. ( c) ( c) ( )c.5 Equto o Les d Ples.5. Les A le L three-dmesol spce s determed pot (,, z) r e the posto vector o (, z ) drecto. Let epressed s r + tv, or some t, where v s the drecto o L. Thereore the equto s vector equto o L. P o the le d ts P the ever pot o L c e r r + tv (.) I the drecto vector v,, c, the t v,, c. We c lso wrte r,, z d r,, z, the the vector equto. ecomes Thus,, z + t, + t z + ct, + t, + t, z + ct (.) z These re clled prmetrc equtos o the le L.

19 Emple.5. Fd vector equto d prmetrc equto or the le tht psses through (,, ) prllel to + j k. 5 d s Aother w o wrtg the equto o le L s to elmte the prmeter t rom Equtos.. I oe o,, or c s zero, we c ot z z c These equtos re clled the smmetrc equtos o L..5. Ples A ple s determed pot (,, z ) to the ple. Ths orthogol vector s clled orml vector. Let P (, z) the ple d let r d r e the posto vectors o to the ple d thus or P the ple d vector tht s orthogol ( r r ), e pot o P d P. The vector r r s prllel (.) r (.4) Ether o Equtos. or.4 s clled vector equto o the ple. I we wrte,, c, r,, z, d r,, z the the vector equto.4 ecomes,, c,, z,, c z r,, Thus + + cz d (.5) where d + + cz. Ths s clled the sclr equto o the ple through P, z wth orml vector,, c. ( ), oversel,,, d c re ot ll zero, the Equto.5 represets ple wth orml vector,, c. Two ples re prllel ther orml vectors re prllel. I two ples re ot prllel, the the tersect strght le d the gles etwee the two ples s deed s the cute gle etwee the two ormls. Emple.5. Fd the gle etwee the ples + + z d + z.

20 Emple.5. Fd ormul or the dstce D rom pot (, z ) P to the ple + + cz d.,.6 Vector Fuctos d Spce urves A vector vlued ucto or vector ucto s ucto whose dom s set o rel umers d rge s set o vectors. We re most terested vector uctos r whose vlues re three-dmesol vectors. Ths mes tht or ever umer t the dom, there s uque vector the three-dmesol spce deoted r () t. I () t, g() t d h() t re the compoets o r () t, the, g d h re rel-vlued uctos clled the compoet uctos o r d we c wrte r () t () t, g() t, h() t () t + g() t j + h()k t The lmt o vector ucto s deed tkg the lmts o ts compoet uctos s r t t, g t, h t, the ollows: I () () () () lmr t () t lm () t,lm g() t, lmh() t t t provded the lmts o the compoet uctos ests. t Deto.6. Fd r() t t lm where r() t ( + t ) + te j + k t st t Deto.6. A vector ucto r s cotuous t t () t ( ) lm r r. Deto.6. Suppose tht, g d h re cotuous rel-vlued uctos o tervl I. Let deote,, z spce where the set o ll pots ( ) () t g() t z h() t (.6) d t vres throughout the tervl I, the s clled spce curve. The equtos.6 re clled the prmetrc equtos o d t s clled prmeter.

21 Remrk.6.4 A cotuous vector ucto r dees spce curve. Emple.6.5 Sketch the curve whose vector equto s r () t cost + stj + tk Deto.6.6 The dervtve r o vector ucto r s deed s dr r dt () t r lm h ( t + h) r( t) h Let P e pot o the curve wth posto vector r () t. We ote tht r () t s vector d t s clled the tget vector to the curve t the pot P. The ut tget vector t P s the vector () t () t r T () t. r The ollowg theorem gves us coveet method or computg the dervtve o vector ucto r : just derette ech compoet o r. Theorem.6.7 I r() t () t g() t, h() t () t + g() t j + h()k t the,, where, g, d h re deretle uctos, () t () t, g () t h () t () t + g () t j + h ()k t r, Emple.6.8 t t Fd the dervtve o r() ( + ) + j + s k t. t te t. Fd the ut tget vector t the pot Emple.6.9 Fd prmetrc equtos or the tget le to the hel wth prmetrc equtos cost st z t t the pot,, π.

22 Theorem.6. Suppose u d v re deretle vector uctos, c s sclr, d s rel-vlued ucto. The Emple.6. Theorem.6. d dt () [ u () t + v() t ] u () t + vu() t d () cu () t cu t dt d dt [ ] () () [ () t v () t ] () t u() t + () t u () t d dt (4) [ u () t v() t ] u () t v() t + u() t v () t d dt (5) [ u () t v() t ] u () t v() t + u() t v () t Theorem.6. d (6) [ u ( () t )] () t u ( () t ) h Rule dt Emple.6.4 Show tht r () t c ( costt), the r () t s orthogol to r () t or ll t. The dete tegrl o cotuous vector ucto r () t c e deed the sme mer s the cse o rel vrle ucto ecept the tegrl s vector. Deto.6.5 Suppose r() t () t g() t, h() t () t + g() t j + h()k t, the r () () + () j + t dt t dt g t dt h() t dt k

23 .7 Arc Legth d urvture.7. Arc Legth For ple curve deed the prmetrc equtos () t g() t, t Where d g re cotuous, we c prove tht the rc legth o the curve s [ () t ] + [ g () t ] dt L. (.7) r, t, or For spce curve tht s deed the vector equto () t () t, g() t, h() t equvletl, the prmetrc equtos Where r () t s oe-to-oe, the the rc legth s () t g() t z h() t t [ () t ] + [ g () t ] + [ h () t ] dt L d d dz + + dt dt dt dt Note tht oth Equtos.7 d.8 c e put to the more compct orm L r ( t) dt (.8) Suppose s pecewse-smooth curve gve vector ucto r () t () t + g() t j + h() t k, t, d r s oe-to-oe, we dee ts rc legth ucto Thus () t sdes, we hve s () t r () t t s s the legth o the prt o the curve etwee r () d r() t ds dt r Emple.7. Re-prmetrze the hel r() t t + stj + tk drecto o cresg t. () t dt. I we derette oth cos wth respect to rc legth rom (,,) the

24 .7. urvture I s smooth curve deed the vector ucto r. Recll the ut tget vector T() t s gve T () t r r d dctes the drecto o. We ote tht T chges drecto ver slowl s rl strght ut t chges more rpdl eds more shrpl. We dee the curvture o to e the mgtude o the rte o chge o the ut tget vector wth respect to the rc legth. () t () t Deto.7. The curvture o curve s Where T s the ut tget vector. κ dt ds Proposto.7. κ T r () t () t Emple.7.4 Show tht the curvture o crcle o rdus s /. Theorem.7.5 The curvture o the curve gve the vector ucto r s gve Emple.7.6 κ () t r () t r () t r () t Fd the curvture o the twsted cuc () t t, t, t r t geerl pot d t (,,). Emple.7.7 Fd the curvture o the prol t the pots (,), (, ), d (,4).

25 hpter Prtl Dervtves. Fucto o Severl Vrles Deto.. Let D. A ucto o two vrles s rule tht ssgs to ech pot ( ) D uque rel umer deoted ( ) s the set o vlues tkes o,.e., { (, ) : (, ) D}. R,,. The set D s clled the dom o d the rge We ote wrte z (, ) to mke eplct the vlue tke o t the pot ( ),. The vrles d re clled depedet vrles d z s clled the depedet vrle. Emple.. Fd the dom o the ollowg uctos d evlute (,) () (, ) + + l () (, ) ( ) Deto.. I s ucto o two vrles wth dom D, the grph o s the set {(,, z) R : z (, ), (, ) D} Emple..4 Sketch the grph o the ucto (, ) 6. Emple..5 Fd the dom d the rge o the ucto g(, ) 9. Sketch ts grph.

26 Deto..6 The level curves o ucto o two vrles re the curves wth equto where k s costt the rge o. (, ) k, Emple..7 Sketch the level curves o the ucto (, ) 9 or,,, k. Deto..8 Let D R. A ucto o three vrles s rule tht ssgs to ech pot (,, z) D uque rel umer deoted (,, z). The set D s clled the dom o d the (,, z) : (,, z) D. rge s the set o vlues tke o,.e. { } Deto..9 Let D R. A ucto o vrles s rule tht ssgs to ech pot (,,, ) D uque rel umer deoted (,,, ). Emple.. I comp uses deret gredets mkg ood product, c s the cost per ut o th the gredet, d the ucto represetg the totl cost uts o th gredet (,,, ) s used.. Lmts d cotut Let e ucto o oe vrle. Itutvel, we s the lmt o ucto t pot s L,.e. lm ( ) L () gets ver er to L whe gets ver to. But how er s er? The swer s: s er s ou requre.

27 Deto.. Let e ucto o oe vrle deed o dom D R. Let R, we s tht the lmt o () s pproches s L or ever postve umer ε >, there ests correspodg δ > such tht ( ) L < ε wheever < < δ d we wrte lm ( ) L. Ths deto gves us resole descrpto o the lmt o ucto t pot : o mtter how smll mrg o error ε > tht s gve, we c d δ > such tht () s er to () L < < < δ. L ( ) wheever s er to ( ) I the cse o uctos o two vrles, the oto o eress s qut the Euclde orm. Deto.. Let e ucto o two vrles deed o dom D R. Let (, ) D, we s tht the lmt o (, ) s (, ) pproches (, ) ests there s umer L or ever umer ε >, there s correspodg umer δ > such tht d we wrte () L < ε wheever < ( ) + ( ) < δ ( or : () L < ε wheever < (, ) (, ) < δ ) lm (, ) (, ) (, ) L Ths deto reers ol to the dstce (, ) (, ) etwee (, ) d ( ) drecto o pproch. Thereore (, ) hs deret lmts s (, ) pproches ( ) deret drectos, the we s tht the lmt does ot est.., ut ot the, orollr.. I (, ) L s (, ) (, ) log pth d (, ) L s (, ) (, ) L the lm ( ) ( ) (, ) does ot est. log other pth where L,,

28 Emple..4 Fd lm ( ) ( ),, d lm ( ) ( ),, the est. Emple..5 Fd lm (, ) (, ) + t ests. Emple..6 Fd lm (, ) (, ) + t ests. Theorem..7 I lm ( ) ( ) (,,, ) d lm g ( ) ( ) (,, ) lm ( ) (, ), est, the { (, ) g(, ) }, lm ( ) ( ) { (, ) g(, ) } + lso est d,,, () lm ( ) ( ) { (, ) + g(, ) } lm ( ) ( ) (, ) lm (, ) (, ),,,, () lm ( ) ( ) { (, ) g(, ) } lm ( ) ( ) (, ) lm g ( ) ( ) (, ),,,,,, + g (, ) Emple..8 lm + + { } (, ) (, ) Deto..9 Let e ucto o two vrles deed dom cotuous t (, ) lm (, ) (, ) (, ) (, ). D R We s tht s cotuous o D t s cotuous t ech ( ) D,.. The s clled Emple.., + s cotuous. The ucto ( )

29 Emple.. A poloml o two vrles s cotuous. m (, ) c + c + c + c + c + c + c c p k Emple.. A rtol ucto p(, ) q(, ) ts dom (.e., o pots (, ) where (, ), whch s rto o two polomls p d q, s cotuous o q ). Emple.. Where s the ucto (, ) cotuous? + Emple..4 Let Is g cotuous t (,)? g (, ) + (, ) (,) (, ) (,) Emple..5 Let (, ) + (, ) (,) (, ) (,) Show tht s cotuous t (,) d hece cotuous o R.

30 . Prtl Dervtves Let e ucto o two vrles. I we vr whle keepg ed, s we re cosderg ucto o oe vrle,.e., () ( ) g,., the I g hs dervtve t, the we cll the dervtve the prtl dervtve o wth,. We kow tht respect to t ( ) so, d s deoted ( ) g () (, ) g lm h lm h ( + h) g( ) h ( + h, ) (, ) Smlrl, the prtl dervtve o wth respect to t (, ), deoted ( ) oted keepg ed t G, : () ( ) Deto.. h, s d dg the ordr dervtve t o the ucto (, ) lm h (, + h) (, ) I s ucto o two vrles, ts prtl dervtves re the uctos Notto.. z, we wrte I ( ) (, ) (, ) lm h lm h h ( + h, ) (, ) h (, + h) (, ) (, ) (, ) (, ) (, ) h z z d Remrk.. () To d () To d regrd s costt d derette ( ) regrd s costt d derette ( ), wth respect to., wth respect to.

31 Emple..4 I (, ) +, d (,) d (,). Emple..5 I ( ), s, clculte + d. Emple..6 Fd d z s deed mplctl s ucto o d the equto + + z + 6z Deto..7 (Prtl Dervtves or Fuctos o Three Vrles) I s ucto o three vrles,, d z, the ts prtl dervtve wth respect to s deed s (,, z) lm h ( + h,, z) (,, z) d t s oud regrdg d z s costts d derettg wth respect to. I geerl, s ucto o vrles, the ts prtl dervtve wth respect to ts th vrle s deed (,,..., ) lm h h (,..., + h,..., ) (,...,..., ) h Emple..8 Fd,, d (,, z) e l z. z Deto..9 I s ucto o two vrles, the ts prtl dervtves d re lso uctos o,,, d, two vrles, so we c cosder ther prtl dervtves: ( ) ( ) ( ) ( ) whch re clled secod prtl dervtves o. I z (, ), we wrte

32 ( ) ( ) ( ) ( ) z z z z The otto or mes tht we rst derette wrt the derette wrt. Emple.. Fd the secod dervtve o ( ), +. Theorem.. Suppose s deed o dom R D d ( ) D,. I oth d re cotuous t ( ),, the ( ) ( ),,.4 Tget Ples d Deretls We recll tht or ucto o oe vrle, the equto o the tget le t s gve () () or () ()( ) Suppose ow s ucto o two vrles, the equto o the tget ple to the surce ( ) z, t ( ) ( ),, s ( ) ( )( ) ( )( ),,, z + or smpl ( )( ) ( )( ),, z z + where ( ), z.

33 Emple.4. Fd the tget ple to the surce z + t the pot (,, ). Recll tht or ucto o oe vrle (), we dee the cremet o s d the deretl o s Deto.4. d Gve ucto o two vrles z (, ) ( + ) ( ) (). I d d, the the cremet o z s ( +, + ) ( ) z, The deretl o z clled the totl deretl, s deed (, ) + ( ) dz, re respectvel the chge As the cse o oe vrle, uder some crcumstces, the totl deretl dz s good ppromto or z whe d re smll. Theorem.4. Suppose.e., d ests o dom D d re cotuous t the pot (, ) D, the The reso we wt to use dz to ppromte lm ( dz z ) (, ) (, ) dz z whe d re smll. z s ecuse dz s eser to compute. Emple.4.4, +, d the deretl dz. I chges rom to. 5 d chges rom to. 96, compre the vlues o z d dz. I ( ) Emple.4.5 Use deretls to ppromte (.95) ( 8. ) 9 +

34 .5 The h Rule We recll tht the h Rule or uctos o oe vrle gves the rule or derettg composte ucto: I (), d g() t, where d g re deretle uctos o t, the d d d dt d dt For uctos o two or more vrles, the h Rule hs severl versos. Theorem.5. (h Rule (se )) Suppose tht z (, ) s deretle ucto o d, where g() t d h() t re oth deretle uctos o t. The z s deretle ucto o t d Emple.5. dz dt z d dt z + d dt I z + 4, where t e d st dz, d. dt The h Rule se s smplest cse. Suppose we re gve ucto z (, ) where oth d re uctos o two vrles s d t : g( s, t), d h( s, t). The z s ucto o two vrles s d t d we m d the dervtves z s z d. t Suppose we keep s ed d d the ordr dervtve o Theorem.5., z z z +. t t t z Smlrl, we m ot the sme rgumet. s z wrt t, the ccordg to Theorem.5. (h Rule (se )) Suppose tht z (, ) h( s, t) s deretle ucto o d the prtl dervtves g s, gt, s d t est. The z z z + t t t z z z + s s s d, where g( s, t) d

35 Emple.5.4 I z e s, where st d s t, d z z d. s t osder geerl stuto whch u s ucto o vrles,,...,, ech o whch s ucto o m vrles t, t,..., t m such tht ll dervtves j (,,..., m; j,,..., ) the u s ucto o m t t, t,..., t d or ech,,..., m. u t u t u + t u +... t Emple.5.5 Wrte dow the h Rule or the cse where w (,, z, t) d ( u, v), ( u, v) z z( u, v) d t t( u, v)., Emple.5.6 I u + 4 z, where r, s, t. t rse, rs e t, d z r sst, d the vlue o u s whe The h Rule m e ppled to ot dervtves o uctos tht re deed mplctl. Suppose we hve equto o the orm F (, ) tht dees mplctl terms o. From lculus I, we kow we c ppl mplct d deretto to d. However, usg the h Rule, we hve d d sce d F d, we hve F d d d d F + F F d d F F

36 Emple.5.7 Fd + 6. Now suppose tht z s deed mplctl s ucto o I F s deretle d d the equto F (, z) wrt, to ot (,, z) F. d equto o the orm est, the we c ppl the h Rule to derette F F F z + + z But we ote tht d (ecuse s depedet o ) so the ove equto ecomes F I, we ot z d smlrl, F F z + z F z F z F z F z Emple.5.8 z z Fd d + + z + 6 z.

37 .6 Drectol Dervtves d the Grdet Vector Recll z (, ) d d, the prtl dervtves (, ) (, ) lm h lm h re deed s ( + h, ) (, ) h (, + h) (, ) d the represet respectvel the rte o chge o z the - d - drectos,.e., the drectos o the ut vectors d j. h Suppose tht we wsh to d the rte o chge o z the drecto o rtrr vector u, the we hve to d the drectol dervtve o. Deto.6. The drectol dervtve o t ( ), ths lmt ests. D u (, ) the drecto o u, s lm h ( + h, + h) (, ) h Theorem.6. I s deretle ucto o d, the hs drectol dervtve the drecto o ut vector u, d Emple.6. Fd the drectol dervtve D (, ) D u (, ) (, ) + ( ) u d u s the ut vector gve gle, (, ) 4 + π 6 θ. Wht s (,) D u. Deto.6.4 I s ucto o two vrles d, the the grdet o s the vector (, ) (, ), (, ) + j Usg ths otto, we m rewrte the epresso Theorem.6. s deed

38 Emple.6.5 u (, ) ( ) u D, Fd the drectol dervtve o the ucto (, ) 4 t the pot (, ) drecto o the vector v + 5j., the For uctos o three vrles, we c dee drectol dervtves the sme mer. Deto.6.6 The drectol dervtve o t (, z ) D the lmt ests. u (,, z ) lm h the drecto o ut vector u,, c s, ( + h, + h, z + hc) (,, z ) h I we use vector otto, the drectol dervtves c e wrtte s D u ( ) lm h ( + hu) ( ) where, d,, z. h Deto.6.7 I s ucto o three vrles, d z, the the grdet o s the vector deed z (,, z), + j + k, d the drectol dervtve the drecto o u s u z (,, z) (, z) u D, Suppose S s surce wth equto F (,, z) k d let (, z ) P, e pot o S. Let e curve tht les o S d psses through the pot P. c e descred cotuous vector ucto r () t () t, () t, z() t. Let t e the vlue such tht r ( t ),, z. Sce les o S d ( () t () t, z() t ) S, tht s, ( () t, () t, z() t ) k F We ppl the h Rule to derette wrt t d we ot F d dt F + d dt F + z, must sts the equto o dz dt

39 other words, s r z F r F F, F, F d r () t () t, () t, z () t. I prtculr, whe t t, we hve ( t ),, z, so () t (, z ) ( t ) F r (.), Equto. ss tht the grdet vector t P, F(,, z ) vector r ( t ) to curve o S tht psses through P. I F(,, z ) vector, we dee the tget ple to the level surce F (,, z) k t (,, z ) ple psses through P d hs orml vector F(, z ) hpter, we c wrte the equto o ths ple s F s perpedculr to the tget, s ot the zero P s the. Usg the equto o ple (, z )( ) + F (,, z )( ) + F (,, z )( z z ), z Emple.6.8 Fd the equto o the tget ple t the pot (,, ) to the ellpsod 4 + z Mmum d Mmum Vlues I lculus I, we sw tht oe o the m pplctos o dervtves s to d the locl etrem. I ths secto we see how to use prtl dervtve to d the locl etrem o ucto o two vrles. Deto.7. A ucto o two vrles hs locl mmum t (, ) ( ) (, ) pots (, ) some dsk wth cetre (, ). The umer ( ) vlue. I (, ) (, ) or ll (, ) such dsk, ( ) vlue., or ll, s clled locl mmum, s clled locl mmum Theorem.7. I hs locl etremum t ( ) there, the, d the order o the rst order prtl dervtves est (, ) (, ).

40 Emple.7. Let (, ) , d locl mmum or ths ucto. Emple.7.4 Fd the etremum vlues o (, ). Theorem.7.5 (Secod Dervtve Test) Suppose the secod prtl dervtve o re cotuous dsk wth cetre (, ), d suppose tht (, ) d (, ). Let () I > D D [ ] (, ) (, ) (, ) (, ) D d (, ) >, the ( ) D d (, ) <, the ( ) () I > (c) I < D, the ( ), s locl mmum., s ot locl etremum., s locl mmum. Emple Fd the locl etrem o (, ) Emple.7.7 Fd d clss the crtcl pots o the ucto Also d the hghest pot o the grph o. 4 4 (, ) 5 4 Emple.7.8 A rectgulr o wthout ld s to e mde rom volume o such o. m crdord. Fd the mmum Theorem.7.9 (Etreme Vlue Theorem or Fuctos o Two Vrles) I s cotuous o closed, ouded set vlue (, ) D. D R, the tts solute mmum, d (, ) d solute mmum ( ) t some pots ( ), Algorthm.7. To d the solute mmum d mmum vlues o cotuous ucto o closed ouded set D :

41 . Fd the vlues o t the crtcl pots o D.. Fd the etreme vlues o o the oudr o D.. The lrgest o the vlues rom steps d s the solute mmum vlue; the smllest o these vlues s the solute mmum vlue. Emple.7. Fd the solute mmum d mmum vlues o the ucto (, ) + the rectgle D (, ),. { } o.8 Lgrge Multpler Algorthm.8. To d the mmum d mmum vlues o (, z) g (,, z) k (ssumg these vlues est): () Fd ll vlues o,, z d λ such tht d g (,, z) k () Evlute t ll pots (, z) (,, z) λ g(, z),, suject to the costrt, tht re oud rom step (). The lrgest o these vlues s the mmum vlue; the smllest o these vlues s the mmum vlue. Emple.8. A rectgulr o wthout ld s to e mde rom volume o such o. m crdord. Fd the mmum Emple.8. Fd the etreme vlues o the ucto ( ), + o the crcle +. Emple.8.4 Fd the etreme vlues o the ucto (, ) + o the dsk +.

42 hpter 4 Multple Itegrls I ths chpter we eted the de o dete tegrl to doule d trple tegrls o uctos o two or three vrles. 4. Doule Itegrls Over Rectgles We dee the doule tegrl o ucto o two vrles the mer s the oe vrle cse. Let R deote closed rectgle R [, ] [ c, d] (, ) We prtto the tervls [, ] d [ d] c < < { R, c d} c, to: < < <... < <... < The R m e prttoed to surectgles or Let R j < < <... < j m <... < d [, ] [, ] {(, ), } j j j j,..., m d j,...,. There re m such surectgles coverg R. the the re o R j s j j j j A j j * Net we choose pot ( ) * j, j j R d dee the doule Rem sum s m j * ( ) Deto 4.. The doule tegrl o over the rectgle R s R A * j, j j. m * * (, ) da lm ( j, j ) P j A j

43 where P deotes the logest dgol o ll the surectgles Rj Emple 4.. Fd ppromte vlue or the tegrl ( )da where {(, ), } R computg the doule Rem sum wth les d * d tkg ( ) to e ceter o ech rectgle. * j, j R Theorem 4.. I (, ) les ove R d uder the surce z (, ) d s cotuous o the rectgle R, the the volume V o the sold tht s V Emple 4..4 R (, )da Estmte the volume o the sold tht les ove the squre [,] [,] ellptc prolod * choose ( ) z R d elow the 6. Use the prtto o R to our equl squres d * j, j to e the upper rght corer o j rectgulr oes. R. Sketch the sold d the ppromtg 4. Iterted Itegrls It s usull dcult to evlute sgle tegrls rom rst prcples, the evluto o doule tegrls s eve more dcult. I ths secto we see how doule tegrl c e epressed s terted tegrl, whch c e evluted clcultg two sgle tegrls. Suppose s ucto o two vrles tht s tegrle over the rectgle R [, ] [ c, d] s oted keepg held ed d ( ). The prtl tegrto o wth respect to, deoted (, )d c, s tegrted wrt rom c to d. d Now (, )d s umer tht depeds o, so t s ucto o : c A d () ( )d I we tegrte A () rom to, we get A c,. d () d (, ) d d (4.) c The tegrl o the rght sde o Equto 4. s clled terted tegrl. Usull, the rckets re omtted d

44 Smlrl, the terted tegrl d c d c d ( ) dd (, ) d d, ( ) d, dd (, ) c s oted rst tegrte wrt (holdg ed) rom resultg ucto wrt rom c to d. c d d to the tegrte the Emple 4.. Evlute the terted tegrls () dd () dd Emple 4.. (Fu s Theorem) I s cotuous o the rectgle R [, ] [ c, d] (, ) d d (, ) da (, ) dd (, ) R c { R, c d} c dd, the Emple 4.. Evlute the doule tegrl ( )da R where R ( ) {,, } Emple 4..4 Evlute ( )da R s where [,] [,π ] R. Emple 4..5 Fd the volume o the sold tht les ove the squre [,] [,] prolod z 6. R d elow the ellptc

45 4. Doule Itegrls Over Geerl Regos For sgle tegrls, the rego over whch we tegrte s lws tervl. But, or doule tegrls, we wt to tegrte ot just over rectgles ut lso over regos o more geerl shpe. Suppose s ucto o two vrles deed over ouded rego (o geerl shpe). Let R e rectgle tht ecloses D. Dee ew ucto F s ollows: F ( ) (, ) (, ) (, ) s D, (4.) s R ut ot D I F s tegrle over R, the we s tht s tegrle over D d we dee the doule tegrl o over D ( ) da F(, )da, where F s deed s Equto 4.. D D The ove deto mkes sese ecuse R s rectgle d so F(, )da hs ee D prevous deed. A ple rego s sd to e tpe I t les etwee the grphs o two cotuous uctos o, tht s, To evlute (, )da D {(, ) :, g () g () } D., choose rectgle [ ] [ c, d] ucto gve Equto 4.. The Fu s Theorem, Note tht (, ) d ( ) da F(, ) da F(, )dd D, F < g () or g () d D, tht cots D. Let F e the > sce the ( ) ( ) g (, ) d F(, ) F d c g ( ) ecuse F (, ) (, ) whe () g () ormul. g c g g ( ) ( ), les outsde D. Thereore (, ) d. Thus we hve estlshed the ollowg Theorem 4.. I s cotuous o tpe I rego D such tht the {(, ) :, g () g () } D ( ) g (, ) da (, ) A ple rego s sd to e o tpe II t s o the orm D g ( ) dd

46 We c lso estlsh the ollowg: {(, ) : c d, h () h () } D. Theorem 4.. I s cotuous o tpe II rego such tht the {(, ) : c d, h () h () } D ( ) d h (, ) da (, ) dd. D c h ( ) Emple Evlute ( )da, where D s the rego ouded the prols D. + d Emple 4..4 Fd the volume o the sold tht les uder the prolod D the -ple ouded the le z + d the prol d ove the rego. Emple 4..5 Evlute da, where D s the rego ouded the le d the prol D + 6. Emple Evlute the terted tegrl s ( )dd Theorem 4..7 Suppose d g re uctos o two vrles deed o D d suppose tht d g re oth tegrle over D, the D [ (, ) + g(, ) ] da (, ) da + g(, ) I (, ) g(, ) or ll ( ) D D c D (, ) da c (, )da, the D D da

47 (, ) da g(, )da D I D D D where D d D re two o-overlppg regos, the D (, ) da (, ) da (, )da + I we tegrte the costt ucto (, ) I m (, ) M or ll ( ) Theorem 4..8 D D D over the rego D, we get the re o D : da D, D, the ma A ( D) ( D) (, ) da MA( D) The re o the surce wth equto z ( ), (, ) D cotuous, s Emple 4..9 D [ ] + () S [ (, ) ] + (, ) A da Fd the surce re o the prt o the surce,,, rego T the -ple wth vertces ( ) ( ), d ( ) D,, where d re z + tht les ove the trgulr,. Emple 4.. Fd the re o the prolod z + tht les uder the ple 9 z. 4.4 Doule Itegrls Polr oordtes A pot (, ) o the ple c e epressed s polr coordtes ( r,θ ) A polr rectgle s set o the orm r + r cosθ rsθ R {( r, θ ): r, α θ β} where ( r,θ ) s polr coordtes., where I order to compute ( )da sutervls: R, where R s polr rectgle, we prtto [ ] r < r <... < r < r <... < rm, to

48 d prtto [ α, β ] to sutervls α θ < θ <... < θ < θ <... < θ β The the polr rectgle R c e prttoed to polr surectgles r *, θ j j * Pck pot ( ) The re R R, where {( r, θ ): r r r, θ θ θ } j j r Aj o R j c e computed s * ( r + r ) θ ( θ + θ ) * j j j j A j r r θ * j where r r r d θ θ θ. The Rem sum o polr coordtes o the polr rectgle s m j j j j m * * * * * * ( j, j ) Aj ( r cosθ j, r sθ j ) j m j * * * * ( r cosθ, r sθ ) j j A * j r r θ j (4.) I we wrte ( r, θ ) r ( r cosθ, rsθ ) s g, the the Rem sum Equto 4. c e wrtte m j whch s the Rem sum o the tegrl Thereore, we hve R β α * ( θ ) g r *, r θ g j ( r, ) θ drdθ m * * * * (, ) da lm ( r cosθ j, r sθ j ) P j lm β α β α m P j g g ( r, θ ) * * ( r, θ ) drdθ ( r cosθ, rsθ ) rdrdθ j j r θ j * r r θ j

49 Theorem 4.4. I s cotuous o polr rectgle R gve β α π, the r, α θ β, where β (, ) da ( rcosθ, rsθ ) rdrdθ R α The ove theorem ss tht whe we covert rom rectgulr to polr coordtes doule tegrl wrtg r cosθ d rsθ, da s replced rdrd θ. Emple 4.4. Evlute ( 4 )da, where R s the rego the upper hl-ple ouded the R crcles + d + 4. Emple 4.4. Fd the volume o the sold ouded the ple z d the prolod z. We c lso tegrte over tpe I or tpe II polr rego s the rectgulr cse. Theorem I s cotuous o polr rego o the orm the {( r, θ ): r, g () r g () r } D θ () g r (, ) da ( rcosθ, rsθ ) R g () r rdrdθ Theorem I s cotuous o polr rego o the orm the D {( r, ): α θ β, h () θ r h () θ } θ ( ) β h θ (, ) da ( r cosθ, rsθ ) R α h ( θ ) rdrdθ

50 4.5 Trple Itegrls Just s we deed sgle tegrls or uctos o oe vrle d doule tegrls or uctos o two vrles, so we c dee trple tegrls or uctos o three vrles. osder ucto o three vrles deed o rectgulr o B [, ] [ c, d] [ r, s] (,, z) We prtto the tervls [, ], [ c, d], d [ s] c r z < < < z < < < z { R, c d, r z s} <... < <... < z r, to: <... < The B m e prttoed to lm su-oes The volume o where B j s jk j k < < < z k <... < j <... < <... < z [ ] [, ] [ z z ] B,, j j k V jk The we dee the trple Rem sum * * * where ( jk jk, zjk ) Bjk z j k z k l m z s d z j j j k k k l m j k * * * (,, z ) jk,. We dee the orm o the prtto P to e legth o the logest dgol o ll the oes B jk d we deote the orm P. jk jk V jk Deto 4.5. The trple tegrl o over the o B s lmt ests. B l m * * * (,, z) dv lm ( jk, jk, zjk ) P j k V jk Theorem 4.5. (Fu s Theorem or Trple Itegrls) I s cotuous o the rectgulr o B [, ] [ c, d] [ r, s], the s d (, z) dv (,, z)dddz B, r c

51 Emple 4.5. Evlute the trple tegrl B z dv where B s the rectgulr o gve {(,, z),, } B z Deto Let E e ouded rego, the trple tegrl o over the ouded rego E s deed where F (, z) dv F(,, z)dv E (,, z), E (,, z) (,, z) otherwse E Deto A sold rego E s sd to e o tpe I t les etwee the grphs o two cotuous uctos o d, tht s {(, z)(, ) D, φ (, ) z ( ) } E,, φ where D s the projecto o E oto the -ple. Theorem I E s tpe I rego, the Suppose urther tht D s tpe I rego the d E ( ) φ, (,, z) dv (,, z) D φ (, ) dz da {(, ) :, g ( ) g ( ) } D {(, z), g () g (), φ (, ) z ( ) } E,, φ E ( ) ( ) g φ, (,, z) dv (,, z) g ( ) φ (, ) dzdd

52 Emple Evlute zdv, where E s the sold tetrhedro ouded E,, d + + z 4.6 hge o Vrles Multple Itegrls I oe-dmesol clculus we ote use chge o vrle ( susttuto) to smpl tegrl where g() u d g() c g() c d () d ( g() u ) g ( u)du c,. Aother w o wrtg the ove s d d () d ( () u ) du (4.4) c du A chge o vrles c lso e useul doule tegrls. We hve see ths s Secto 4.4: coverso to polr coordtes. The ew vrles r d θ re relted to the old vrles d the equtos r cosθ rsθ d the chge o vrles ormul (4.4) c e wrtte s ( ) da ( r cosθ, rs )rda, θ R S where S s the rego the rθ -ple tht correspod to the rego R the -ple. More geerll, we cosder chge o vrles tht s gve trsormto T rom the uv -ple to the -ple: ( u, v) ( ) T, where d c e epressed s uctos o u d v We ssume tht the trsormto T s dervtves. ( u, v) h( u v) g,,.e., g d h hve cotuous rst order prtl

53 Deto 4.6. The Jco o the trsormto T gve g( u, v) d h( u, v) (, ) u v ( u, v) u v u v u u s Remrk 4.6. Let S e rectgle the uv -ple wth re trsormto hs re u v. The ts mge R uder the A (, ) ( u, v) u v Theorem 4.6. Suppose T s oe-to-oe trsormto wth ozero Jco tht mps rego S the uv -ple oto rego R the -ple. Suppose s cotuous o R d tht R d S re o tpe I or tpe II ple rego. The ( ) ( ( ) ( ) (,, da u, v, u, v ) ( u v) dudv, R S Emple osder the trsormto T rom the rθ -ple to the -ple gve The Jco o T s ( ) ( r, θ ) r r Thus Theorem 4.6. gves θ θr r cosθ rsθ cosθ sθ rsθ r cos θ + rs θ r > r cosθ, R ( ) ( ) (,, dd r cosθ, rsθ ) ( r, θ ) S β ( r cosθ, rsθ ) rdrdθ α drdθ

54 Emple Use the chge o vrles u v, uv to evlute the tegrl R da where R s the rego ouded the -s d the prols Emple Evlute the tegrl (,), (,), (, ) d (, ) R e. 4 4 d ( + )/( ) da, where R s the trpezum wth vertces

55 hpter 5 Vector lculus 5. Vector Felds I hpter, we studed uctos tht mp sets o rel umers to sets o vectors. I ths chpter, we stud tpe o ucto, clled vector eld, whose dom s set o pots R or R d whose rge s set o vectors the two- (or three-) dmesol spce. ( ) Deto 5.. Let D e set R. A vector eld o F, the two-dmesol spce. D vector ( ) R s ucto F tht ssgs to ech pot (, ) F s two-dmesol vector, we c wrte t terms o ts compoet uctos P d Q s ollows: Sce (, ) or short, F (, ) P(, ) + Q(, ) j P(, ), Q(, ) F P + Qj Note tht P d Q re sclr uctos o two vrles d re sometmes clled sclr elds. Deto 5.. Let D e set, z R. A vector eld o (, ) D vector (,, z) F the three-dmesol spce. R s ucto F tht ssgs to ech pot As the two-dmesol cse, we c lso epress vector eld compoet uctos P, Q d R. F (,, z) P(,, z) + Q(,, z) j + R(,, z)k R terms o ts Emple 5.. Newto s Lw o Grvtto sttes the mgtude o the grvttol orce etwee two ojects wth msses m d M s mmg F r

56 where r s the dstce etwee the ojects d G s the grvttol costt. Assumg the oject wth mss M s locted t the org. The grvttol orce o the oject wth mss m s drected towrds the org. Wrte dow the vector equto. Emple 5..4 I s sclr ucto o two vrles, recll rom Secto.6 tht ts grdet vector Thereore s rell vector eld o (, ) + ( )j., R d s clled grdet vector eld. Lkewse s sclr ucto o three vrles, ts grdet s vector eld o (,, z) + (,, z) j + (, z)k z, R gve Deto 5..5 A vector eld F s clled coservtve vector eld t s the grdet o some sclr ucto,.e., there ests ucto such tht F. I ths stuto, s clled the potetl ucto o F. 5. Le Itegrls I ths secto, we dee tegrl tht s smlr to sgle tegrl ecept tht sted o tegrtg over tervl [, ], we tegrte over curve (le). Such tegrls re clled le tegrls. Gve curve tht s deed the prmetrc equtos A prtto o [, ] : the pots { t,..., } { P (, ): () t, () t, } () t () t t, (5.) t < t <... < t : determes prtto P o the curve the pots,...,. These pots P dvde to surcs wth legths s, s,..., s.. Let P deote the legth o the logest surc uder the prtto * * * P. We choose pot ( ) * [ t t ] t, P the th surc. (Ths correspods to pot, ). We the orm the Rem sum o log the rc wth prtto P

57 R * (,, P) ( *, ) s Deto 5.. I s deed o smooth curve gve Equto 5., the the le tegrl o log s ths lmt ests. * ( ) ds lm (, ) s, (5.) * p Remrk 5.. It c e show tht s cotuous ucto, the the lmt Equto 5. lws ests d the ollowg ormul c e used to evlute the le tegrl Remrk 5.. d d (, ) ds ( () t, ( t ) + dt (5.) dt dt, o, the (, )ds s the re o the ol whose se s d whose I ( ) heght ove the pot (, ) s ( ),. Emple 5..4 Evlute ( + )ds, where s the upper hl o the ut crcle +. Remrk 5..5 Suppose s ot smooth ut pecewse-smooth;.e., s uo o te umer o smooth curves,,..., the we dee the tegrl o log s ollows: (, ) ds (, ) ds + (, ) ds +... (, )ds + Emple 5..6 Evlute ds where cossts o the rc o the prol ollowed the vertcl le segmet rom (,) to (,). rom (,) to (, )

58 Deto 5..7 Usg the otto s Equto 5., the le tegrl o log wth respect to s where. * (, ) d lm (, ) * P Smlrl, the le tegrl o log wth respect to s where. * (, ) d lm (, ) * P We cll the orgl le tegrl (, )ds the le tegrl o wth respect to rc legth. Remrk 5..8 () It c e show tht d (, ) d ( ( t) () t ) ( t)dt, (, ) d ( () t, () t ) ( t)dt () Sometmes le tegrls wrt d occur together. Whe ths hppes t s customr to wrte P (, ) d Q(, ) d P(, ) d + Q(, )d + Emple 5..9 Evlute () d + d, where () s the rc o the prol s the le segmet rom ( 5, ) to (,) 4 rom ( 5, ) to (,)., d Suppose s curve deed the prmetrc equtos () t, () t, t

59 wth tl pot A d terml pot B. The the curve deed the prmetrc equtos ( t + ), ( t t + ), t hs the sme set o pots s ecept t trverse t the opposte drecto wth tl pot A d terml pot B. We deote ths curve. It c e show tht d However, s s s lws postve, ut ( ) d (, )d, ( ) d (, )d, ( ) ds (, )ds d, chge sg whe we reverse the oretto o. 5.. Le Itegrls Spce Suppose tht s smooth spce curve gve the prmetrc equtos () t, () t, z z() t, t I s ucto o three vrles cotuous over rego cotg, the we dee the le tegrl o log mer smlr to tht or ple curves: * * * (,, z) ds lm (,, z ) P s We evlute the le tegrl o usg the ollowg ormul: d d dz, dt dt dt (, z) ds ( () t, () t, z() t ) + + dt (5.4) Remrk 5.. () Oserve tht Equtos 5. d 5.4 c e rewrtte s ( r () t ) r ( t)dt () I the specl cse where (,, z) where L s the rc legth o. ds r, we get () t dt L

60 Emple 5.. Evlute s z ds, where s the crculr hel gve the equtos cost, st, z t, t π 5.. Le Itegrls o Vector Felds Deto 5.. Let F e cotuous vector eld deed o smooth curve gve vector ucto r t, t. The the le tegrl o F log s deed s () ( () t ) r ( t)dt F dr F r (5.5) Remrk 5.. Recll the ut tget vector d T () t ds dt Susttutg these to Equto 5.5, we hve F dr () t r r () t dt () t r. ( () t ) r () t dt F Tds F r Emple 5..4 Fd the work doe the orce eld F (, ) + j movg prtcle log the semcrcle r () t cost + stj, t π. Emple 5..5 Evlute dr F, where F(, z) zj zk, + + d s the twsted cuc gve t, t, z t

61 Theorem 5..6 where F P + Qj + Rk. F dr Pd + Qd + Rdz 5. The Fudmetl Theorem or Le Itegrls Recll the Fudmetl Theorem o lculus c e wrtte s F () d F() F(). The ollowg theorem s verso o the udmetl theorem or the le tegrls. Theorem 5.. Let e smooth curve gve the vector ucto r () t, t. Let e deretle ucto o two or three vrles whose grdet vector s cotuous o. The dr ( r() ) ( r( ) Remrk 5.. Theorem 5.. ss tht we c evlute the le tegrl o coservtve vector eld (the grdet vector eld o the potetl ucto ) kowg the vlue o t the edpots o. Emple 5.. Fd the work doe the grvttol eld mmg () F movg prtcle wth mss m rom the pot (,4,) to the pot (,,) pecewse smooth curve. log 5.. Idepedece o Pth Suppose d re two deret pecewse smooth curves (whch re clled pths) tht hve the sme tl pot A d terml pot B. We kow geerl F dr But oe cosequece o Theorem 5.. s tht F dr

62 dr dr wheever s cotuous. Deto 5..4 I F s cotuous vector eld o dom D, we s tht the le tegrl F dr s depedet o pth F dr F dr or two pths d. Remrk 5..5 A cosequece o Theorem 5.. s tht le tegrls o coservtve vector elds re depedet o pths. Deto 5..6 A curve s clled closed ts terml pot cocdes wth ts tl pot, tht s, r r. () () Theorem 5..7 dr F s depedet o pth D d ol F dr or ever closed pth D. Let D e rego R ( or R ), we s tht D s ope or ever pot P D, there ests dsk (or respectvel ll) wth cetre P tht les completel D. We s tht D s coected two pots D c e joed pth D. We see tht ll coservtve vector eld re pth depedet. Is the coverse true?.e., Are ll pth depedet vector elds coservtve? Theorem 5..8 Suppose F s vector eld tht s cotuous o ope coected rego D. I F dr s depedet o pth D, the F s coservtve vector eld o D ; tht s, there ests ucto o D such tht F. The ove theorem clsses coservtve vector elds. However, t s hrd to use t to determe whether vector eld s coservtve or ot. The ollowg theorem gves us smple w to det those vector elds tht re ot coservtve.

63 Theorem 5..9 I F(, ) P(, ) + Q(, )j, s coservtve vector eld where P d Q hve cotuous rst order dervtves o dom D, the throughout the dom we hve P Q The coverse o Theorem 5..9 s ot true geerl. However, we mpose stroger codto o the dom, the coverse c e cheved. A curve s sd to e smple curve t does ot tersect tsel where etwee the edpots. A rego D s sd to e smpl coected t s coected d ever smple closed curve D ecloses ol pots D. A smpl coected rego cots o holes. Theorem 5.. Let F P + Qj e vector eld o ope smpl coected rego D. Suppose P d Q hve cotuous rst-order dervtves d P Q throughout D, the F s coservtve vector eld. Emple 5.. Determe whether or ot the vector eld s coservtve. (, ) ( ) + ( )j F Emple 5.. Determe whether or ot the vector eld s coservtve. F (, ) ( + ) + ( )j Emple 5.. () I F(, ) ( + ) + ( )j, d ucto such tht F. () Evlute the le tegrl F dr, where s the curve gve t t () t e st + e costj, t π r.

64 Emple 5..4 z e e, d ucto such tht F. z z I F(,, ) + ( + ) j + k 5.4 Gree s Theorem Gree s Theorem gves the reltoshp etwee le tegrl roud smple closed curve d doule tegrl over the ple rego D ouded. We s tht smple closed curve s postvel oreted the curve trverses couterclockwse s t creses. Theorem 5.4. (Gree s Theorem) Let e postvel oreted, pecewse smooth smple closed curve the ple d let D e the rego ouded. I P d Q hve cotuous prtl dervtves o ope rego tht cot D, the Notto 5.4. The otto Q P Pd + Qd da. D Pd + Qd s sometmes used to dcte tht the tegrl s clculted usg the postve oretto o smple closed curve. Emple 5.4. Evlute 4 d + d, where s the trgulr curve cosstg o the le segmets rom (,) to (,), rom (,) to (,), d rom (,) to (,). Emple s 4 Evlute ( e ) d + ( 7 + ) d, where s the crcle + 9. We see tht geerl, the doule tegrl s eser to compute. I some stutos, the le tegrl s eser to compute. For stce, P (, ) Q(, ) o the curve, the

65 Q P da Pd + Qd o mtter wht vlues P d Q ssume the rego D. D Aother pplcto o the Gree s Theorem s computg re. We kow tht the re o D s da, thus we wsh to choose P d Q such tht D Q P There re severl possltes, we choose P ( ) d ( ), A d. I we choose P (, ) d Q ( ) I we choose P(, ) d (, ) Thus we hve, A, the we hve d Q, the A A d d d d d Emple Fd the re eclosed the ellpse +. Q,, the we hve d Emple Evlute d + d, where s the oudr o the sem-ulr rego D the upper hl-ple etwee the crcles + d + 4.

66 Emple I + j F (, ), + show tht F dr π or smple closed curve tht ecloses the org.

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y 4. Le Itegrls I ths secto we defe tegrl tht s smlr to sgle tegrl except tht sted of tegrtg over tervl [ ] we tegrte over curve. Such tegrls re clled le tegrls lthough curve tegrls would e etter termology.

More information

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is Mth Sprg 08 L Approxmtg Dete Itegrls I Itroducto We hve studed severl methods tht llow us to d the exct vlues o dete tegrls However, there re some cses whch t s ot possle to evlute dete tegrl exctly I

More information

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ] Atervtves The Itegrl Atervtves Ojectve: Use efte tegrl otto for tervtves. Use sc tegrto rules to f tervtves. Aother mportt questo clculus s gve ervtve f the fucto tht t cme from. Ths s the process kow

More information

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Mathematically, integration is just finding the area under a curve from one point to another. It is b Numerl Metods or Eg [ENGR 9] [Lyes KADEM 7] CHAPTER VI Numerl Itegrto Tops - Rem sums - Trpezodl rule - Smpso s rule - Rrdso s etrpolto - Guss qudrture rule Mtemtlly, tegrto s just dg te re uder urve rom

More information

under the curve in the first quadrant.

under the curve in the first quadrant. NOTES 5: INTEGRALS Nme: Dte: Perod: LESSON 5. AREAS AND DISTANCES Are uder the curve Are uder f( ), ove the -s, o the dom., Prctce Prolems:. f ( ). Fd the re uder the fucto, ove the - s, etwee,.. f ( )

More information

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ] Are d the Defte Itegrl 1 Are uder Curve We wt to fd the re uder f (x) o [, ] y f (x) x The Prtto We eg y prttog the tervl [, ] to smller su-tervls x 0 x 1 x x - x -1 x 1 The Bsc Ide We the crete rectgles

More information

6.6 Moments and Centers of Mass

6.6 Moments and Centers of Mass th 8 www.tetodre.co 6.6 oets d Ceters of ss Our ojectve here s to fd the pot P o whch th plte of gve shpe lces horzotll. Ths pot s clled the ceter of ss ( or ceter of grvt ) of the plte.. We frst cosder

More information

Strategies for the AP Calculus Exam

Strategies for the AP Calculus Exam Strteges for the AP Clculus Em Strteges for the AP Clculus Em Strtegy : Kow Your Stuff Ths my seem ovous ut t ees to e metoe. No mout of cochg wll help you o the em f you o t kow the mterl. Here s lst

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini DATA FITTING Itesve Computto 3/4 Als Mss Dt fttg Dt fttg cocers the problem of fttg dscrete dt to obt termedte estmtes. There re two geerl pproches two curve fttg: Iterpolto Dt s ver precse. The strteg

More information

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee. otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto

More information

Differential Entropy 吳家麟教授

Differential Entropy 吳家麟教授 Deretl Etropy 吳家麟教授 Deto Let be rdom vrble wt cumultve dstrbuto ucto I F s cotuous te r.v. s sd to be cotuous. Let = F we te dervtve s deed. I te s clled te pd or. Te set were > 0 s clled te support set

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Edted 05 (verso ) Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core 3 Topc : Algebr

More information

Preliminary Examinations: Upper V Mathematics Paper 1

Preliminary Examinations: Upper V Mathematics Paper 1 relmr Emtos: Upper V Mthemtcs per Jul 03 Emer: G Evs Tme: 3 hrs Modertor: D Grgortos Mrks: 50 INSTRUCTIONS ND INFORMTION Ths questo pper sts of 0 pges, cludg swer Sheet pge 8 d Iformto Sheet pges 9 d 0

More information

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums

Roberto s Notes on Integral Calculus Chapter 4: Definite integrals and the FTC Section 2. Riemann sums Roerto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 2 Rem sums Wht you eed to kow lredy: The defto of re for rectgle. Rememer tht our curret prolem s how to compute the re of ple rego

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Mthemtcs HL d further mthemtcs formul boolet

More information

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

COMPLEX NUMBERS AND DE MOIVRE S THEOREM COMPLEX NUMBERS AND DE MOIVRE S THEOREM OBJECTIVE PROBLEMS. s equl to b d. 9 9 b 9 9 d. The mgr prt of s 5 5 b 5. If m, the the lest tegrl vlue of m s b 8 5. The vlue of 5... s f s eve, f s odd b f s eve,

More information

The z-transform. LTI System description. Prof. Siripong Potisuk

The z-transform. LTI System description. Prof. Siripong Potisuk The -Trsform Prof. Srpog Potsuk LTI System descrpto Prevous bss fucto: ut smple or DT mpulse The put sequece s represeted s ler combto of shfted DT mpulses. The respose s gve by covoluto sum of the put

More information

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions HK Km Slghtly moded //9 /8/6 Frstly wrtte t Mrch 5 Itertve Methods er Systems: Guss-Sedel Noler Systems Cse Study: Chemcl Rectos Itertve or ppromte methods or systems o equtos cosst o guessg vlue d the

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Ke Kreutz-Delgdo (Nuo Vscocelos) ECE 75A Wter 22 UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) (+ )+ 5) l H 2) + + H 6) 3) H, + 7)

More information

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek Optmlt of Strteges for Collpsg Expe Rom Vrles Smple Rom Smple E Stek troucto We revew the propertes of prectors of ler comtos of rom vrles se o rom vrles su-spce of the orgl rom vrles prtculr, we ttempt

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS Numercl Alyss Lecture 4 Numercl Itegrto Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 456 6 Octoer 6, 5 Dete Itegrl A dete tegrl s tervl or tegrto. For ed tegrto tervl, te result

More information

Mathematics HL and further mathematics HL formula booklet

Mathematics HL and further mathematics HL formula booklet Dplom Progrmme Mthemtcs HL d further mthemtcs HL formul boolet For use durg the course d the emtos Frst emtos 04 Publshed Jue 0 Itertol Bcclurete Orgzto 0 5048 Cotets Pror lerg Core Topc : Algebr Topc

More information

Numerical Differentiation and Integration

Numerical Differentiation and Integration Numerl Deretto d Itegrto Overvew Numerl Deretto Newto-Cotes Itegrto Formuls Trpezodl rule Smpso s Rules Guss Qudrture Cheyshev s ormul Numerl Deretto Forwrd te dvded deree Bkwrd te dvded deree Ceter te

More information

Chapter Simpson s 1/3 Rule of Integration. ( x)

Chapter Simpson s 1/3 Rule of Integration. ( x) Cpter 7. Smpso s / Rule o Itegrto Ater redg ts pter, you sould e le to. derve te ormul or Smpso s / rule o tegrto,. use Smpso s / rule t to solve tegrls,. develop te ormul or multple-segmet Smpso s / rule

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I Uversty o Hw ICS: Dscrete Mthemtcs or Computer Scece I Dept. Iormto & Computer Sc., Uversty o Hw J Stelovsy bsed o sldes by Dr. Be d Dr. Stll Orgls by Dr. M. P. Fr d Dr. J.L. Gross Provded by McGrw-Hll

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Wter 3 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

Available online through

Available online through Avlble ole through wwwmfo FIXED POINTS FOR NON-SELF MAPPINGS ON CONEX ECTOR METRIC SPACES Susht Kumr Moht* Deprtmet of Mthemtcs West Begl Stte Uverst Brst 4 PrgsNorth) Kolt 76 West Begl Id E-ml: smwbes@yhoo

More information

Chapter 12-b Integral Calculus - Extra

Chapter 12-b Integral Calculus - Extra C - Itegrl Clulus Cpter - Itegrl Clulus - Etr Is Newto Toms Smpso BONUS Itroduto to Numerl Itegrto C - Itegrl Clulus Numerl Itegrto Ide s to do tegrl smll prts, lke te wy we preseted tegrto: summto. Numerl

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS PubH 745: REGRESSION ANALSIS REGRESSION IN MATRIX TERMS A mtr s dspl of umbers or umercl quttes ld out rectgulr rr of rows d colums. The rr, or two-w tble of umbers, could be rectgulr or squre could be

More information

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION

St John s College. UPPER V Mathematics: Paper 1 Learning Outcome 1 and 2. Examiner: GE Marks: 150 Moderator: BT / SLS INSTRUCTIONS AND INFORMATION St Joh s College UPPER V Mthemtcs: Pper Lerg Outcome d ugust 00 Tme: 3 hours Emer: GE Mrks: 50 Modertor: BT / SLS INSTRUCTIONS ND INFORMTION Red the followg structos crefull. Ths questo pper cossts of

More information

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl Alyss for Egeers Germ Jord Uversty ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS Numercl soluto of lrge systems of ler lgerc equtos usg drect methods such s Mtr Iverse, Guss

More information

Linear Algebra Concepts

Linear Algebra Concepts Ler Algebr Cocepts Nuo Vscocelos (Ke Kreutz-Delgdo) UCSD Vector spces Defto: vector spce s set H where ddto d sclr multplcto re defed d stsf: ) +( + ) = (+ )+ 5) H 2) + = + H 6) = 3) H, + = 7) ( ) = (

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have ES4 Sold Mehs Z Suo Prpl stress Prpl Stress Imge mterl prtle stte o stress The stte o stress s xed, but we represet the mterl prtle my wys by uttg ubes deret orettos For y gve stte o stress, t s lwys possble

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 2007/2008 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 2007 MASA : 3 JAM

UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 2007/2008 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 2007 MASA : 3 JAM UNIVERSITI KEBANGSAAN MALAYSIA PEPERIKSAAN AKHIR SEMESTER I SESI AKADEMIK 7/8 IJAZAH SARJANAMUDA DENGAN KEPUJIAN NOVEMBER 7 MASA : 3 JAM KOD KURSUS : KKKQ33/KKKF33 TAJUK : PENGIRAAN BERANGKA ARAHAN :.

More information

The definite Riemann integral

The definite Riemann integral Roberto s Notes o Itegrl Clculus Chpter 4: Defte tegrls d the FTC Secto 4 The defte Rem tegrl Wht you eed to kow lredy: How to ppromte the re uder curve by usg Rem sums. Wht you c ler here: How to use

More information

Recall from the previous lecture: Extreme Value Theorem Suppose a real-valued function f( x1,, x n. ) is continuous on a closed and bounded

Recall from the previous lecture: Extreme Value Theorem Suppose a real-valued function f( x1,, x n. ) is continuous on a closed and bounded Multvrle Clculus Lecture # Notes I ths lecture we cotue the dscusso of extrem of fuctos of severl vrles. I prtculr, we ll dscuss protocol for fdg extrem ouded rego, we ll look t some pplctos ecoomcs, d

More information

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n 0. Sere I th ecto, we wll troduce ere tht wll be dcug for the ret of th chpter. Wht ere? If we dd ll term of equece, we get whch clled fte ere ( or jut ere) d deoted, for hort, by the ymbol or Doe t mke

More information

Numerical Analysis Topic 4: Least Squares Curve Fitting

Numerical Analysis Topic 4: Least Squares Curve Fitting Numerl Alss Top 4: Lest Squres Curve Fttg Red Chpter 7 of the tetook Alss_Numerk Motvto Gve set of epermetl dt: 3 5. 5.9 6.3 The reltoshp etwee d m ot e ler. Fd futo f tht est ft the dt 3 Alss_Numerk Motvto

More information

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them. . CHAPTER 0 SEQUENCE, SERIES, d INDUCTION Secto 0. Seqece A lst of mers specfc order. E / Fd the frst terms : of the gve seqece: Aswer: Frst, I ll show how to fd the terms ltcll the I ll show how to se

More information

Gray Code in the Solution of the Nine Rings Chinese Game

Gray Code in the Solution of the Nine Rings Chinese Game Jourl o Mthemtcs Reserch; Vol. 9 No. 6; Decemer 7 ISSN 96-979 E-ISSN 96-99 Pulshed Cd Ceter o Scece d Educto Gr Code the Soluto o the Ne Rgs Chese Gme Erc Cesr Hug Shro Sherr Hug & Cheg-Hu Ts Morrso Acdem

More information

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 3. Solving Recurrences. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorthms I Lecture 3 Solvg Recurreces Cevdet Aykt - Blket Uversty Computer Egeerg Deprtmet Solvg Recurreces The lyss of merge sort Lecture requred us to solve recurrece. Recurreces re lke solvg

More information

6. Chemical Potential and the Grand Partition Function

6. Chemical Potential and the Grand Partition Function 6. Chemcl Potetl d the Grd Prtto Fucto ome Mth Fcts (see ppedx E for detls) If F() s lytc fucto of stte vrles d such tht df d pd the t follows: F F p lso sce F p F we c coclude: p I other words cross dervtves

More information

CHAPTER 5 Vectors and Vector Space

CHAPTER 5 Vectors and Vector Space HAPTE 5 Vetors d Vetor Spe 5. Alger d eometry of Vetors. Vetor A ordered trple,,, where,, re rel umers. Symol:, B,, A mgtude d dreto.. Norm of vetor,, Norm =,, = = mgtude. Slr multplto Produt of slr d

More information

UNIT I. Definition and existence of Riemann-Stieltjes

UNIT I. Definition and existence of Riemann-Stieltjes 1 UNIT I Defto d exstece of Rem-Steltjes Itroducto: The reder wll recll from elemetry clculus tht to fd the re of the rego uder the grph of postve fucto f defed o [, ], we sudvde the tervl [, ] to fte

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Soo Kg Lm 1.0 Nested Fctorl Desg... 1.1 Two-Fctor Nested Desg... 1.1.1 Alss of Vrce... Exmple 1... 5 1.1. Stggered Nested Desg for Equlzg Degree of Freedom... 7 1.1. Three-Fctor Nested Desg... 8 1.1..1

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

CHAPTER 6 CURVE FITTINGS

CHAPTER 6 CURVE FITTINGS CHAPTER 6 CURVE FITTINGS Chpter 6 : TOPIC COVERS CURVE FITTINGS Lest-Squre Regresso - Ler Regresso - Poloml Regresso Iterpolto - Newto s Dvded-Derece Iterpoltg Polomls - Lgrge Iterpoltg Polomls - Sple

More information

Lecture 3-4 Solutions of System of Linear Equations

Lecture 3-4 Solutions of System of Linear Equations Lecture - Solutos of System of Ler Equtos Numerc Ler Alger Revew of vectorsd mtrces System of Ler Equtos Guss Elmto (drect solver) LU Decomposto Guss-Sedel method (tertve solver) VECTORS,,, colum vector

More information

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III Itrodcto to Nmercl Alyss Mrc, 9 Nmercl Metods or PDEs Lrry Cretto Meccl Egeerg 5B Semr Egeerg Alyss Mrc, 9 Otle Revew mdterm soltos Revew bsc mterl o mercl clcls Expressos or dervtves, error d error order

More information

CURVE FITTING LEAST SQUARES METHOD

CURVE FITTING LEAST SQUARES METHOD Nuercl Alss for Egeers Ger Jord Uverst CURVE FITTING Although, the for of fucto represetg phscl sste s kow, the fucto tself ot be kow. Therefore, t s frequetl desred to ft curve to set of dt pots the ssued

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

ENGI 4430 Numerical Integration Page 5-01

ENGI 4430 Numerical Integration Page 5-01 ENGI 443 Numercal Itegrato Page 5-5. Numercal Itegrato I some o our prevous work, (most otaly the evaluato o arc legth), t has ee dcult or mpossle to d the dete tegral. Varous symolc algera ad calculus

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Sequences and summations

Sequences and summations Lecture 0 Sequeces d summtos Istructor: Kgl Km CSE) E-ml: kkm0@kokuk.c.kr Tel. : 0-0-9 Room : New Mleum Bldg. 0 Lb : New Egeerg Bldg. 0 All sldes re bsed o CS Dscrete Mthemtcs for Computer Scece course

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chpter 04.04 Ury trx Opertos After redg ths chpter, you should be ble to:. kow wht ury opertos mes,. fd the trspose of squre mtrx d t s reltoshp to symmetrc mtrces,. fd the trce of mtrx, d 4. fd the ermt

More information

Chapter 4: Distributions

Chapter 4: Distributions Chpter 4: Dstrbutos Prerequste: Chpter 4. The Algebr of Expecttos d Vrces I ths secto we wll mke use of the followg symbols: s rdom vrble b s rdom vrble c s costt vector md s costt mtrx, d F m s costt

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix Assgmet 7/MATH 47/Wter, 00 Due: Frday, March 9 Powers o a square matrx Gve a square matrx A, ts powers A or large, or eve arbtrary, teger expoets ca be calculated by dagoalzg A -- that s possble (!) Namely,

More information

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that Mth Actvty 6 (Due y ed of clss August ). Let f e ostve, cotuous, decresg fucto for x, d suose tht f. If the seres coverges to s, d we cll the th rtl sum of the seres the the remder doule equlty r 0 s,

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector evel-2 BS trx-vector opertos wth 2 opertos sequetlly BS-Notto: S --- sgle precso G E geerl mtrx V --- vector defes SGEV, mtrx-vector product: r y r α x β r y ther evel-2 BS: Solvg trgulr system x wth trgulr

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

Application: Work. 8.1 What is Work?

Application: Work. 8.1 What is Work? Applcto: Work 81 Wht s Work? Work, the physcs sese, s usully defed s force ctg over dstce Work s sometmes force tmes dstce, 1 but ot lwys Work s more subtle th tht Every tme you exert force, t s ot the

More information

Chapter 3 Single Random Variables and Probability Distributions (Part 2)

Chapter 3 Single Random Variables and Probability Distributions (Part 2) Chpter 3 Single Rndom Vriles nd Proilit Distriutions (Prt ) Contents Wht is Rndom Vrile? Proilit Distriution Functions Cumultive Distriution Function Proilit Densit Function Common Rndom Vriles nd their

More information

On Several Inequalities Deduced Using a Power Series Approach

On Several Inequalities Deduced Using a Power Series Approach It J Cotemp Mth Sceces, Vol 8, 203, o 8, 855-864 HIKARI Ltd, wwwm-hrcom http://dxdoorg/02988/jcms2033896 O Severl Iequltes Deduced Usg Power Seres Approch Lored Curdru Deprtmet of Mthemtcs Poltehc Uversty

More information

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f Asymptotc Domce Prolems Dsply ucto : N R tht s Ο( ) ut s ot costt 0 = 0 The ucto ( ) = > 0 s ot costt ut or 0, ( ) Dee the relto " " o uctos rom N to R y g d oly = Ο( g) Prove tht s relexve d trstve (Recll:

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1. SPECIAL MATRICES SYMMETRIC MATRICES Def: A mtr A s symmetr f d oly f A A, e,, Emple A s symmetr Def: A mtr A s skew symmetr f d oly f A A, e,, Emple A s skew symmetr Remrks: If A s symmetr or skew symmetr,

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS Itroducto to Numercl Metods Lecture Revew Proessor Ju Zg Deprtmet o Computer Scece Uversty o Ketucky Legto, KY 6 6 Mrc 7, Number Coverso A geerl umber sould be coverted teger prt d rctol prt seprtely

More information

Name of the Student:

Name of the Student: Egieerig Mthemtics 5 NAME OF THE SUBJECT : Mthemtics I SUBJECT CODE : MA65 MATERIAL NAME : Additiol Prolems MATERIAL CODE : HGAUM REGULATION : R UPDATED ON : M-Jue 5 (Sc the ove QR code for the direct

More information

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2

20 23 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y 2 2 SECTION 5. THE DEFINITE INTEGRAL 5. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. 7 Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces.

More information

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in

19 22 Evaluate the integral by interpreting it in terms of areas. (1 x ) dx. y Write the given sum or difference as a single integral in SECTION. THE DEFINITE INTEGRAL. THE DEFINITE INTEGRAL A Clck here for swers. S Clck here for solutos. Use the Mdpot Rule wth the gve vlue of to pproxmte the tegrl. Roud the swer to four decml plces. 9

More information

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Chapter 2 Intro to Math Techniques for Quantum Mechanics Fll 4 Chem 356: Itroductory Qutum Mechcs Chpter Itro to Mth Techques for Qutum Mechcs... Itro to dfferetl equtos... Boudry Codtos... 5 Prtl dfferetl equtos d seprto of vrbles... 5 Itroducto to Sttstcs...

More information

COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION

COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION OMPLEX ANALYSIS AND POBABILITY DISTIBUTION ONTENTS omple Fuctos Ad Deretto omple Itegrto Power Seres Epso O omple Fucto Sgle dom Vrbles Probblt Dstrbutos TEXT BOOKS Erw Kresg Advced Egeerg Mmtcs Joh Wle

More information

Physics 220: Worksheet5 Name

Physics 220: Worksheet5 Name ocepts: pctce, delectrc costt, resstce, seres/prllel comtos () coxl cle cossts of sultor of er rdus wth chrge/legth +λ d outer sultg cylder of rdus wth chrge/legth -λ. () Fd the electrc feld everywhere

More information

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES Avlble ole t http://sc.org J. Mth. Comput. Sc. 4 (04) No. 05-7 ISSN: 97-507 SUM PROPERTIES OR THE K-UCAS NUMBERS WITH ARITHMETIC INDEXES BIJENDRA SINGH POOJA BHADOURIA AND OMPRAKASH SIKHWA * School of

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Integration by Parts for D K

Integration by Parts for D K Itertol OPEN ACCESS Jourl Of Moder Egeerg Reserc IJMER Itegrto y Prts for D K Itegrl T K Gr, S Ry 2 Deprtmet of Mtemtcs, Rgutpur College, Rgutpur-72333, Purul, West Begl, Id 2 Deprtmet of Mtemtcs, Ss Bv,

More information

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0. LECTURE 8: Topcs Chaos Rcker Equato (t ) = (t ) ep( (t )) Perod doulg urcato Perod doulg cascade 9....... A Quadratc Equato Rcker Equato (t ) = (t ) ( (t ) ). (t ) = (t ) ep( (t )) 6. 9 9. The perod doulg

More information

Chapter Gauss-Seidel Method

Chapter Gauss-Seidel Method Chpter 04.08 Guss-Sedel Method After redg ths hpter, you should be ble to:. solve set of equtos usg the Guss-Sedel method,. reogze the dvtges d ptflls of the Guss-Sedel method, d. determe uder wht odtos

More information

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University Advced Algorthmc Prolem Solvg Le Arthmetc Fredrk Hetz Dept of Computer d Iformto Scece Lköpg Uversty Overvew Arthmetc Iteger multplcto Krtsu s lgorthm Multplcto of polyomls Fst Fourer Trsform Systems of

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

Chapter 7. Bounds for weighted sums of Random Variables

Chapter 7. Bounds for weighted sums of Random Variables Chpter 7. Bouds for weghted sums of Rdom Vrbles 7. Itroducto Let d 2 be two depedet rdom vrbles hvg commo dstrbuto fucto. Htczeko (998 d Hu d L (2000 vestgted the Rylegh dstrbuto d obted some results bout

More information

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150

Introduction to Computer Design. Standard Forms for Boolean Functions. Sums and Products. Standard Forms for Boolean Functions (cont ) CMPT-150 CMPT- Itroducto to Computer Desg SFU Harbour Cetre Sprg 7 Lecture : Ja. 6 7 Stadard orms or boolea uctos Sum o Products Product o Sums Stadard Forms or Boolea Fuctos (cot ) It s useul to spec Boolea uctos

More information

A Brief Introduction to Olympiad Inequalities

A Brief Introduction to Olympiad Inequalities Ev Che Aprl 0, 04 The gol of ths documet s to provde eser troducto to olympd equltes th the stdrd exposto Olympd Iequltes, by Thoms Mldorf I ws motvted to wrte t by feelg gulty for gettg free 7 s o problems

More information

CS321. Numerical Analysis

CS321. Numerical Analysis CS3 Nuercl Alss Lecture 7 Lest Sures d Curve Fttg Professor Ju Zhg Deprtet of Coputer Scece Uverst of Ketuc Legto KY 456 633 Deceer 4 Method of Lest Sures Coputer ded dt collectos hve produced treedous

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information