ADVANCED SOIL MECHANICS

Size: px
Start display at page:

Download "ADVANCED SOIL MECHANICS"

Transcription

1 BERNOULLI S EQUATION h Where: u w g Z h = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weight of Water

2 h ADVANCED SOIL MECHANICS BERNOULLI S EQUATION IN SOIL u w g Z 0 0 (i.e. elocity of water in soil is negligible). Therefore: u h Z w

3 h h A h B CHANGE IN HEAD FROM POINTS A & B (H) h h h A B h h A h B Figure 5.1. Das FGE (005). h Where: u A w i Z A u h L B w Z h can be expressed in non-dimensional form i = Hydraulic Gradient L = Length of Flow between Points A & B B

4 VELOCITY () VS. HYDRAULIC GRADIENT (i) General relationship shown in Figure 5. Three Zones: 1. Laminar Flow (I). Transition Flow (II) 3. Turbulent Flow (III) For most soils, flow is laminar. Therefore: i Figure 5.. Das FGE (005).

5 DARCY S LAW (1856) Where: = Discharge Velocity (i.e. quantity of water in unit time through unit cross-sectional area at right angles to the direction of flow) k = (i.e. coefficient of permeability) i = Hydraulic Gradient * Based on obserations of flow of water through clean sands

6 HYDRAULIC CONDUCTIVITY (k) k w K Where: = Viscosity of Water K = Absolute Permeability (units of L ) Typical Values of k per Soil Type Soil Type k (cm/sec) k (ft/min) Clean Grael Coarse Sand Fine Sand Silty Clay Clay < < after Table 5.1. Das FGE (005)

7 DISCHARGE AND SEEPAGE VELOCITIES q A A s Where: q = Flow Rate (quantity of water/unit time) A = Total Cross-sectional Area A = Area of Voids s = Seepage Velocity Figure 5.3. Das FGE (005).

8 n e e V V V V V V V A L A A A A A A A A q s s s s s s s s s 1 1 ) ( ) ( ) ( ) ( Figure 5.3. Das FGE (005). DISCHARGE AND SEEPAGE VELOCITIES

9 EXAMPLE PROBLEM: FIND i AND q GIVEN: 1 ft REQUIRED: Find Hydraulic Gradient (i) and Flow Rate (q) 5 ft CL (Imperious Layer) 1 15 ft SM (k = ft/min) CL (Imperious Layer) 175 ft

10 EXAMPLE PROBLEM: FIND i AND q GIVEN: SOLUTION: Hydraulic Gradient (i): 5 ft 15 ft 1 ft CL (Imperious Layer) 1 i h L i 1 ft 175 ft cos SM (k = ft/min) CL (Imperious Layer) 175 ft Rate of Flow per Time (q): q q q kia ft (0.067)(15 ft)(cos1 min ft / min/ ft )(1 ft)

11 HYDRAULIC CONDUCTIVITY: LABORATORY TESTING Constant Head (ASTM D434) Falling Head (no ASTM) Figure 5.4. Das FGE (005). Figure 5.5. Das FGE (005).

12 HYDRAULIC CONDUCTIVITY: LABORATORY TESTING Constant Head (ASTM D434) Q At A( ki) t Figure 5.4. Das FGE (005). Where: Q = Quantity of water collected oer time t t = Duration of water collection Q k A k QL Aht h t L

13 HYDRAULIC CONDUCTIVITY: LABORATORY TESTING Falling Head (No ASTM) h dh q k A a L dt Where: A = Cross-sectional area of Soil a = Cross-sectional area of Standpipe Integrate from limits 0 to t t al Ak dt Figure 5.5. Das FGE (005). after rearranging aboe equation h log e 1 h al Ak k dh h after integration or.303 al At Integrate from limits h 1 to h Log 10 h h 1

14 HYDRAULIC CONDUCTIVITY: EMPIRICAL RELATIONSHIPS Uniform Sands - Hazen Formula (Hazen, 1930): k( cm / sec) cd 10 Where: c = Constant between 1 to 1.5 D 10 = Effectie Size (in mm) Sands Kozeny-Carman (Loudon 195 and Perloff and Baron 1976): k C 1 e 1 Where: C = Constant (to be determined) e = Void Ratio 3 e Sands Casagrande (Unpublished): k 1.4e k0.85 Where: e = Void Ratio k 0.85 e = 0.85 Normally Consolidated Clays (Samarasinghe, Huang, and Drneich, 198): k C n e 1 e Where: C = Constant to be determined experimentally n = Constant to be determined experimentally e = Void Ratio

15 HYDRAULIC CONDUCTIVITY: EMPIRICAL RELATIONSHIPS EXAMPLE NORMALLY CONSOLIDATED CLAYS GIVEN: Normally consolidated clay with e and k measurements from 1D Consolidation Test. k Void Ratio (e) (cm/sec) x x 10-7 REQUIRED: Find k for same clay with a oid ratio of 1.4. SOLUTION: Using (Samarasinghe, Huang, and Drneich, 198) Equation: k 1 k C C n e 1 1 e 1 n e 1 e Substituting known quantities 0.6cm / sec 1.5cm / sec Example 5.6 Das PGE (005). n.5.

16 k e ADVANCED SOIL MECHANICS HYDRAULIC CONDUCTIVITY: EMPIRICAL RELATIONSHIPS EXAMPLE NORMALLY CONSOLIDATED CLAYS 0.6cm / sec 1.5cm / sec 0.6x10 C k 1 7 C n e1 1 e cm / sec 0.581x cm / sec (0.581x10 7cm / sec) n.5. n x10 7 cm / sec Example 5.6 Das PGE (005).

17 STRATIFIED SOILS: EQUIVALENT HYDRAULIC CONDUCTIVITY HORIZONTAL DIRECTION Considering cross-section of Unit Length 1. Total flow through cross-section can be written as: q q 1 H 1 1 H 1 1 H... n 1 H n Where: = Aerage Discharge Velocity 1 = Discharge Velocity in Layer 1 Figure 5.7. Das FGE (005).

18 STRATIFIED SOILS: EQUIVALENT HYDRAULIC CONDUCTIVITY HORIZONTAL DIRECTION Substituting =ki into q equation and using H to denote Horizontal Direction 1 k H ( eq) k H1 1 i eq i ; k i ;...; H n k n i n Noting that i eq =i 1 =i = =i n k 1 H ( k H k... k H ( eq) H1 1 H Hn n Where: k H(eq) = Equialent in Horizontal Direction H H ) Figure 5.7. Das FGE (005).

19 STRATIFIED SOILS: EQUIVALENT HYDRAULIC CONDUCTIVITY VERTICAL DIRECTION Total Head Loss = h h = Sum Head Loss in Each Layer... k h V ( eq) h 1 1 h H h and V 1... Using Darcy s Law (=ki) into equation and using V to denote Vertical Direction h n n k i... 1 k Vn Where: k V(eq) = Equialent in Vertical Direction i n Figure 5.8. Das FGE (005).

20 FIELD PERMEABILITY TESTING BY PUMPING WELLS UNCONFINED PERMEABLE LAYER UNDERLAIN BY IMPERMEABLE LAYER Figure 5.9. Das FGE (005). Field Measurements Taken: q, r 1, r, h 1, h q = Groundwater Flow into Well q also is rate of discharge from pumping Equation: r 1 q k dh rh dr r k field can be re-written as dr r h q k Soling Equation: h 1 1 hdh r1.303q log10 r ( h h )

21 FIELD PERMEABILITY TESTING BY PUMPING WELLS WELL PENETRATING CONFINED AQUIFER q = Groundwater Flow into Well q also is rate of discharge from pumping Equation: r q 1 k dr 1 r r h dh rh dr can be re-written as h kh q dh Figure Das FGE (005). Field Measurements Taken: q, r 1, r, h 1, h Soling Equation: k field q log10.77h ( h 1 r1 r h )

22 SOIL PERMEABILITY AND DRAINAGE ADVANCED SOIL MECHANICS after Casagrande and Fadum (1940) and Terzagi et al. (1996).

23 SOIL PERMEABILITY AND DRAINAGE COEFFICIENT OF PERMEABILITY CM/S (LOG SCALE) Drainage property Good drainage Poor drainage Practically imperious Application in earth dams and dikes Perious sections of dams and dikes Imperious sections of earth dams and dikes Type of soil Clean grael Clean sands, Clean sand and grael mixtures Very fine sands, organic and inorganic silts, mixtures of sand, silt, and clay glacial till, stratified clay deposits, etc. Imperious soils e.g., homogeneous clays below zone of weathering Imperious soils which are modified by the effect of egetation and weathering; fissured, weathered clays; fractured OC clays Direct determination of coefficient of permeability Direct testing of soil in its original position (e.g., well points). If properly conducted, reliable; considerable experience required. Constant Head Permeameter; little experience required. (Note: Considerable experience also required in this range.) Constant head test in triaxial cell; reliable w ith experience and no leaks. Reliable; Little experience required Falling Head Per meameter; Range of unstable permeability;* much experience necessary to correct interpretation Fairly reliable; considerable experience necessary (do in triaxial cell) Indirect determination of coefficient of permeability Computat ion: From the grain size distribution (e.g., Hazen s formula). Only applicable to clean, cohesionless sands and graels Horizontal Capillarity Test: Very little experience necessary; especially useful for rapid testing of a large number of samples in the field w ithout laboratory facilities. Computations: from consolidation tests; expensie laboratory equipment and considerable experience required *Due to migration of fines, channels, and air in oids. From FHWA IF Ealuation of Soil and Rock Properties.

24 LAPLACE'S EQUATION OF CONTINUITY y z x Steady-State Flow around an imperious Sheet Pile Wall Consider water flow at Point A: x = Discharge Velocity in x Direction Figure Das FGE (005). z = Discharge Velocity in z Direction Y Direction Out Of Plane

25 LAPLACE'S EQUATION OF CONTINUITY Consider water flow at Point A (Soil Block at Pt A shown left) Rate of water flow into soil block in x direction: x dzdy Figure Das FGE (005). Rate of water flow into soil block in z direction: z dxdy Rate of water flow out of soil block in x,z directions: x z x x z z dxdzdy dz dxdy

26 0 0 z x or dxdy dzdy dxdy dz z dzdy dx x z x z x z z x x Consider water flow at Point A (Soil Block at Pt A shown left) Figure Das FGE (005). Total Inflow = Total Outflow LAPLACE'S EQUATION OF CONTINUITY

27 0 z h k x h k z h k i k x h k i k z x z z z z x x x x Consider water flow at Point A (Soil Block at Pt A shown left) Figure Das FGE (005). Using Darcy s Law (=ki) LAPLACE'S EQUATION OF CONTINUITY

28 FLOW NETS: DEFINITION OF TERMS Flow Net: Graphical Construction used to calculate groundwater flow through soil. Comprised of Flow Lines and Equipotential Lines. Flow Line: A line along which a water particle moes through a permeable soil medium. Flow Channel: Strip between any two adjacent Flow Lines. Equipotential Lines: A line along which the potential head at all points is equal. NOTE: Flow Lines and Equipotential Lines must meet at right angles!

29 FLOW NETS FLOW AROUND SHEET PILE WALL Figure 5.1a. Das FGE (005).

30 FLOW NETS FLOW AROUND SHEET PILE WALL Figure 5.1b. Das FGE (005).

31 FLOW NETS: BOUNDARY CONDITIONS 1. The upstream and downstream surfaces of the permeable layer (i.e. lines ab and de in Figure 1b Das FGE (005)) are equipotential lines.. Because ab and de are equipotential lines, all the flow lines intersect them at right angles. 3. The boundary of the imperious layer (i.e. line fg in Figure 1b Das FGE (005)) is a flow line, as is the surface of the imperious sheet pile (i.e. line acd in Figure 1b Das FGE (005)). 4. The equipontential lines intersect acd and fg (Figure 1b Das FGE (005)) at right angles.

32 FLOW NETS FLOW UNDER AN IMPERMEABLE DAM Figure Das FGE (005).

33 q q q ADVANCED SOIL MECHANICS FLOW NETS: DEFINITION OF TERMS Rate of Seepage Through Flow Channel (per unit length): Using Darcy s Law (q=a=kia) 3 q n q k h h 1 l 1 k h h 3 l k h h 3 4 l 1 h 1 h h h 3 h 3 h 4... H N d l Potential Drop l 3 l 3... Figure Das FGE (005). Where: H = Head Difference N d = Number of Potential Drops

34 Therefore, flow through one channel is: q k q k HN N H N d If Number of Flow Channels = N f, then the total flow for all channels per unit length is: d f ADVANCED SOIL MECHANICS FLOW NETS FLOW AROUND SHEET PILE WALL EXAMPLE Figure 5.1b. Das FGE (005).

35 GIVEN: Flow Net in Figure N f = 3 N d = 6 k x =k z =5x10-3 cm/sec DETERMINE: a. How high water will rise in piezometers at points a, b, c, and d. b. Rate of seepage through flow channel II. c. Total rate of seepage ADVANCED SOIL MECHANICS FLOW NETS FLOW AROUND SHEET PILE WALL EXAMPLE Figure Das FGE (005).

36 SOLUTION: Potential Drop = (5m 1.67m) 6 H N d 0.56m At Pt a: Water in standpipe = (5m 1x0.56m) = 4.44m At Pt b: Water in standpipe = (5m x0.56m) = 3.88m At Pts c and d: Water in standpipe = (5m 5x0.56m) =.0m ADVANCED SOIL MECHANICS FLOW NETS FLOW AROUND SHEET PILE WALL EXAMPLE Figure Das FGE (005).

37 FLOW NETS FLOW AROUND SHEET PILE WALL EXAMPLE SOLUTION: q k k = 5x10-3 cm/sec k = 5x10-5 m/sec H N d q = (5x10-5 m/sec)(0.56m) q =.8x10-5 m 3 /sec/m q k HN N d f qn q = (.8x10-5 m 3 /sec/m) * 3 q = 8.4x10-5 m3/sec/m f Figure Das FGE (005).

38 FLOW NETS: RULES FOR CREATING FLOW NETS (FROM UTEXAS) 1. Head drops between adjacent equipotential lines must be constant (or, in those rare cases where this is not desirable, clearly stated, just as in topographic contour maps)!. Equipotential lines must match known boundary conditions. 3. Flow lines can neer cross. Equi. Flow Line

39 FLOW NETS: STEPS FOR DRAWING (LADD, MIT) 1. Draw problem in ink.. Draw in known equipotential and flow boundary lines. 3. Sketch or 3 flow lines. 4. Draw corresponding equipotential lines (check for squares and intersections) 5. Keep adjusting (and adjusting, and adjusting ) Equi. Flow Line

40 FLOW NETS: RULES FOR CREATING FLOW NETS (FROM UTEXAS) 4. Refraction of flow lines must account for differences in hydraulic conductiity. 5. For isotropic media. Equi. a) Flow lines must intersect equipotential lines at right angles. b) The flow line-equipotential polygons should approach curilinear squares, as shown in the Figure to the right. Flow Line

41 FLOW NETS: RULES FOR CREATING FLOW NETS (FROM UTEXAS) 6. The quantity of flow between any two adjacent flow lines must be equal. Equi. 7. The quantity of flow between any two stream lines is always constant. Flow Line

42 FLOW NETS: DRAWING PROCEDURE (AFTER HARR (196, P. 3) 1. Draw the boundaries of the flow region to scale so that all equipotential lines and flow lines that are drawn can be terminated on these boundaries.. Sketch lightly three or four flow lines, keeping in mind that they are only a few of the infinite number of cures that must proide a smooth transition between the boundary flow lines. As an aid in spacing of these lines, it should be noted that the distance between adjacent flow lines increases in the direction of the larger radius of curature. 3. Sketch the equipotential lines, bearing in mind that they must intersect all flow lines, including the boundary streamlines, at right angles and that the enclosed figures must be (curilinear) squares.

43 FLOW NETS: DRAWING PROCEDURE (FROM HARR (196, P. 3) 4. Adjust the locations of the flow lines and the equipotential lines to satisfy the requirements of step 3. This is a trail-and-error process with the amount of correction being dependent upon the position of the initial flow lines. The speed with which a successful flow net can be drawn is highly contingent on the experience and judgment of the indiidual. A beginner will find the suggestions in Casagrande (1940) to be of assistance. 5. As a final check on the accuracy of the flow net, draw the diagonals of the squares. These should also form smooth cures that intersect each other at right angles.

44 FLOW NETS: EXAMPLES Wrong Wrong Correct! Unconfined groundwater flow nets on a slope

45 FLOW NETS: EXAMPLES Cross-sectional flow net of a homogeneous and isotropic aquifer (Hubbert, 1940).

46 FLOW NETS: EXAMPLES Contour map of the piezometric surface near Saannah, Georgia, 1957, showing closed contours resulting from heay local groundwater pumping (from Bedient, after USGS Water-Supply Paper 1611).

47 FLOW NETS: DAM EXAMPLES

SOIL MECHANICS

SOIL MECHANICS 4.330 SOIL MECHANICS BERNOULLI S EQUATION Were: u w g Z = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weigt of Water Slide of 37 4.330 SOIL MECHANICS BERNOULLI S EQUATION

More information

GEOTECHNICAL LABORATORY

GEOTECHNICAL LABORATORY 14.333 GEOTECHNICAL LABORATORY BERNOULLI S EQUATION h u w v 2 2g Z h = Total Head u = Pressure v = Velocity g = Acceleration due to Gravity w = Unit Weight of Water Slide 1 of 14 h 14.333 GEOTECHNICAL

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

Chapter 7 Permeability and Seepage

Chapter 7 Permeability and Seepage Permeability and Seepage - N. Sivakugan (2005) 1 7.1 INTRODUCTION Chapter 7 Permeability and Seepage Permeability, as the name implies (ability to permeate), is a measure of how easily a fluid can flow

More information

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

(Refer Slide Time: 02:10)

(Refer Slide Time: 02:10) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 24 Flow of water through soils-v Welcome to lecture five of flow of water through

More information

Water in Soil Sections in Craig

Water in Soil Sections in Craig Water in Soil Sections 2.1-2.6 in Craig Outlines Introduction Darcy s Law Volume of water flowing per unit time Measuring K in laboratory Seepage Theory Flow Net Introduction All soils are permeable materials,

More information

All soils in natural are permeable materials, water being free to flow through the interconnected pores between the solid particles.

All soils in natural are permeable materials, water being free to flow through the interconnected pores between the solid particles. 8.1 Introduction Among construction materials, soil is very unique. Because of a relatively large space of void in its constituent, water can flow through soil. The water flow (seepage) characteristics

More information

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION

5. TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 5.1 INTRODUCTION 5. TWO-DIMENSIONAL FLOW OF WATER TROUG SOILS 5.1 INTRODUCTION In many instances the flo of ater through soils is neither one-dimensional nor uniform over the area perpendicular to flo. It is often necessary

More information

Module 2 Lecture 9 Permeability and Seepage -5 Topics

Module 2 Lecture 9 Permeability and Seepage -5 Topics Module 2 Lecture 9 Permeability and Seepage -5 Topics 1.2.7 Numerical Analysis of Seepage 1.2.8 Seepage Force per Unit Volume of Soil Mass 1.2.9 Safety of Hydraulic Structures against Piping 1.2.10 Calculation

More information

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 26 February 2017

Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski. 26 February 2017 Geo-E2010 Advanced Soil Mechanics L Wojciech Sołowski 26 February 2017 Permeability, consolidation and seepage Department of Civil Engineering Advanced Soil Mechanics W. Sołowski 2 To learn 1. What is

More information

b) EFFECTIVE STRESS (c) SEEPAGE

b) EFFECTIVE STRESS (c) SEEPAGE b) EFFECTIVE STRESS B1. A fine sand layer of 5 m thickness lies on a 5 m clay deposit. The water table is at the ground surface. Below the clay is a rock formation. Piezometers installed in the rock show

More information

GEOTECHNICAL ENGINEERING II (Subject Code: 06CV64) UNIT 4: FLOW NETS 4.1 Introduction

GEOTECHNICAL ENGINEERING II (Subject Code: 06CV64) UNIT 4: FLOW NETS 4.1 Introduction GEOTECHNICAL ENGINEERING II (Subject Code: 06CV64) UNIT 4: FLOW NETS 4.1 Introduction In this chapter the topics that are covered include principles of seepage analysis, graphical solutions for seepage

More information

Geotechnical Properties of Soil

Geotechnical Properties of Soil Geotechnical Properties of Soil 1 Soil Texture Particle size, shape and size distribution Coarse-textured (Gravel, Sand) Fine-textured (Silt, Clay) Visibility by the naked eye (0.05 mm is the approximate

More information

Permeability in Soils

Permeability in Soils Permeability in Soils Contents: Darcy s law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified

More information

Time Rate of Consolidation Settlement

Time Rate of Consolidation Settlement Time Rate of Consolidation Settlement We know how to evaluate total settlement of primary consolidation S c which will take place in a certain clay layer. However this settlement usually takes place over

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 13 Permeability and Seepage -2 Conditions favourable for the formation quick sand Quick sand is not a type of sand but a flow condition occurring within a cohesion-less soil when its effective stress is

More information

FUNDAMENTALS OF CONSOLIDATION

FUNDAMENTALS OF CONSOLIDATION FUNDAMENTALS OF CONSOLIDATION σ (Vertical Stress Increase) SAND CLAY CONSOLIDATION: Volume change in saturated soils caused by the expulsion of pore water from loading. Saturated Soils: σ causes u to increase

More information

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1

Soil Mechanics Permeability of Soils and Seepage page 1 CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 Soil Mechanics Permeability of Soils and Seepage page 1 Contents of this chapter : CHAPITRE 9. PERMEABILITY OF SOILS AND SEEPAGE...1 9.1 INTRODUCTION...1 9.2 DARCY S LAW...1 9.2.1 DEFINITION OF HEAD...1

More information

Outline. Seepage Analysis. Soil Mechanics. Laplace Equation of Continuity

Outline. Seepage Analysis. Soil Mechanics. Laplace Equation of Continuity Soil Mecanics Seepage nalysis Ci-Ping Lin National Ciao Tung Uni. cplin@mail.nctu.edu.tw Outline Laplace Equation of Continuity 1-D D Eample (-D) Computations using in nisotropic Soil Seepage troug an

More information

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis

Distribution of pore water pressure in an earthen dam considering unsaturated-saturated seepage analysis E3S Web of Conferences 9, 194 (16) DOI: 1.11/ e3sconf/169194 E-UNSAT 16 Distribution of pore water in an earthen dam considering unsaturated-saturated seepage analysis 1a Kumar Venkatesh, Siva Ram Karumanchi

More information

Darcy's Law. Laboratory 2 HWR 531/431

Darcy's Law. Laboratory 2 HWR 531/431 Darcy's Law Laboratory HWR 531/431-1 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets 1.7, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets Equation of Continuity Our equations of hydrogeology are a combination of o Conservation of mass o Some empirical

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

Civil Engineering Department College of Engineering

Civil Engineering Department College of Engineering Civil Engineering Department College of Engineering Course: Soil Mechanics (CE 359) Lecturer: Dr. Frederick Owusu-Nimo FREQUENCY CE 260 Results (2013) 30 25 23 25 26 27 21 20 18 15 14 15 Civil Geological

More information

1.5 Permeability Tests

1.5 Permeability Tests 1-17 1.5 Permeability Tests 1.5.1 General - To determine the coefficient of permeability(or coefficient of hydraulic conductivity) k - General method for determining k directly. 1) Constant-head method

More information

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground Soil Mechanics I 3 Water in Soils 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground 1 Influence of Water - Basics WATER IN SOIL - affects soil

More information

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay Groundwater in Unconsolidated Deposits Alluvial (fluvial) deposits - consist of gravel, sand, silt and clay - laid down by physical processes in rivers and flood plains - major sources for water supplies

More information

ADVANCED SOIL MECHANICS FINAL EXAM (TAKE HOME):DUE THURSDAY, DECEMBER 19, 6PM.

ADVANCED SOIL MECHANICS FINAL EXAM (TAKE HOME):DUE THURSDAY, DECEMBER 19, 6PM. 14.531 ADVANCED SOIL MECHANICS FINAL EXAM (TAKE HOME):DUE THURSDAY, DECEMBER 19, 2013 @ 6PM. Problem #1. Field load tests on strip footings yielded the test data provided below in Figure 1 and Table 1

More information

" = ˆ i # #x + ˆ j # #y + ˆ k # #z. "t = D #2 h

 = ˆ i # #x + ˆ j # #y + ˆ k # #z. t = D #2 h del operator " = ˆ i # #x + ˆ j # #y + ˆ k # #z Hydrology Gradient: "h = ˆ i #h #x + ˆ j #h #y + k ˆ #h #z q = - K"h Darcy s Law Divergence: " q = #q 1 #x + #q 2 #y + #q 3 #z Laplacian: " 2 h = #2 h #x

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF CIVIL ENGINEERING SUBJECT CODE : CE6405 YEAR : II SUBJECT NAME : SOIL MECHANICS SEM : IV QUESTION BANK (As per Anna University 2013 regulation) UNIT 1- SOIL

More information

Mechanical Energy. Kinetic Energy. Gravitational Potential Energy

Mechanical Energy. Kinetic Energy. Gravitational Potential Energy Mechanical Energy Kinetic Energy E k = 1 2 mv2 where E k is energy (kg-m 2 /s 2 ) v is velocity (m/s) Gravitational Potential Energy E g = W = mgz where w is work (kg-m 2 /s 2 ) m is mass (kg) z is elevation

More information

QUESTION BANK DEPARTMENT: CIVIL SUBJECT CODE / Name: CE 2251 / SOIL MECHANICS SEMESTER: IV UNIT 1- INTRODUCTION PART - A (2 marks) 1. Distinguish between Residual and Transported soil. (AUC May/June 2012)

More information

PRINCIPLES OF GEOTECHNICAL ENGINEERING

PRINCIPLES OF GEOTECHNICAL ENGINEERING PRINCIPLES OF GEOTECHNICAL ENGINEERING Fourth Edition BRAJA M. DAS California State University, Sacramento I(T)P Boston Albany Bonn Cincinnati London Madrid Melbourne Mexico City New York Paris San Francisco

More information

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL

Principles of Foundation Engineering 8th Edition Das SOLUTIONS MANUAL Principles of Foundation Engineering 8th Edition SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-foundation-engineering- 8th-edition-das-solutions-manual/

More information

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens)

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens) Spring 2008 CIVE 462 HOMEWORK #1 1. Print out the syllabus. Read it. Write the grade percentages in the first page of your notes. 2. Go back to your 301 notes, internet, etc. and find the engineering definition

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

Chapter 3 Permeability

Chapter 3 Permeability 3.2 Darcy s Law In 1856, Darcy investigated the flow of water through sand filters for water purification. His experimental apparatus is shown in Figure 3.11. By empirical observation Figure 3.11 Schematic

More information

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials 1.3 Scope of This Book 1.4 Historical Development of Geotechnical

More information

Groundwater Hydrology

Groundwater Hydrology EXERCISE 12 Groundwater Hydrology INTRODUCTION Groundwater is an important component of the hydrologic cycle. It feeds lakes, rivers, wetlands, and reservoirs; it supplies water for domestic, municipal,

More information

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business

FUNDAMENTALS SOIL MECHANICS. Isao Ishibashi Hemanta Hazarika. >C\ CRC Press J Taylor & Francis Group. Taylor & Francis Group, an Informa business SOIL MECHANICS FUNDAMENTALS Isao Ishibashi Hemanta Hazarika >C\ CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an Informa business

More information

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016 Tikrit University CONSOILDATION College of Engineering Civil engineering Department Soil Mechanics 3 rd Class Lecture notes Up Copyrights 2016 Stresses at a point in a soil mass are divided into two main

More information

Permeability and fluid transport

Permeability and fluid transport Permeability and fluid transport Thermal transport: Fluid transport: q = " k # $p with specific discharge (filter velocity) q [m s 1 ] pressure gradient p [N m 3 ] dynamic viscosity η [N s m 2 ] (intrinsic)

More information

Hydraulic properties of porous media

Hydraulic properties of porous media PART 5 Hydraulic properties of porous media Porosity Definition: Void space: n V void /V total total porosity e V void /V solid Primary porosity - between grains Secondary porosity - fracture or solution

More information

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW Dynamic equations of gradually varied and spatially varied flows - Water surface flow profile classifications: Hydraulic Slope, Hydraulic

More information

Course Scheme -UCE501: SOIL MECHANICS L T P Cr

Course Scheme -UCE501: SOIL MECHANICS L T P Cr Course Scheme -UCE501: SOIL MECHANICS L T P Cr 3 1 2 4.5 Course Objective: To expose the students about the various index and engineering properties of soil. Introduction: Soil formation, various soil

More information

Introduction to Soil Mechanics

Introduction to Soil Mechanics Introduction to Soil Mechanics Sela Sode and Colin Jones WILEY Blackwell Contents Preface Dedication and Acknowledgments List of Symbols Soil Structure 1.1 Volume relationships 1.1.1 Voids ratio (e) 1.1.2

More information

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67

Chapter 2. 53% v. 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 2.67 Chapter 2 2.1 d. (87.5)(9.81) (1000)(0.05) 3 17.17 kn/m c. d 1 w 17.17 1 0.15 3 14.93 kn/m G a. Eq. (2.12): s w (2.68)(9.81). 14.93 ; e 0.76 1 e 1 e e 0.76 b. Eq. (2.6): n 0.43 1 e 1 0.76 Vw wgs (0.15)(2.68)

More information

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001)

Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001) Interpretation of Flow Parameters from In-Situ Tests (P.W. Mayne, November 2001) FLOW PROPERTIES Soils exhibit flow properties that control hydraulic conductivity (k), rates of consolidation, construction

More information

The process of consolidation and settlement

The process of consolidation and settlement Consolidation Based on part of the GeotechniCAL reference package by Prof. John Atkinson, City University, London The process of consolidation and settlement One-dimensional consolidation theory The oedometer

More information

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University Soils, Hydrogeology, and Aquifer Properties Philip B. Bedient 2006 Rice University Charbeneau, 2000. Basin Hydrologic Cycle Global Water Supply Distribution 3% of earth s water is fresh - 97% oceans 1%

More information

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6)

CE 240 Soil Mechanics & Foundations Lecture 5.2. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. 2-6) CE 40 Soil Mechanics & Foundations Lecture 5. Permeability III (Das, Ch. 6) Summary Soil Index Properties (Das, Ch. -6) Outline of this Lecture 1. Getting the in situ hydraulic conductivity 1.1 pumping

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #5: Groundwater Flow Patterns. Local Flow System. Intermediate Flow System

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #5: Groundwater Flow Patterns. Local Flow System. Intermediate Flow System 1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #5: Groundwater Flow Patterns c Local Flow System 10,000 feet Intermediate Flow System Regional Flow System 20,000 feet Hydrologic section

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

TD 603. Water Resources Milind Sohoni sohoni/ Lecture 6: Mathematics of Groundwater flow. () August 15, / 15

TD 603. Water Resources Milind Sohoni   sohoni/ Lecture 6: Mathematics of Groundwater flow. () August 15, / 15 TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/ sohoni/ Lecture 6: Mathematics of Groundwater flow () August 15, 2012 1 / 15 The basic variables and continuity h(, y, z, t): The head at a point

More information

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1 Geology and Soil Mechanics 55401 /1A (2002-2003) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Evaluation of Flow Transmissibility of Rockfill Structures

Evaluation of Flow Transmissibility of Rockfill Structures Evaluation of Flow Transmissibility of Rockfill Structures Toshihiro MORII 1 and Takahiko TATEISHI 2 Abstract To predict the hydraulic conditions during and after the construction of such structures as

More information

Modeling Seepage Control in Hydraulic Structures

Modeling Seepage Control in Hydraulic Structures Number 3 Volume 13 September2006 Journal of Engineering Dr. Rafa H. El-Suhaili Professor Environmental Engineering Department College of Engineering Fawaz M. Aziz Al-Joubori M.Sc Student Irrigation and

More information

VARIED FLOW IN OPEN CHANNELS

VARIED FLOW IN OPEN CHANNELS Chapter 15 Open Channels vs. Closed Conduits VARIED FLOW IN OPEN CHANNELS Fluid Mechanics, Spring Term 2011 In a closed conduit there can be a pressure gradient that drives the flow. An open channel has

More information

NUMERICAL AND EXPERIMENTAL ANALYSIS OF SEEPAGE BENEATH A MODEL OF A GRAVITY DAM

NUMERICAL AND EXPERIMENTAL ANALYSIS OF SEEPAGE BENEATH A MODEL OF A GRAVITY DAM Engineering Review Vol. 33, Issue 2, 75-84, 2013. 75 NUMERICAL AND EXPERIMENTAL ANALYSIS OF SEEPAGE BENEATH A MODEL OF A GRAVITY DAM T. Jelenkovi V. Travaš * Chair of Hydraulic Engineering, Faculty of

More information

- To determine the coefficient of permeability (or coefficient of hydraulic

- To determine the coefficient of permeability (or coefficient of hydraulic 39 2.6 Permeability Tests 2.6.1 General - To determine te coefficient of permeability (or coefficient of ydraulic conductivity) k. - General metod for determining k directly. 1) Constant-ead metod (for

More information

Earth dam steady state seepage analysis

Earth dam steady state seepage analysis Engineering manual No. 32 Updated 3/2018 Earth dam steady state seepage analysis Program: FEM Water Flow File: Demo_manual_32.gmk Introduction This example illustrates an application of the GEO5 FEM module

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module - 4

More information

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3. Implementation Boreholes 1. Auger Boring 2. Wash Boring 3. Rotary Drilling Boring Boreholes may be excavated by one of these methods: 4. Percussion Drilling The right choice of method depends on: Ground

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet. Geology and Soil Mechanics 55401 /1A (2003-2004) Mark the best answer on the multiple choice answer sheet. 1. Soil mechanics is the application of hydraulics, geology and mechanics to problems relating

More information

Influence of Surrounding Soil Conditions and Joint Sealing on Seepage Resistance of a Sheet Pile Wall, Three Dimensional Numerical Analyses

Influence of Surrounding Soil Conditions and Joint Sealing on Seepage Resistance of a Sheet Pile Wall, Three Dimensional Numerical Analyses IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Influence of Surrounding Soil Conditions and Joint Sealing on Seepage Resistance of a Sheet Pile Wall, Three Dimensional Numerical

More information

' International Institute for Land Reclamation and Improvement. 2 Groundwater Investigations. N.A. de Ridder'? 2.1 Introduction. 2.

' International Institute for Land Reclamation and Improvement. 2 Groundwater Investigations. N.A. de Ridder'? 2.1 Introduction. 2. 2 Groundwater Investigations N.A. de Ridder'? 2.1 Introduction Successful drainage depends largely on a proper diagnosis of the causes of the excess water. For this diagnosis, one must consider: climate,

More information

Application of multiple-point geostatistics on modelling groundwater flow and transport in the Brussels Sands

Application of multiple-point geostatistics on modelling groundwater flow and transport in the Brussels Sands Application of multiple-point geostatistics on modelling groundwater flow and transport in the Brussels Sands Marijke Huysmans (1) and Alain Dassargues (1,2) (1) Earth and Environmental Sciences, K.U.Leuven,

More information

Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3

Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3 Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3 Abstract: The purpose of this experiment was to determine the coefficient of permeability

More information

Shear Strength of Soils

Shear Strength of Soils Shear Strength of Soils STRESSES IN A SOIL ELEMENT t s v Analyze Effective Stresses (s ) Load carried by Soil t Where: s H t t s H s = t f = s v = s H = t = s v Stresses in a Soil Element after Figure

More information

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi GG655/CEE63 Groundwater Modeling Model Theory Water Flow Aly I. El-Kadi Hydrogeology 1 Saline water in oceans = 97.% Ice caps and glaciers =.14% Groundwater = 0.61% Surface water = 0.009% Soil moisture

More information

Chapter 1 - Soil Mechanics Review Part A

Chapter 1 - Soil Mechanics Review Part A Chapter 1 - Soil Mechanics Review Part A 1.1 Introduction Geotechnical Engineer is concerned with predicting / controlling Failure/Stability Deformations Influence of water (Seepage etc.) Soil behavour

More information

CIV E Geotechnical Engineering I Hydraulic Conductivity Tests (Permeability Tests)

CIV E Geotechnical Engineering I Hydraulic Conductivity Tests (Permeability Tests) Purpose Determine the hydraulic conductivity (coefficient of permeability) of sand using the constant-head and falling-head permeameters. Required reading Das 006 Sections 6.1 to 6.6 (pages 156 to 177).

More information

GEOL.3250 Geology for Engineers Glacial Geology

GEOL.3250 Geology for Engineers Glacial Geology GEOL.3250 Geology for Engineers Glacial Geology NAME Part I: Continental Glaciation Continental glaciers are large ice sheets that cover substantial portions of the land area. In the region of accumulation

More information

Bedrock Dewatering for Construction of Marmet and Soo Lock Projects

Bedrock Dewatering for Construction of Marmet and Soo Lock Projects Bedrock Dewatering for Construction of Marmet and Soo Lock Projects Michael Nield Engineering Geologist Dam Safety Production Center, Huntington, WV August 2012 US Army Corps of Engineers BEDROCK DEWATERING

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design

Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design CVEN 302-501 Computer Applications in Engineering and Construction Programming Assignment #9 Principle Stresses and Flow Nets in Geotechnical Design Date distributed : 12/2/2015 Date due : 12/9/2015 at

More information

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2 Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method S. Soleymani 1, A. Akhtarpur 2 1 Group of Dam Construction, Toossab Company, P.O. Box 917751569, Mashhad City, Iran, PH (+98) 511-7684091;

More information

Pit Slope Optimization Based on Hydrogeologic Inputs

Pit Slope Optimization Based on Hydrogeologic Inputs Pit Slope Optimization Based on Hydrogeologic Inputs G. Evin, F. Henriquez, V. Ugorets SRK Consulting (U.S.), Inc., Lakewood, Colorado, USA ABSTRACT With the variability of commodity prices and the constant

More information

River Basin Research Center, Gifu University, Gifu city, Japan.

River Basin Research Center, Gifu University, Gifu city, Japan. Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 Noember 2015, Sydney, Australia Estimation of the strong motion generation area based

More information

10. GEOTECHNICAL EXPLORATION PROGRAM

10. GEOTECHNICAL EXPLORATION PROGRAM Geotechnical site investigations should be conducted in multiple phases to obtain data for use during the planning and design of the tunnel system. Geotechnical investigations typically are performed in

More information

1. Introduction - Tutorials

1. Introduction - Tutorials 1. Introduction - Tutorials 1.1 Physical properties of fluids Give the following fluid and physical properties(at 20 Celsius and standard pressure) with a 4-digit accuracy. Air density : Water density

More information

THE EFFECT OF RESERVOIR WATER LEVEL FLUCTUATION TO THE SEEPAGE ON EARTH DAM

THE EFFECT OF RESERVOIR WATER LEVEL FLUCTUATION TO THE SEEPAGE ON EARTH DAM Civil Engineering Forum Volume XXI/ - January THE EFFECT OF RESERVOIR WATER LEVEL FLUCTUATION TO THE SEEPAGE ON EARTH DAM H. Sudardja Civil Department, Politeknik Negeri Jakarta, Jakarta, INDONESIA Email:

More information

APPENDIX G APPENDIX G SEDIMENT CONTAINMENT SYSTEM DESIGN RATIONALE

APPENDIX G APPENDIX G SEDIMENT CONTAINMENT SYSTEM DESIGN RATIONALE APPENDIX G SEDIMENT CONTAINMENT SYSTEM DESIGN RATIONALE March 18, 2003 This page left blank intentionally. March 18, 2003 G-2 FIGURES Page # Figure G.1 Estimated Runoff from Precipitation Over Different

More information

Geosynthetics Applications and Performance Reviews Select Case Histories

Geosynthetics Applications and Performance Reviews Select Case Histories Geosynthetics Applications and Performance Reviews Select Case Histories Debora J. Miller, Ph.D., P.E.; Dean B. Durkee,, Ph.D., P.E.; Michael A. Morrison, P.E., David B. Wilson, P.E., and Kevin Smith,

More information

Hydraulics and hydrology

Hydraulics and hydrology Hydraulics and hydrology - project exercises - Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

Third Year. Soil Mechanics Lectures. Students

Third Year. Soil Mechanics Lectures. Students Soil Mechanics Lectures 2014-2015 Third Year Students Includes: Soil Formation, Basic Phase Relationship, soil classification, compaction, Consistency of soil, one dimensional fluid flow, two dimensional

More information

Study on Estimation of Hydraulic Conductivity of Porous Media Using Drag Force Model Jashandeep Kaur, M. A. Alam

Study on Estimation of Hydraulic Conductivity of Porous Media Using Drag Force Model Jashandeep Kaur, M. A. Alam 26 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-99 Online ISSN : 2394-499 Themed Section: Engineering and Technology Study on Estimation of Hydraulic Conductivity of Porous Media Using Drag Force Model Jashandeep

More information

Introduction to Well Hydraulics Fritz R. Fiedler

Introduction to Well Hydraulics Fritz R. Fiedler Introduction to Well Hydraulics Fritz R. Fiedler A well is a pipe placed in a drilled hole that has slots (screen) cut into it that allow water to enter the well, but keep the aquifer material out. A well

More information

SEM-2016(01HI CIVIL ENGINEERING. Paper Answer all questions. Question No. 1 does not have internal choice,

SEM-2016(01HI CIVIL ENGINEERING. Paper Answer all questions. Question No. 1 does not have internal choice, Roll No. Candidate should write his/her Roll No. here. Total No. of Questions : 5 No. of Printed Pages : 8 SEM-2016(01HI CIVIL ENGINEERING Paper - 11 Time : 3 Hours ] [ Total Marks : 300 Instructions to

More information

COMPARISION OF HYDRAULIC GRADIENT AND UPLIFT PRESSURE IN THREE TYPES OF DAMS: HOMOGENEOUS, HETEROGENEOUS EARTHFILL DAMS AND CONCRETE GRAVITY DAM

COMPARISION OF HYDRAULIC GRADIENT AND UPLIFT PRESSURE IN THREE TYPES OF DAMS: HOMOGENEOUS, HETEROGENEOUS EARTHFILL DAMS AND CONCRETE GRAVITY DAM SAJCCE 1:1 (2015) 91-103 October 2015 ISSN: 2394-2258 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.18642/sajcce_7100121544 COMPARISION OF HYDRAULIC GRADIENT AND UPLIFT PRESSURE

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

APPENDIX C. Borehole Data

APPENDIX C. Borehole Data APPENDIX C Borehole Data MAJOR DIVISIONS SOIL CLASSIFICATION CHART SYMBOLS GRAPH LETTER TYPICAL DESCRIPTIONS ADDITIONAL MATERIAL

More information

PHY121 Physics for the Life Sciences I

PHY121 Physics for the Life Sciences I PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes

More information

Chapter 5 Control Volume Approach and Continuity Equation

Chapter 5 Control Volume Approach and Continuity Equation Chapter 5 Control Volume Approach and Continuity Equation Lagrangian and Eulerian Approach To evaluate the pressure and velocities at arbitrary locations in a flow field. The flow into a sudden contraction,

More information

River Processes. Drainage Basin Morphometry

River Processes. Drainage Basin Morphometry Drainage Basin Morphometry River Processes Morphometry - the measurement and mathematical analysis of the configuration of the earth s surface and of the shape and dimensions of its landforms. Horton (1945)

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,500 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water Department of Hydro Sciences, Institute for Urban Water Management Urban Water 1 Global water aspects Introduction to urban water management 3 Basics for systems description 4 Water transport 5 Matter

More information