Permeability and fluid transport

Size: px
Start display at page:

Download "Permeability and fluid transport"

Transcription

1 Permeability and fluid transport Thermal transport: Fluid transport: q = " k # $p with specific discharge (filter velocity) q [m s 1 ] pressure gradient p [N m 3 ] dynamic viscosity η [N s m 2 ] (intrinsic) permeability k [m 2 ]

2 Henry Darcy (1856): Water movement in sands, specific discharge and percolation velocity related to hydraulic head and proportionality constant (hydraulic conductivity) Darcy experiment

3 Darcy experiment Specific discharge q = k' "h "l with hydraulic conductivity k [m s 1 ] and hydraulic head δh/δl For pressure gradient of 1 atm/cm and fluid of 1 cp (10 3 N s/m 2 ) viscosity, k = 10 3 cm s 1 ( 1 Darcy, uncompacted sand w/ 0.5 mm grain size) yields q = 1 cm/s

4 Microscopic & macroscopic perspectives on fluid flow Filter velocity q (macroscopic) Pore-scale velocity q φ = q/φ (microscopic) k x k z Flow regime: laminar - turbulent Darcian flow: Re < 1 (laminar), Reynolds number Re 1 < Re < 300 (transition regime), Re = d q ρ / η Re 300 (turbulent) d - characteristic pore size Re = 10 3 m 10 3 m s kg m 3 / 10-3 Ns m 2 = 1

5 Microscopic & macroscopic perspectives on fluid flow Filter velocity q (macroscopic) Pore-scale velocity q φ = q/φ (microscopic) k x k z Sediment Fractured rock Karst

6 Microscopic & macroscopic perspectives on fluid flow Application: consolidation of magmatic melts Nucleation and crystal growth model provides distribution of solid and melt phases Flow through pore network controls microstructural evolution and mineralogy Basalt cryst n w/ plagioclase & clinopyroxene Hersum (2006), silvermagma.eps.jhu.edu/taber.htm

7 Microscopic & macroscopic perspectives on fluid flow Application: consolidation of magmatic melts Nucleation and crystal growth model provides distribution of solid and melt phases Flow through pore network controls microstructural evolution and mineralogy Lattice-Boltzmann simulations of velocity distributions and derivation of permeability (k = 1.7 x m 2 ) Hersum (2006), silvermagma.eps.jhu.edu/taber.htm

8 Darcy s law, pipe flow and permeability models Straight pipe flow (Hagen-Poiseuille): dv dt = " r4 8# $p L Tortuous flow path: Tortuosity T = l L Specific surface a = 2 r Porosity " = # r 2 l $ = # T r ' & ) L 3 % L ( 2 q = dv 1 With dt L 2 Darcy s law yields the permeability as a function of porosity and the pore morphology: k = " r 2 8 T 2 k as function of rock matrix specific surface a m : k = 2 1#" " 3 ( ) 2 a m 2 T 2 r l L

9 Darcy s law, pipe flow and permeability models k as function of rock matrix specific surface a m : k = 2 1#" Kozeny-Carman: k is proportional to φ 3 /(1-φ) 2 and square of grain size d 2 (spherical grains), resulting in various forms with empirically determined shape factors, such as: k = B " 3 a m 2 For spherical grains in its simplest form with geometric factor B a m = 3 2 1" # ( ) d which yields (B given as 1/180 by Bear, 1972) " 3 ( ) 2 a m 2 T 2 k = d 2 " 3 ( ) # "

10 Permeability ranges Primary vs. secondary porosity Consolidation Melt fraction Schoen, 2004

11 Permeability-porosity relationships Tiab & Donaldson (2004)

12 Permeability-porosity relationships Tiab & Donaldson (2004) coarse sand medium sand fine sand silt clay

13

14 Measurement of permeability Permeameter: Classic Darcy approach (fluid, gas) Freeze & Cherry, 1979

15 Number of channels Hydraulic head [m] Measurement of permeability Ultrasonic transducer In situ pump or bail tests: measuring volume flux into hole as a function of hydraulic head $ g# h(t) = h(t 0 )exp&"k z % µl t ' ) ( h(t) 6t 5t 4t 3t 2t 1t PC Hydraulic head [m] turbulent Laminar branch Data points Exponential fit -> R eff = 2.1 mm Effective pore radius can be estimated from transition point r eff = 3 4"2 L Re c # 2 g h c A C 80 mm B Number of fiktiv channels per 100 cm 2 per 100 cm t 2t 3t 4t 1 Time Time [s] 2 3 Characteristic pore length [mm] -> R eff = 2.3 mm Characteristic pore length [mm] 4 or obtained from analysis of pores in (thin-section) samples Freitag & Eicken, 2003

16 Measurement of permeability In situ pump or bail tests: measuring volume flux into hole as a function of hydraulic head $ g# h(t) = h(t 0 )exp&"k z % µl t ' ) ( Correction for nonuniform flow into hole "(L) = L Freitag & Eicken, 2003

17 Measurement of permeability In situ pump or bail tests: measuring volume flux into hole as a function of hydraulic head $ g# h(t) = h(t 0 )exp&"k z % µl t ' ) ( Comparison of measurement with maximum bound given by pore radius of single channel (laminar regime) r max = 4 8R 2 k Freitag & Eicken, 2003

18 Measurement of permeability Nuclear Magnetic Resonance (NMR) and other advanced techniques Kleinberg et al., 2005 Wang et al., 2004

19 Measurement of permeability Indirect approaches: - Surface area determination (adsorption isotherms) k = B " 3 - tortuosity and pore morphology measurements k = 2 1#" - pore-scale modeling " 3 a m 2 ( ) 2 a m 2 T 2 Formation factor: linkages between electrical properties and permeability (to be discussed) Hersum (2006), silvermagma.eps.jhu.edu/taber.htm

20

21 Percolation transition in sea ice? Field measurements show some hint of a critical transition at porosities around 0.05 to 0.07 Upper bound for lognormal size distribution of pores: Golden & Eicken, in prep.

22 Magnetic-resonance imaging (MRI) MRI lab at Alfred Wegener Institute Bruker Biospec 47/40 (200 MHz 1H) actively decoupled gradient coils BGU 26 (50 mt/m) BGU 12 (200 mt/m) HF-coils Ø 20 cm 1H resonator Ø 15 / 9 cm 1H, 31P, 23Na und 19F resonators 2kW HF amplifier Slice thickness 0.4 mm, in-plane resolution <0.1 mm

23 Cooled MRI sample holder Temperature range 35 to 0 C Dielectric properties of ice and brine at 200 MHz (high loss)

24 Grain and pore microstructure: Overview Granular ice, 25 cm depth A: hor, crossed pol; B, C hor & vert MRI ( 3 C) Scale bar 10 mm Columnar ice, cm depth A: hor, crossed pol; B, C hor & vert MRI ( 3 C) Scale bar 10 mm

25 Changes in pore microstructure upon warming Columnar ice at 6.0 C (A, C) and 2.9 C (B, D) Granular ice at 6.2 C (E) and 3.0 C (F) Scale bar 2 mm

26 Changes in pore microstructure upon warming (II) Pore microstructural changes upon warming of columnar ice (13-16 cm depth, March 1999)

27 Changes in pore microstructure upon warming (III) Pore microstructural changes upon warming of columnar ice (13-16 cm depth, March 1999)

28 Kozeny-Carman relation in a percolation regime Replace porosity f with (φ φ c ) in Kozeny- Carman relation to account for strongly non-linear behaviour of permeability in critical transition regime Mavko & Nur, 1997

29 References Bear, J. 1972, Dynamics of fluids in porous media, Elsevier, New York. Freeze, R. A., and J. A. Cherry 1979, Groundwater, Prentice Hall, Englewood Cliffs, N.J. Freitag, J., and H. Eicken 2003, Melt water circulation and permeability of Arctic summer sea ice derived from hydrological field experiments, J. Glaciol., 49, Mavko, G., and A. Nur 1997, The effect of a percolation threshold in the Kozeny- Carman relation, Geophysics, 62, Schön, J. H. 2004, Physical properties of rocks - Fundamentals and principles of petrophysics, Elsevier, Amsterdam. Tiab, D., and E. C. Donaldson 2004, Petrophysics - Theory and practice of measuring reservoir rock and fluid transport properties, Elsevier, Amsterdam. Wang, R., R. W. Mair, M. S. Rosen, D. G. Cory, and R. L. Walsworth 2004, Simultaneous measurement of rock permeability and effective porosity using laser-polarized noble gas NMR, Phys. Rev. E., 70,

KOZENY-CARMAN EQUATION REVISITED. Jack Dvorkin Abstract

KOZENY-CARMAN EQUATION REVISITED. Jack Dvorkin Abstract KOZENY-CARMAN EQUATION REVISITED Jack Dvorkin -- 009 Abstract The Kozeny-Carman equation is often presented as permeability versus porosity, grain size, and tortuosity. When it is used to estimate permeability

More information

GEOTECHNICAL LABORATORY

GEOTECHNICAL LABORATORY 14.333 GEOTECHNICAL LABORATORY BERNOULLI S EQUATION h u w v 2 2g Z h = Total Head u = Pressure v = Velocity g = Acceleration due to Gravity w = Unit Weight of Water Slide 1 of 14 h 14.333 GEOTECHNICAL

More information

Darcy's Law. Laboratory 2 HWR 531/431

Darcy's Law. Laboratory 2 HWR 531/431 Darcy's Law Laboratory HWR 531/431-1 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify

More information

Permeability Estimates & Saturation Height Functions: A talk of two halves. Dr Joanne Tudge LPS Petrophysics 101 Seminar 17 th March 2016

Permeability Estimates & Saturation Height Functions: A talk of two halves. Dr Joanne Tudge LPS Petrophysics 101 Seminar 17 th March 2016 Permeability Estimates & Saturation Height Functions: A talk of two halves Dr Joanne Tudge LPS Petrophysics 101 Seminar 17 th March 2016 Permeability: What is it? How do we measure it? Why do we need it?

More information

Petrophysics. Theory and Practice of Measuring. Properties. Reservoir Rock and Fluid Transport. Fourth Edition. Djebbar Tiab. Donaldson. Erie C.

Petrophysics. Theory and Practice of Measuring. Properties. Reservoir Rock and Fluid Transport. Fourth Edition. Djebbar Tiab. Donaldson. Erie C. Petrophysics Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties Fourth Edition Djebbar Tiab Erie C. Donaldson ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS

More information

Site Characterization & Hydrogeophysics

Site Characterization & Hydrogeophysics Site Characterization & Hydrogeophysics (Source: Matthew Becker, California State University) Site Characterization Definition: quantitative description of the hydraulic, geologic, and chemical properties

More information

Fluid Flow Fluid Flow and Permeability

Fluid Flow Fluid Flow and Permeability and Permeability 215 Viscosity describes the shear stresses that develop in a flowing fluid. V z Stationary Fluid Velocity Profile x Shear stress in the fluid is proportional to the fluid velocity gradient.

More information

Hydraulic properties of porous media

Hydraulic properties of porous media PART 5 Hydraulic properties of porous media Porosity Definition: Void space: n V void /V total total porosity e V void /V solid Primary porosity - between grains Secondary porosity - fracture or solution

More information

water L v i Chapter 4 Saturation

water L v i Chapter 4 Saturation 4. Resistivity The presence of hydrocarbons is identified by the electrical resistance of the formation. These electrical properties of rocks depend on the pore geometry and fluid distribution. That is,

More information

Downloaded 02/05/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 02/05/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Relationship among porosity, permeability, electrical and elastic properties Zair Hossain Alan J Cohen RSI, 2600 South Gessner Road, Houston, TX 77063, USA Summary Electrical resisivity is usually easier

More information

Study on Estimation of Hydraulic Conductivity of Porous Media Using Drag Force Model Jashandeep Kaur, M. A. Alam

Study on Estimation of Hydraulic Conductivity of Porous Media Using Drag Force Model Jashandeep Kaur, M. A. Alam 26 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-99 Online ISSN : 2394-499 Themed Section: Engineering and Technology Study on Estimation of Hydraulic Conductivity of Porous Media Using Drag Force Model Jashandeep

More information

The effect of CO 2 -fluid-rock interactions on the porosity and permeability of calcite-bearing sandstone

The effect of CO 2 -fluid-rock interactions on the porosity and permeability of calcite-bearing sandstone The effect of CO 2 -fluid-rock interactions on the porosity and permeability of calcite-bearing sandstone Benoit Lamy-Chappuis, Bruce Yardley, Carlos Grattoni School of Earth and Environment, University

More information

RATE OF FLUID FLOW THROUGH POROUS MEDIA

RATE OF FLUID FLOW THROUGH POROUS MEDIA RATE OF FLUID FLOW THROUGH POROUS MEDIA Submitted by Xu Ming Xin Kiong Min Yi Kimberly Yip Juen Chen Nicole A project presented to the Singapore Mathematical Society Essay Competition 2013 1 Abstract Fluid

More information

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay Groundwater in Unconsolidated Deposits Alluvial (fluvial) deposits - consist of gravel, sand, silt and clay - laid down by physical processes in rivers and flood plains - major sources for water supplies

More information

Hydrological geophysical relationships

Hydrological geophysical relationships International PhD Course in HYDROGEOPHYSICS Hydrological geophysical relationships Andrew Binley Lancaster University Overview In the course we will concentrate on electrical, electromagnetic and radar

More information

Porosity. Gabriella Obbágy Sarah Louis Annemarie Simon. M.Geo.136b, TM 2: Applications in hydrocarbon exploration

Porosity. Gabriella Obbágy Sarah Louis Annemarie Simon. M.Geo.136b, TM 2: Applications in hydrocarbon exploration Porosity Gabriella Obbágy Sarah Louis Annemarie Simon M.Geo.136b, TM 2: Applications in hydrocarbon exploration Absolute porosity (Φ a ) The ratio of the volume of the pore spaces or voids in a rock to

More information

LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION

LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION Jack Dvorkin Stanford University and Rock Solid Images April 25, 2005 SUMMARY In a viscoelastic sample, the causality principle links the attenuation of

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

Chapter 3 Permeability

Chapter 3 Permeability 3.2 Darcy s Law In 1856, Darcy investigated the flow of water through sand filters for water purification. His experimental apparatus is shown in Figure 3.11. By empirical observation Figure 3.11 Schematic

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

Pore radius distribution and fractal dimension derived from spectral induced polarization

Pore radius distribution and fractal dimension derived from spectral induced polarization Pore radius distribution and fractal dimension derived from spectral induced polarization Zeyu Zhang 1 & Andreas Weller 2 1) Southwest Petroleum University, China & Bundesanstalt für Materialforschung

More information

Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone

Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone Th P06 05 Permeability Estimation Using CFD Modeling in Tight Carboniferous Sandstone P.I. Krakowska (AGH University of Science and Technology in Krakow), P.J. Madejski* (AGH University of Science and

More information

Groundwater Hydrology

Groundwater Hydrology EXERCISE 12 Groundwater Hydrology INTRODUCTION Groundwater is an important component of the hydrologic cycle. It feeds lakes, rivers, wetlands, and reservoirs; it supplies water for domestic, municipal,

More information

A Model for Non-Newtonian Flow in Porous Media at Different Flow Regimes

A Model for Non-Newtonian Flow in Porous Media at Different Flow Regimes A Model for Non-Newtonian Flow in Porous Media at Different Flow Regimes Quick introduction to polymer flooding Outline of talk Polymer behaviour in bulk versus porous medium Mathematical modeling of polymer

More information

q v = - K h = kg/ν units of velocity Darcy's Law: K = kρg/µ HYDRAULIC CONDUCTIVITY, K Proportionality constant in Darcy's Law

q v = - K h = kg/ν units of velocity Darcy's Law: K = kρg/µ HYDRAULIC CONDUCTIVITY, K Proportionality constant in Darcy's Law Darcy's Law: q v - K h HYDRAULIC CONDUCTIVITY, K m/s K kρg/µ kg/ν units of velocity Proportionality constant in Darcy's Law Property of both fluid and medium see D&S, p. 62 HYDRAULIC POTENTIAL (Φ): Φ g

More information

Water in Soil Sections in Craig

Water in Soil Sections in Craig Water in Soil Sections 2.1-2.6 in Craig Outlines Introduction Darcy s Law Volume of water flowing per unit time Measuring K in laboratory Seepage Theory Flow Net Introduction All soils are permeable materials,

More information

CONDUCTIVITY OF SOILS WITH PREFERENTIAL FLOW PATHS

CONDUCTIVITY OF SOILS WITH PREFERENTIAL FLOW PATHS CONDUCTIVITY OF SOILS WITH PREFERENTIAL FLOW PATHS J. Lin and R.S. Govindaraju, Department of Civil Engineering, Kansas State University, Manhattan, KS, 66506, Phone: 913-532-5862 ABSTRACT Laboratory soil

More information

Darcy s Law. Darcy s Law

Darcy s Law. Darcy s Law Darcy s Law Last time Groundwater flow is in response to gradients of mechanical energy Three types Potential Kinetic Kinetic energy is usually not important in groundwater Elastic (compressional) Fluid

More information

PII S X(98) DEPHASING OF HAHN ECHO IN ROCKS BY DIFFUSION IN SUSCEPTIBILITY- INDUCED FIELD INHOMOGENEITIES

PII S X(98) DEPHASING OF HAHN ECHO IN ROCKS BY DIFFUSION IN SUSCEPTIBILITY- INDUCED FIELD INHOMOGENEITIES PII S0730-725X(98)00059-9 Magnetic Resonance Imaging, Vol. 16, Nos. 5/6, pp. 535 539, 1998 1998 Elsevier Science Inc. All rights reserved. Printed in the USA. 0730-725X/98 $19.00.00 Contributed Paper DEPHASING

More information

Comparison of the Effects of k-ϵ, k-ω, and Zero Equation Models on Characterization of Turbulent Permeability of Porous Media

Comparison of the Effects of k-ϵ, k-ω, and Zero Equation Models on Characterization of Turbulent Permeability of Porous Media Comparison of the Effects of k-ϵ, k-ω, and Zero Equation Models on Characterization of Turbulent Permeability of Porous Media Charlie Matsubara *, Tim Kuo, Helen Wu PIM Consulting, No. 16, Gonyequ 1 st

More information

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

Permeability in Soils

Permeability in Soils Permeability in Soils Contents: Darcy s law- assumption and validity, coefficient of permeability and its determination (laboratory and field), factors affecting permeability, permeability of stratified

More information

Simultaneous measurement of rock permeability and effective porosity using laser-polarized noble gas NMR

Simultaneous measurement of rock permeability and effective porosity using laser-polarized noble gas NMR PHYSICAL REVIEW E 70, 026312 (2004) Simultaneous measurement of rock permeability and effective porosity using laser-polarized noble gas NMR R. Wang, 1,2 R. W. Mair, 1,2, * M. S. Rosen, 1 D. G. Cory, 2

More information

Determination of permeability using electrical properties of reservoir rocks by the critical path analysis

Determination of permeability using electrical properties of reservoir rocks by the critical path analysis World Essays Journal / 3 (2): 46-52, 2015 2015 Available online at www. worldessaysj.com Determination of permeability using electrical properties of reservoir rocks by the critical path analysis Ezatallah

More information

Modeling Salinity of First-Year Sea Ice

Modeling Salinity of First-Year Sea Ice GFDL, Ocean Climate Model Development Barrow, AK, Jan 2009 Meeting, Oct 30, 2009 037 047 Modeling Salinity of First-Year Sea Ice Chris Petrich, Hajo Eicken, Pat Langhore Geophysical Institute University

More information

Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3

Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3 Permeability of Sandy Soil CIVE 2341 Section 2 Soil Mechanics Laboratory Experiment #5, Laboratory #6 SPRING 2015 Group #3 Abstract: The purpose of this experiment was to determine the coefficient of permeability

More information

Permeability of Dual-Structured Porous Media

Permeability of Dual-Structured Porous Media 56 The Open Transport Phenomena Journal, 2011, 3, 56-61 Permeability of Dual-Structured Porous Media Open Access Ehsan Khajeh * and Daan M. Maijer Department of Materials Engineering, The University of

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Diffusion and Adsorption in porous media Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Devices used to Measure Diffusion in Porous Solids Modes of transport in

More information

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground

Soil Mechanics I 3 Water in Soils. 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground Soil Mechanics I 3 Water in Soils 1. Capillarity, swelling 2. Seepage 3. Measurement of hydraulic conductivity 4. Effective stress in the ground 1 Influence of Water - Basics WATER IN SOIL - affects soil

More information

INVESTIGATION ON THE EFFECT OF STRESS ON CEMENTATION FACTOR OF IRANIAN CARBONATE OIL RESERVOIR ROCKS

INVESTIGATION ON THE EFFECT OF STRESS ON CEMENTATION FACTOR OF IRANIAN CARBONATE OIL RESERVOIR ROCKS SCA4-41 1/7 INVESTIGATION ON THE EFFECT OF STRESS ON CEMENTATION FACTOR OF IRANIAN CARBONATE OIL RESERVOIR ROCKS R. Behin, RIPI, NIOC This paper was prepared for presentation at the International Symposium

More information

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed

Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed Paper No. : 04 Paper Title: Unit Operations in Food Processing Module- 18: Circulation of fluids through porous bed 18.1 Introduction A typical packed bed is a cylindrical column that is filled with a

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Stokes' law and Reynold number Dr. Zifei Liu The motion of a particle in a fluid environment, such as air or water m dv =F(t) - F dt d - 1 4 2 3 πr3

More information

Stochastic geometry and porous media

Stochastic geometry and porous media Stochastic geometry and transport in porous media Hans R. Künsch Seminar für Statistik, ETH Zürich February 15, 2007, Reisensburg Coauthors Thanks to the coauthors of this paper: P. Lehmann, A. Kaestner,

More information

SCA : A STRUCTURAL MODEL TO PREDICT TRANSPORT PROPERTIES OF GRANULAR POROUS MEDIA Guy Chauveteau, IFP, Yuchun Kuang IFP and Marc Fleury, IFP

SCA : A STRUCTURAL MODEL TO PREDICT TRANSPORT PROPERTIES OF GRANULAR POROUS MEDIA Guy Chauveteau, IFP, Yuchun Kuang IFP and Marc Fleury, IFP SCA2003-53: A STRUCTURAL MODEL TO PREDICT TRANSPORT PROPERTIES OF GRANULAR POROUS MEDIA Guy Chauveteau, IFP, Yuchun Kuang IFP and Marc Fleury, IFP This paper was prepared for presentation at the International

More information

ADVANCED SOIL MECHANICS

ADVANCED SOIL MECHANICS BERNOULLI S EQUATION h Where: u w g Z h = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weight of Water h 14.531 ADVANCED SOIL MECHANICS BERNOULLI S EQUATION IN SOIL u w g

More information

Water Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:

Water Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations: Water Circuit Lab When a fluid flows in a conduit, there is friction between the flowing fluid and the pipe walls. The result of this friction is a net loss of energy in the flowing fluid. The fluid pressure

More information

RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA

RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA GEOPHYSICS RADIONUCLIDE DIFFUSION IN GEOLOGICAL MEDIA C. BUCUR 1, M. OLTEANU 1, M. PAVELESCU 2 1 Institute for Nuclear Research, Pitesti, Romania, crina.bucur@scn.ro 2 Academy of Scientists Bucharest,

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Groundwater Chapter 10 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois Co Jennifer Cole Northeastern University

More information

X-Ray Microtomography and NMR: complimentary tools for evaluation of pore structure within a core

X-Ray Microtomography and NMR: complimentary tools for evaluation of pore structure within a core SCA2014-038 1/6 X-Ray Microtomography and NMR: complimentary tools for evaluation of pore structure within a core Aleksandr Denisenko, Ivan Yakimchuk Schlumberger This paper was prepared for presentation

More information

ELECTROKINETIC GROUNDWATER EXPLORATION: A NEW GEOPHYSICAL TECHNIQUE

ELECTROKINETIC GROUNDWATER EXPLORATION: A NEW GEOPHYSICAL TECHNIQUE 181 ELECTROKINETIC GROUNDWATER EXPLORATION: A NEW GEOPHYSICAL TECHNIQUE Sukhyoun Kim, Graham Heinson & John Joseph CRC LEME, School of Earth and Environment Sciences, University of Adelaide, SA, 5005 ABSTRACT

More information

Petrophysical Rock Typing: Enhanced Permeability Prediction and Reservoir Descriptions*

Petrophysical Rock Typing: Enhanced Permeability Prediction and Reservoir Descriptions* Petrophysical Rock Typing: Enhanced Permeability Prediction and Reservoir Descriptions* Wanida Sritongthae 1 Search and Discovery Article #51265 (2016)** Posted June 20, 2016 *Adapted from oral presentation

More information

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field Amit Suman and Tapan Mukerji Department of Energy Resources Engineering Stanford University

More information

Investigating the role of tortuosity in the Kozeny-Carman equation

Investigating the role of tortuosity in the Kozeny-Carman equation Investigating the role of tortuosity in the Kozeny-Carman equation Rebecca Allen, Shuyu Sun King Abdullah University of Science and Technology rebecca.allen@kaust.edu.sa, shuyu.sun@kaust.edu.sa Sept 30,

More information

EPS 50 - Lab 10: Groundwater Flow and Glaciers

EPS 50 - Lab 10: Groundwater Flow and Glaciers Name: EPS 50 - Lab 10: Groundwater Flow and Glaciers Part 1: Groundwater Flow Part 2: Darcy s Law Part 3: Glacial Deposits and Flow -Chapter 17, p. 478-492: Hydrology of Groundwater -Chapter 17, p. 485-486:

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 13 Permeability and Seepage -2 Conditions favourable for the formation quick sand Quick sand is not a type of sand but a flow condition occurring within a cohesion-less soil when its effective stress is

More information

Methane hydrate rock physics models for the Blake Outer Ridge

Methane hydrate rock physics models for the Blake Outer Ridge Stanford Exploration Project, Report 80, May 15, 2001, pages 1 307 Methane hydrate rock physics models for the Blake Outer Ridge Christine Ecker 1 ABSTRACT Seismic analyses of methane hydrate data from

More information

Building ground level

Building ground level TMA4195 MATHEMATICAL MODELLING PROJECT 212: AQUIFER THERMAL ENERGY STORAGE 1. Introduction In the project we will study a so-called Aquifer Thermal Energy Storage (ATES) system with the aim of climitizing

More information

Hydraulic conductivity of granular materials

Hydraulic conductivity of granular materials 3 r d International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, Hydraulic conductivity of granular materials Namir K.S.Al-Saoudi Building and construction Eng. Dept.

More information

2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007

2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007 2nd International Conference Determination of the Soil Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution Alexander Scheuermann & Andreas Bieberstein Motivation

More information

The importance of understanding coupled processes in geothermal reservoirs. Thomas Driesner October 19, 2016

The importance of understanding coupled processes in geothermal reservoirs. Thomas Driesner October 19, 2016 The importance of understanding coupled processes in geothermal reservoirs Thomas Driesner October 19, 2016 Findings from natural hydrothermal systems Interaction of permeability and fluid properties The

More information

THE ROCK PHYSICS HANDBOOK

THE ROCK PHYSICS HANDBOOK THE ROCK PHYSICS HANDBOOK TOOLS FOR SEISMIC ANALYSIS IN POROUS MEDIA Gary Mavko Tapan Mukerji Jack Dvorkin Stanford University Stanford University Stanford University CAMBRIDGE UNIVERSITY PRESS CONTENTS

More information

Geology 228/378 Applied & Environmental Geophysics Lecture 8. Induced Polarization (IP) and Nuclear Magnetic Resonance (NMR)

Geology 228/378 Applied & Environmental Geophysics Lecture 8. Induced Polarization (IP) and Nuclear Magnetic Resonance (NMR) Geology 228/378 Applied & Environmental Geophysics Lecture 8 Induced Polarization (IP) and Nuclear Magnetic Resonance (NMR) Induced Polarization (IP) and Nuclear Magnetic Resonance (NMR) 1. Time domain

More information

Time & place: Fridays, 10:30-11:30am Natural Science Bldg 235, 1st meeting Friday Sept 8

Time & place: Fridays, 10:30-11:30am Natural Science Bldg 235, 1st meeting Friday Sept 8 GEOS 692, Transport Processes and Physical Properties of Rocks (1 CR) Time & place: Fridays, 10:30-11:30am Natural Science Bldg 235, 1st meeting Friday Sept 8 Instructor: Hajo Eicken, Geophysical Institute,

More information

MEASURING THE PERMEABILITY OF OPEN-FRAMEWORK GRAVEL. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

MEASURING THE PERMEABILITY OF OPEN-FRAMEWORK GRAVEL. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science MEASURING THE PERMEABILITY OF OPEN-FRAMEWORK GRAVEL A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By James Thomas Ferreira Jr. B.S., Bridgewater State

More information

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University Soils, Hydrogeology, and Aquifer Properties Philip B. Bedient 2006 Rice University Charbeneau, 2000. Basin Hydrologic Cycle Global Water Supply Distribution 3% of earth s water is fresh - 97% oceans 1%

More information

I. Borsi. EMS SCHOOL ON INDUSTRIAL MATHEMATICS Bedlewo, October 11 18, 2010

I. Borsi. EMS SCHOOL ON INDUSTRIAL MATHEMATICS Bedlewo, October 11 18, 2010 : an : an (Joint work with A. Fasano) Dipartimento di Matematica U. Dini, Università di Firenze (Italy) borsi@math.unifi.it http://web.math.unifi.it/users/borsi porous EMS SCHOOL ON INDUSTRIAL MATHEMATICS

More information

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project Rock Physics of Shales and Source Rocks Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project 1 First Question: What is Shale? Shale -- a rock composed of mud-sized particles, such

More information

Permeability Prediction in Carbonate Reservoir Rock Using FZI

Permeability Prediction in Carbonate Reservoir Rock Using FZI Iraqi Journal of Chemical and Petroleum Engineering Iraqi Journal of Chemical and Petroleum Engineering Vol.14 No.3 (September 2013) 49-54 ISSN: 1997-4884 University of Baghdad College of Engineering Permeability

More information

SOIL MECHANICS

SOIL MECHANICS 4.330 SOIL MECHANICS BERNOULLI S EQUATION Were: u w g Z = Total Head u = Pressure = Velocity g = Acceleration due to Graity w = Unit Weigt of Water Slide of 37 4.330 SOIL MECHANICS BERNOULLI S EQUATION

More information

Pressure Drop Separation during Aqueous Polymer Flow in Porous Media

Pressure Drop Separation during Aqueous Polymer Flow in Porous Media Pressure Drop Separation during Aqueous Polymer Flow in Porous Media D.C. Raharja 1*, R.E. Hincapie 1, M. Be 1, C.L. Gaol 1, L. Ganzer 1 1 Department of Reservoir Engineering, Clausthal University of Technology

More information

NMR RELAXIVITY GROUPING OR NMR FACIES IDENTIFICATION IS KEY TO EFFECTIVE INTEGRATION OF CORE NUCLEAR MAGNETIC RESONANCE DATA WITH WIRELINE LOG

NMR RELAXIVITY GROUPING OR NMR FACIES IDENTIFICATION IS KEY TO EFFECTIVE INTEGRATION OF CORE NUCLEAR MAGNETIC RESONANCE DATA WITH WIRELINE LOG NMR RELAXIVITY GROUPING OR NMR FACIES IDENTIFICATION IS KEY TO EFFECTIVE INTEGRATION OF CORE NUCLEAR MAGNETIC RESONANCE DATA WITH WIRELINE LOG Henry A. Ohen, Paulinus M. Enwere, and Jerry Kier, Core Laboratories

More information

On the origin of Darcy s law 1

On the origin of Darcy s law 1 Chapter 1 On the origin of Darcy s law 1 Cyprien Soulaine csoulain@stanford.edu When one thinks about porous media, the immediate concepts that come to mind are porosity, permeability and Darcy s law.

More information

Porosity-Permeability Relations in Granular, Fibrous and Tubular Geometries

Porosity-Permeability Relations in Granular, Fibrous and Tubular Geometries Porosity-Permeability Relations in Granular, Fibrous and Tubular Geometries November 21 st Feng Xiao, Xiaolong Yin Colorado School of Mines American Physical Society, 64 th Annual DFD Meeting, Baltimore,

More information

Geophysical Research Letters

Geophysical Research Letters Geophysical Research Letters 28 AUGUST 2007 Volume 34 Number 16 American Geophysical Union A unified approach to understanding permeability in sea ice Solving the mystery of booming sand dunes Entering

More information

Filtration. Praktikum Mechanical Engineering. Spring semester 2016

Filtration. Praktikum Mechanical Engineering. Spring semester 2016 Praktikum Mechanical Engineering Spring semester 2016 Filtration Supervisor: Anastasia Spyrogianni ML F24 spyrogianni@ptl.mavt.ethz.ch Tel.: 044 632 39 52 1 1 Table of Contents 1 TABLE OF CONTENTS... 2

More information

THEORY. Water flow. Air flow

THEORY. Water flow. Air flow THEORY Water flow Air flow Does Suction Gradient Cause Flow? Coarse stone Fine ceramic Suction gradient to the right No suction gradient but still flow Does water content gradient cause Flow? Suction gradient

More information

Glacier Hydrology II: Theory and Modeling

Glacier Hydrology II: Theory and Modeling Glacier Hydrology II: Theory and Modeling McCarthy Summer School 2018 Matt Hoffman Gwenn Flowers, Simon Fraser Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Observations

More information

Snow and Sea Ice Physics, Thermodynamics, Dynamics and Remote Sensing

Snow and Sea Ice Physics, Thermodynamics, Dynamics and Remote Sensing Snow and Sea Ice Physics, Thermodynamics, Dynamics and Remote Sensing Ryan Galley Center for Earth Observation Science Clayton H. Riddell Faculty of Earth, Environment and Resources Freezing point of seawater

More information

PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES

PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES SCA2007-42 1/6 PROBING THE CONNECTIVITY BETWEEN PORES IN ROCK CORE SAMPLES Geir Humborstad Sørland 1,3, Ketil Djurhuus 3, Hege Christin Widerøe 2, Jan R. Lien 3, Arne Skauge 3, 1 Anvendt Teknologi AS,

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER SECOND EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina A WILEY-INTERSCIENCE PUBUCATION JOHN WILEY & SONS, INC. New York

More information

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow

UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons

More information

Particles in Fluids. Sedimentation Fluidized beds Size segregation under shear Pneumatic transport Filtering Saltation Rheology of suspensions

Particles in Fluids. Sedimentation Fluidized beds Size segregation under shear Pneumatic transport Filtering Saltation Rheology of suspensions Particles in Fluids Sedimentation Fluidized beds Size segregation under shear Pneumatic transport Filtering Saltation Rheology of suspensions Sandstorm Fluidized Bed Equation of motion v of v fluid v vx

More information

1.5 Permeability Tests

1.5 Permeability Tests 1-17 1.5 Permeability Tests 1.5.1 General - To determine the coefficient of permeability(or coefficient of hydraulic conductivity) k - General method for determining k directly. 1) Constant-head method

More information

Malleswar Yenugu. Miguel Angelo. Prof. Kurt J Marfurt. School of Geology and Geophysics, University of Oklahoma. 10 th November, 2009

Malleswar Yenugu. Miguel Angelo. Prof. Kurt J Marfurt. School of Geology and Geophysics, University of Oklahoma. 10 th November, 2009 Integrated Studies of Seismic Attributes, Petrophysics and Seismic Inversion for the characterization of Mississippian Chat, Osage County, Northeast Oklahoma By Malleswar Yenugu 10 th November, 2009 Miguel

More information

Thermal properties + heat transfer

Thermal properties + heat transfer Thermal properties + heat transfer Daniel Pringle, Fall 2006, GEOS 692, University Alaska Fairbanks Heat capacity Thermal conductivity Variability -Rock type -Anisotropy -Pressure -Temperature Mineralogy

More information

CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the

More information

1 Modeling Immiscible Fluid Flow in Porous Media

1 Modeling Immiscible Fluid Flow in Porous Media Excerpts from the Habilitation Thesis of Peter Bastian. For references as well as the full text, see http://cox.iwr.uni-heidelberg.de/people/peter/pdf/bastian_habilitationthesis.pdf. Used with permission.

More information

Fluid Mechanics III. 1. Dimensional analysis and similarity

Fluid Mechanics III. 1. Dimensional analysis and similarity Fluid Mechanics III 1. Dimensional analysis and similarity Similarity The real world is non-dimensional. The proposition the Eiffel Tower is tall has no sense unless we state what is the object we compare

More information

Numerical and Analytical Study of Exhaust Gases Flow in Porous Media with Applications to Diesel Particulate Filters

Numerical and Analytical Study of Exhaust Gases Flow in Porous Media with Applications to Diesel Particulate Filters American J. of Engineering and Applied Sciences (1): 70-75, 009 ISSN 1941-700 009 Science ublications Numerical and Analytical Study of Exhaust Gases Flow in orous Media with Applications to Diesel articulate

More information

The use of straddle packer testing to hydraulically characterize rock boreholes for contaminant transport studies

The use of straddle packer testing to hydraulically characterize rock boreholes for contaminant transport studies The use of straddle packer testing to hydraulically characterize rock boreholes for contaminant transport studies Patryk Quinn, John Cherry, Beth Parker Presentation for the Solinst Symposium November

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Modeling of 1D Anomalous Diffusion In Fractured Nanoporous Media

Modeling of 1D Anomalous Diffusion In Fractured Nanoporous Media LowPerm2015 Colorado School of Mines Low Permeability Media and Nanoporous Materials from Characterisation to Modelling: Can We Do It Better? IFPEN / Rueil-Malmaison - 9-11 June 2015 CSM Modeling of 1D

More information

ON THE VALIDITY OF THE CARMAN-KOZENY EQUATION IN RANDOM FIBROUS MEDIA

ON THE VALIDITY OF THE CARMAN-KOZENY EQUATION IN RANDOM FIBROUS MEDIA II International Conference on Particle-based Methods Fundamentals and Applications PARTICLES 011 E. Oñate and D.R.J. Owen (Eds) ON THE VALIDITY OF THE CARMAN-KOZENY EQUATION IN RANDOM FIBROUS MEDIA K.

More information

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a

More information

This is start of the single grain view

This is start of the single grain view SOIL TEXTURE, PARTICLE SIZE DISTRIBUTION, SPECIFIC SURFACE AND CLAY MINERALS We will assess the physical realm of soil science in a piecewise fashion starting with the physical phases of soil, -- a single

More information

Course Scheme -UCE501: SOIL MECHANICS L T P Cr

Course Scheme -UCE501: SOIL MECHANICS L T P Cr Course Scheme -UCE501: SOIL MECHANICS L T P Cr 3 1 2 4.5 Course Objective: To expose the students about the various index and engineering properties of soil. Introduction: Soil formation, various soil

More information

Porous Weirs for Flood Mitigation

Porous Weirs for Flood Mitigation University of Southern Queensland Faculty of Engineering and Surveying Porous Weirs for Flood Mitigation A dissertation submitted by Mr Joseph Ian Saunders in fulfilment of the requirements of Courses

More information

Fractal dimension of pore space in carbonate samples from Tushka Area (Egypt)

Fractal dimension of pore space in carbonate samples from Tushka Area (Egypt) SCA206-079 /6 Fractal dimension of pore space in carbonate samples from Tushka Area (Egypt) Andreas Weller (), Yi Ding (2), Zeyu Zhang (3), Mohamed Kassab (4), Matthias Halisch (5) () Technische Universität

More information